Network Working Group C. Partridge
Request for Comments: 2075 BBN
Category: Experimental January 1997
IP Echo Host Service
Status of this Memo
This memo defines an Experimental Protocol for the Internet
community. This memo does not specify an Internet standard of any
kind. Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
Abstract
This memo describes how to implement an IP echo host. IP echo hosts
send back IP datagrams after exchanging the source and destination IP
addresses. The effect is that datagrams sent to the echo host are
sent back to the source, as if they originated at the echo host.
Introduction
An IP echo host returns IP datagrams to their original source host,
with the IP source and destination addresses reversed, so that the
returning datagram appears to be coming from the echo host to the
original source. IP echo hosts are tremendously useful for debugging
applications and protocols. They allow researchers to create looped
back conversations across the Internet, exposing their traffic to all
the vagaries of Internet behavior (congestion, cross traffic,
variable round-trip times and the like) without having to distribute
prototype software to a large number of test machines.
IP echo hosts were heavily used on the Internet in the late 1970s and
early 1980s to debug various Internet transport and application
protocols. But, for reasons unclear, at the current date there are
no echo hosts on the Internet and few people are even aware of the
concept. The goal of this memo is to document the concept in the
hopes it will be revived.
Implementation Details
While the basic idea of a echo host is simple, there are a few
implementation details that require attention. This section
describes those implementation details. The presentation works from
the simplest to most difficult issues.
Partridge Experimental [Page 1]
RFC 2075 IP Echo Host Service January 1997
The most straightforward situation is when an echo host receives an
IP datagram with no options and whose protocol field has a value
other than 1 (ICMP). In this case, the echo host modifies the header
by exchanging the source and destination addresses, decrements the
TTL by one and updates the IP header checksum. The host then
transmits the updated IP datagram back to the original source of the
datagram.
NOTE: If the TTL is zero or less after decrementing, the datagram
MUST not be echoed. In general, an echo host is required to do
all the various sanity checks that a router or host would do to an
IP datagram before accepting the datagram for echoing (see STD 3,
RFC 1122, and RFC 1812).
The TTL MUST be decremented for security reasons noted below.
Observe, however, that the effect is that hosts using an echo path
through an echo host SHOULD set their TTL to twice the normal
value to be sure of achieving connectivity over the echo path.
If an arriving IP datagram has options, the echo host's
responsibilities are more complex. In general, the IP source and
destination are always exchanged and TTL and checksum updated, but in
certain situations, other special actions may have to take place.
If the datagram contains an incomplete source route option (i.e. the
echo host is not the final destination), the datagram MUST be
discarded. If the datagram contains a complete source route option,
the source route option MUST be reversed, and the datagram (with
source and destination IP addresses exchanged and updated TTL) MUST
be sent back along the reverse source route.
More generally, the goal with any option is to update the option such
that when the echoed packet is received at the original source, the
option fields will contain data which makes sense for a datagram
originating at the echo host.
There is one option for which it is unclear what the correct action.
The timestamp option is sometimes used for round-trip time
estimation. If the option is reset at the echo host, then a history
of roughly half of the trip delay will be lost. But if the option is
not reset, then the timestamp option will appear inconsistent with
the source and destination addresses of the datagram. To try to
balance these two issues, the following rules are suggested:
1. If the first entry in the timestamp option contains the IP
address of the source host, the entry SHOULD be rewritten to
contain the IP address of the echo host, and the timestamp option
pointer SHOULD be truncated so that this timestamp is the only one
Partridge Experimental [Page 2]
RFC 2075 IP Echo Host Service January 1997
in the list. (This rewrite makes the option appear consistent
with the new source and destination IP addresses, and retains the
source timestamp, while losing information about the path to the
echo host).
2. If the first entry in the timestamp option does not contain the
IP address of the source host, the entry SHOULD be echoed back
unchanged. The echo host SHOULD NOT appear in the timestamp
option. (This approach retains the entire history of the path,
though observe that on a symmetric route, it means every router
may appear twice in the path).
Finally, if the IP datagram contains an ICMP packet (i.e. the IP
protocol field value is 1), the datagram SHOULD be discarded. The
reason for this rule is that the most likely reason for receiving an
ICMP datagram is that an echoed datagram has encountered a problem at
some router in the path and the router has sent back an ICMP
datagram. Echoing the ICMP datagram back to the router may confuse
the router and thus SHOULD be avoided. (This rule simply follows the
Internet maxim of being conservative in what we send).
However, in some cases the ICMP datagram will have useful information
for the source host which it would be desirable to echo. A
sophisticated echo host MAY choose to echo ICMP datagrams according
to the following rules:
1. Any ICMP datagram in which the destination address in the
encapsulated IP header (the header within the ICMP datagram)
matches the source address of the ICMP datagram MAY be safely
echoed.
2. ICMP Source Quench and ICMP Destination Unreachable with a code
of 4 (fragmentation needed and DF set) MAY be sent to the
*destination* of the encapsulated IP datagram if the source IP
address of the encapsulated IP datagram is that of the echo host.
When the ICMP message is sent on, it SHOULD be rewritten as an
ICMP message from the echo host to the source.
3. All other ICMP messages MUST be discarded.
These rules were chosen to try to ensure that end-to-end ICMP
messages are passed through, as are messages from routers which are
fairly safe and useful (or necessary) to the end system, but that
potentially dangerous messages such as Redirects are suppressed.
(The ICMP Destination Unreachable with code 4 is required for MTU
discovery under RFC-1191).
Partridge Experimental [Page 3]
RFC 2075 IP Echo Host Service January 1997
Security Considerations
Echo hosts pose a number of security concerns related to address
spoofing.
First, echo hosts provide obvious ways to extend attacks that make
use of address spoofing. A malevolent host can write an third
party's IP address as the source address of a datagram sent to an
echo host and thus cause the echo host to send a datagram to the
third party. In general, this trick does not create a new security
hole (the malevolent host could just as well have sent the datagram
with a forged source address straight to the third party host). But
there are some new twists to the problem.
One exception is if the echo host is a host inside a firewall that
accepts datagrams from hosts outside the firewall. In that case, a
malevolent host outside the firewall may be able to use the echo host
to make its packets appear to originate from inside the firewall
(from the echo host). In general, a good firewall will catch these
cases (the source address of the datagrams sent to the echo host will
be for a host inside the firewall and testing for interior source
addresses on datagrams arriving at an exterior interface is a
standard firewall filter) but since the primary purpose of echo hosts
is for wide scale Internet testing, there seems no reason to invite
danger. So we recommend that echo hosts SHOULD NOT be placed inside
firewalls.
Second, address spoofing can be used to cause flooding of the
network. In this case, a malevolent host sends a datagram to an echo
host with the source address of another echo host. This trick will
cause datagrams to circulate between the two echo hosts. The
requirement that the echo host decrement the TTL by one ensures that
each datagram will eventually die, but a sufficiently malevolent host
sending a large number of datagrams with high TTLs to an echo host
can cause considerable disruption. There are a number of possible
ways to repair this problem (such as requiring sources to
authenticate themselves before sending datagrams to be echoed). A
simple protection is simply to limit the number of packets echoed
back to any one source per second. For instance, one might limit a
source to a packet rate equal to 10% of the interface bandwidth (for
a 10 Mb/s Ethernet this would be about 75 maximum sized packets per
second).
One variation of this attack is to generate e-mail addressed to the
echo host (e.g., user@echo.xxx.com). This e-mail will loop over the
network a number of times until the SMTP server determines the
message has too many Received-From: lines.
Partridge Experimental [Page 4]
RFC 2075 IP Echo Host Service January 1997
A third variation of the flooding trick is to place a multicast or
broadcast address as the source of the IP datagram sent to an echo
server. Since this results in an illegal arriving IP datagram, the
echo server MUST discard the datagram. (This warning serves as a
reminder that echo servers MUST do the standard checks for an illegal
datagram before echoing).
Implementation Note
Echo hosts are often implemented as virtual interfaces on an existing
host or router. One can think of the echo host's IP address as a
second IP address for the host, with the semantics that all datagrams
sent to that address get echoed. Observe that when an echo host is
supported as a module within a larger host implementation, an easy
implementation mistake to make is to accidentally put the non-echo
address of a host into an echoed packet. For a variety of reasons
(including security and correct operation of echo paths) implementors
MUST ensure this NEVER happens.
Acknowledgements
This memo was stimulated by a conversation with Jon Crowcroft in
which we both lamented the demise of some beloved IP echo hosts
(e.g., goonhilly-echo.arpa). It has been considerably improved by
comments from various members of the End2End-Interest mailing list,
including Bob Braden, Mark Handley, Christian Huitema, Dave Mills,
Tim Salo, Vern Schryver, Lansing Sloan, and Rich Stevens.
The author is emphatically not the inventor of echo hosts. Enquiries
to the usual suspects suggest that echo hosts were created by persons
unknown (probably at BBN) very early in the development of IP. I'd
like to thank those persons who created echo hosts and apologize for
any errors in describing their invention.
Author's Address
Craig Partridge
BBN Corporation
10 Moulton St
Cambridge MA 02138
EMail: craig@bbn.com
Partridge Experimental [Page 5]
|